

Lepton Asymmetry in B_s & B_d Decays

Steve Beale (York University) FPCP 2009

<u>Outline</u>

- Mixing and Asymmetry in B_s & B_d
- Measurement Strategies
 - Dimuon Asymmetry
 - Untagged, time-integrated Asymmetry
 - Tagged, time-dependent Asymmetry
- Recent Results

CP Violation in Mixing

 \bar{B}^0_s

Schrodinger Equation: $i \frac{d}{dt} \begin{pmatrix} |B(t)\rangle \\ |\bar{B}(t)\rangle \end{pmatrix} = \left(M - i \frac{\Gamma}{2}\right) \begin{pmatrix} |B(t)\rangle \\ |\bar{B}(t)\rangle \end{pmatrix}$

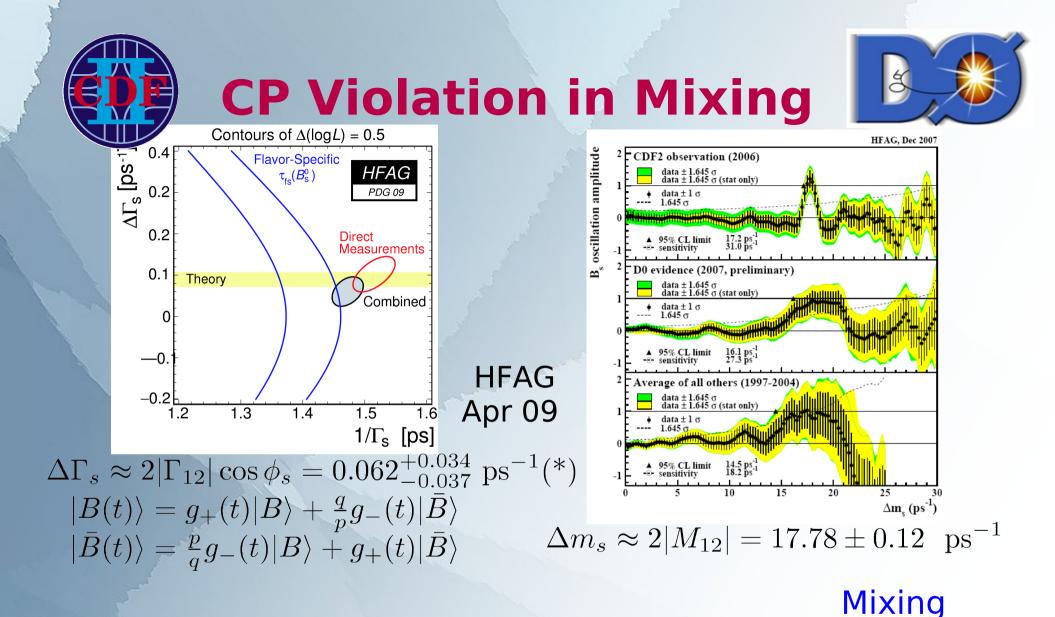
Mass Eigenstates:

$$|B_L\rangle = p|B\rangle + q|\bar{B}\rangle |B_H\rangle = p|B\rangle - q|\bar{B}\rangle$$

Solutions:

 $\begin{aligned} |B(t)\rangle &= g_{+}(t)|B\rangle + \frac{q}{p}g_{-}(t)|\bar{B}\rangle \\ |\bar{B}(t)\rangle &= \frac{p}{q}g_{-}(t)|B\rangle + g_{+}(t)|\bar{B}\rangle \end{aligned}$

May 29 2009


Solve the Schrodinger Equation to determine the time evolution of the B meson.

u, c, t

Find the probability of B decaying as B (nomix) or Bbar (mix)

 $P_{Mix}(t) \sim \cosh(\Delta\Gamma_s t/2) - \cos(\Delta m_s t) \\ P_{NoMix}(t) \sim \cosh(\Delta\Gamma_s t/2) + \cos(\Delta m_s t)$

Steve Beale FPCP 2009 – Lake Placid NY \boldsymbol{S}

*Assuming no CP violation

ion $\begin{array}{l} P_{Mix}(t) & \sim \cosh(\Delta\Gamma_s t/2) - \cos(\Delta m_s t) \\ P_{NoMix}(t) & \sim \cosh(\Delta\Gamma_s t/2) + \cos(\Delta m_s t) \end{array}$

Steve Beale FPCP 2009 – Lake Placid NY

May 29 2009

3

CP Violation in Mixing

Schrodinger Equation: $i\frac{d}{dt}\left(\begin{array}{c}|B(t)\rangle\\|\bar{B}(t)\rangle\end{array}\right) = \left(M - i\frac{\Gamma}{2}\right)\left(\begin{array}{c}|B(t)\rangle\\|\bar{B}(t)\rangle\end{array}\right) \quad \bar{B}_{s}^{0}$

Mass Eigenstates:

$$|B_L\rangle = p|B\rangle + q|\bar{B}\rangle |B_H\rangle = p|B\rangle - q|\bar{B}
angle$$

Solutions:

$$|B(t)\rangle = \underline{g}_{+}(t)|B\rangle + \underline{q}_{p} \underline{g}_{-}(t)|\bar{B}\rangle$$
$$|\bar{B}(t)\rangle = \underline{p}_{q} \underline{g}_{-}(t)|B\rangle + \underline{g}_{+}(t)|\bar{B}\rangle$$

unmixed terms are independent of p/q

May 29 2009

Different dependence on p/q gives a difference in the decay rates for B and Bbar mixed decays.

u, c, t

 W^-

$$\begin{split} P(B \to \bar{B}) &\sim |q/p|^2 \\ P(\bar{B} \to B) \sim |p/q|^2 \\ \text{If } |q/p|^2 &\neq 1 \text{ CP Violation} \end{split}$$

 $P_{Mix}(t)$ $P_{NoMix}(t)$

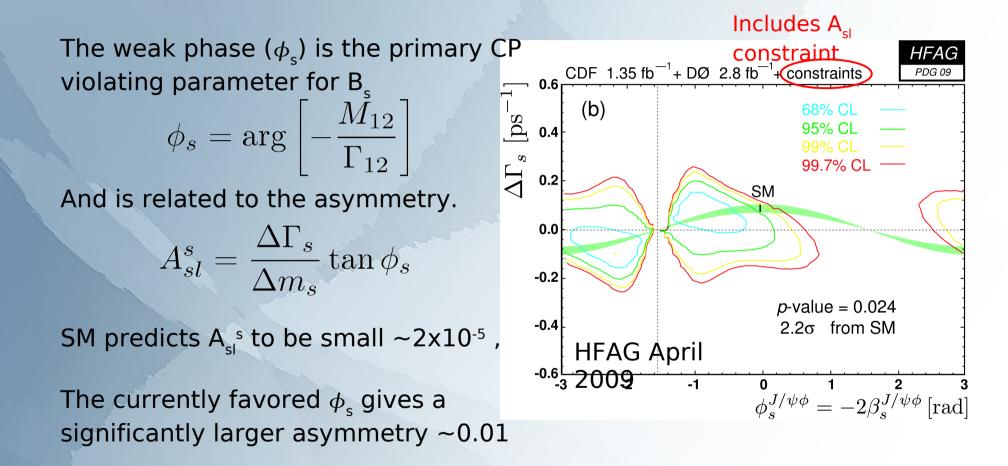
 $\sim \cosh(\Delta \Gamma_s t/2) - \cos(\Delta m_s t)$ $\sim \cosh(\Delta\Gamma_s t/2) + \cos(\Delta m_s t)$

Steve Beale FPCP 2009 – Lake Placid NY S

CP Asymmetry

Define an asymmetry $B \to \bar{B} \to \mu^+ X$ in mixed decay rates: $\bar{B} \to B \to \mu^- \bar{X}$

 $A_{sl}(t) = \frac{\Gamma_{Mix}^{\mu^{+}}(t) - \Gamma_{Mix}^{\mu^{-}}(t)}{\Gamma_{Mix}^{\mu^{+}}(t) + \Gamma_{Mix}^{\mu^{-}}(t)} = \frac{N_{Mix}^{+} - N_{Mix}^{-}}{N_{Mix}^{+} + N_{Mix}^{-}} = A_{sl} \text{ (Constant)}$ = Counting Experiment

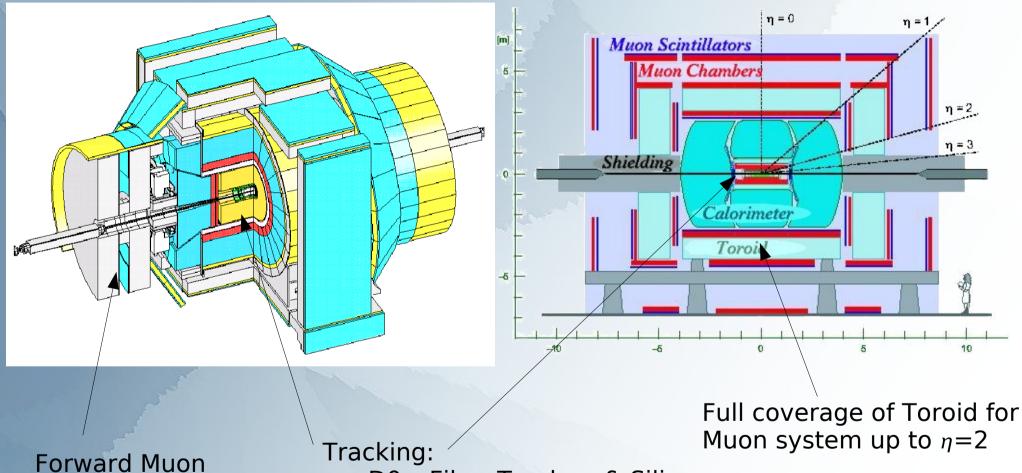

Only works if you can isolate the mixed decays Otherwise average mixed/unmixed decay rates:

$$A_{sl}^{unt}(t) = \frac{\Gamma^{\mu^{+}}(t) - \Gamma^{\mu^{-}}(t)}{\Gamma^{\mu^{+}}(t) + \Gamma^{\mu^{-}}(t)} = \frac{A_{sl}}{2} \left(1 - \frac{\cos(\Delta m_s t)}{\cosh(\Delta \Gamma_s t/2)} \right)$$

No longer time-independent!

May 29 2009

CP Violation


Measuring A_{sl}^{s} provides a constraint on ϕ_{sl}

May 29 2009

Detectors

D0 – Fiber Tracker & Silicon
CDF – Wire Chamber & Silicon

Spectrometer

Analysis Strategies - Overview

Three Strategies:

- Dimuon asymmetry (tagged)
 - Integrated charge asymmetry in inclusive dimuon events
 - D0 1.0fb⁻¹ (2006) & CDF 1.6fb⁻¹ (2007)
- <u>Untagged, time integrated asymmetry</u>
 Integrated charge asymmetry in exclusive B_s decays
 D0 1.3fb⁻¹ (2007)
- <u>Tagged, time dependent asymmetry</u>
 Time dependent charge asymmetry in exclusive B_s decays
 D0 5.0fb⁻¹ (2009)

Tagged vs. untagged – Makes use of mixing information Time dependent vs. integrated – Counting experiment or fit to $A_{sl}^{s}(t)$

May 29 2009

New

Analysis Strategy #1: Dimuon

b \overline{b}

ros

SUO

b

Produce b-antib pairs, if both decay semileptonically, ++/-indicated a mixed decay.

Measure Charge asymmetry in these events

$$A^{\mu\mu} = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

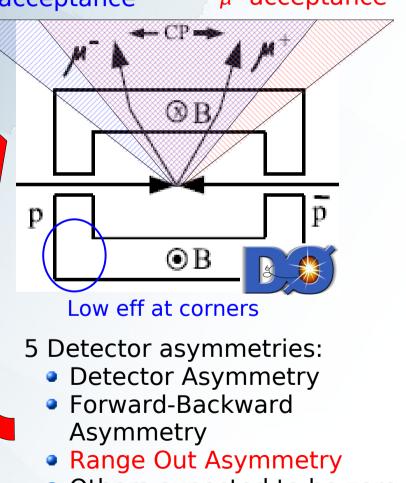
- Fairly straight forward
 - No event reconstruction (inclusive)
 - No complex fitting Counting exp.
- High confidence mixing information
- Low statistics, Br(b $\rightarrow\mu$)~10%
- No independent A_{sl}^s, A_{sl}^d

May 29 2009

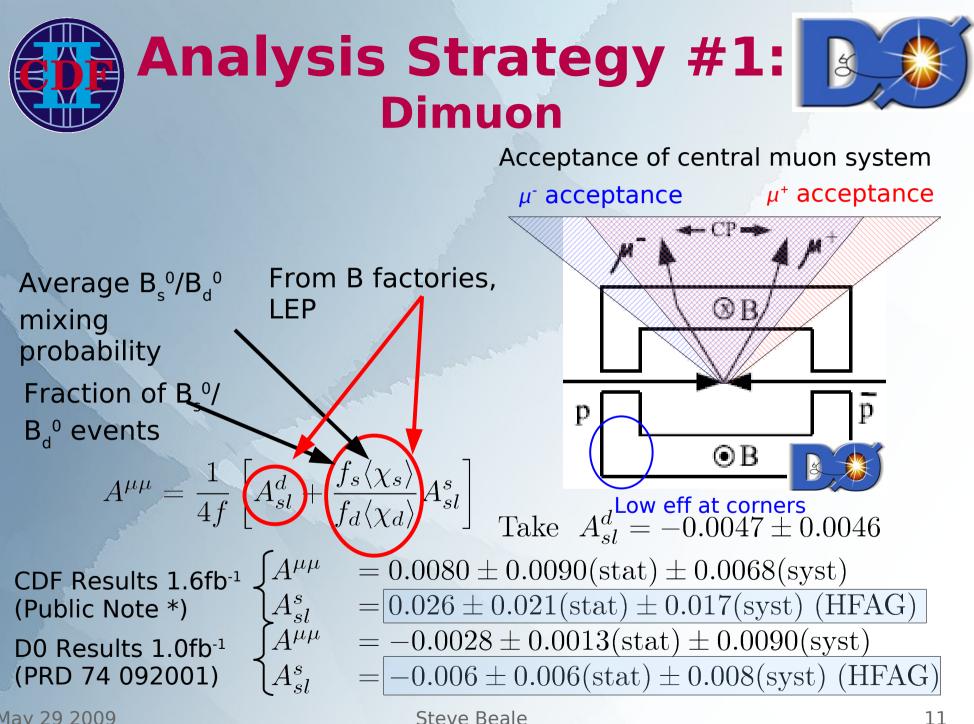
Analysis Strategy #1: Dimuon

Determine 'f' - contribution from 'fake' Acceptance of central muon system mixing processes & detector related asymmetries. Acceptance μ^+ acceptance μ^+ acceptance

 μ^{-}


direct-direct direct-indirect direct-prompt prompt-prompt $\mu - K^{\pm}$ decay Detector Asym

A


$$b
ightarrow \mu^{-}, \ \overline{b}
ightarrow \mu^{+}$$

 $b
ightarrow \mu^{-}, \ \overline{b}
ightarrow \overline{c}
ightarrow$
 $b
ightarrow \mu^{-}, \ c
ightarrow \mu^{+}$
 $c
ightarrow \mu^{+}, \ \overline{c}
ightarrow \mu^{-}$
 $K^{-}N
ightarrow Y\pi$

$$^{\mu\mu} = rac{1}{4f} \left[A^d_{sl} + rac{f_s \langle \chi_s \rangle}{f_d \langle \chi_d \rangle} A^s_{sl}
ight]$$

Mimics mixing Background asymmetry

Others expected to be zero

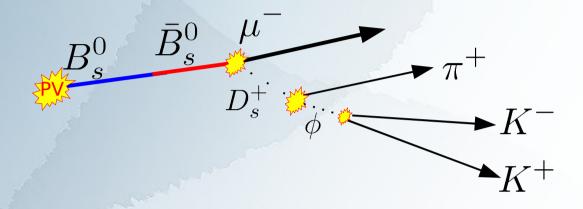
May 29 2009

Steve Beale

FPCP 2009 – Lake Placid NY

* www-cdf.fnal.gov/physics/new/bottom/070816.blessed-acp-bsemil/

Analysis Strategy #2: untagged, time-integrated


Reconstruct the B decay, discounting the opposite side b hadron (IE untagged).

 $\frac{1}{2}$ of B⁰ decays will be mixed, unmixed events dilute asymmetry.

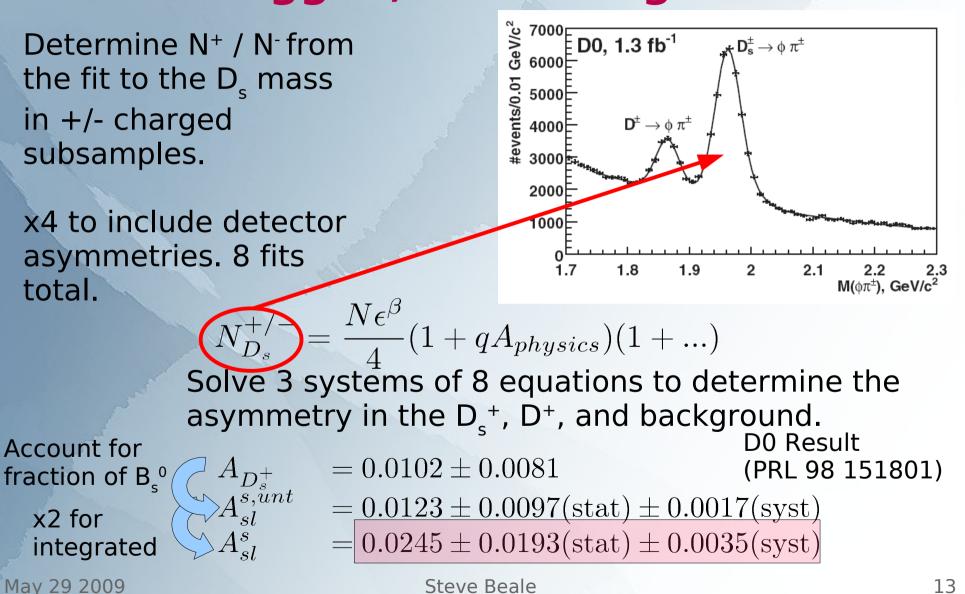
$$A(2) = \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

Asymmetry diluted by unmixed events

May 29 2009

- Still a counting experiment
 Large sample
 - - Flavour specific (independent) A_s)
 - No mixing information

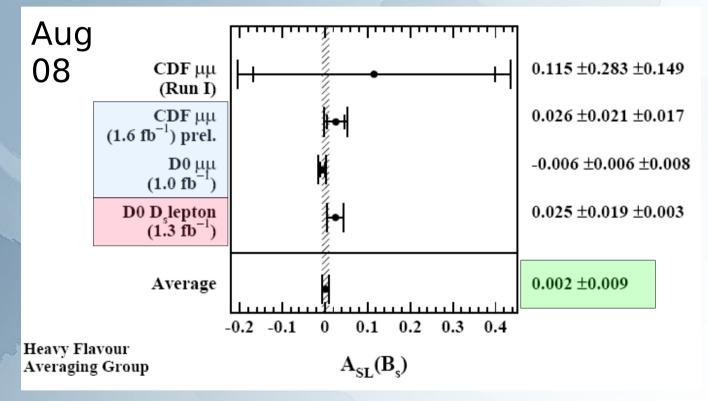
oms"*(Fit D⁺ mass (sample composition)


* Coms = Complexities

Steve Beale FPCP 2009 – Lake Placid NY

Cons

Analysis Strategy #2: untagged, time-integrated



FPCP 2009 – Lake Placid NY

World Average

Apr 09 revised: $A_{sl}^s = -0.0037 \pm 0.0094$ using $A_{sl}^d = -0.0005 \pm 0.0056$

May 29 2009

Analysis Strategy #3: tagged, time-dependent

Likelihood fit allows time dependent asymmetry.

$$A_{sl}^s(t) = \frac{\Gamma^+(t) - \Gamma^-(t)}{\Gamma^+(t) + \Gamma^-(t)}$$

 \bar{B}^0_s 2 decay modes

- Still large sample
- Flavour specific (independent A_{sl}^s)
 - Using all available information
 - Mixing info not 100% accurate
 - Fit D⁺ mass (sample composition)
- Coms • Fit B⁰ lifetime (time evolution)
 - Various other complexities

Flavour Tagging

Opposite Side

Reconstruction Side

 $S\overline{S}$

h

Initial State Flavour

Decay of opposite side B hadron indicates initial flavour on Reco side. As available, use:

- Lepton Charge
- Jet Charge
- Secondary Vertex Charge
- Event Charge

May 29 2009

If initial and final state flavour do not agree, decay is mixed

About 20% of events are tagged, performance varies for each tagger, quantified by 'dilution' variable (D)

Log likelihood

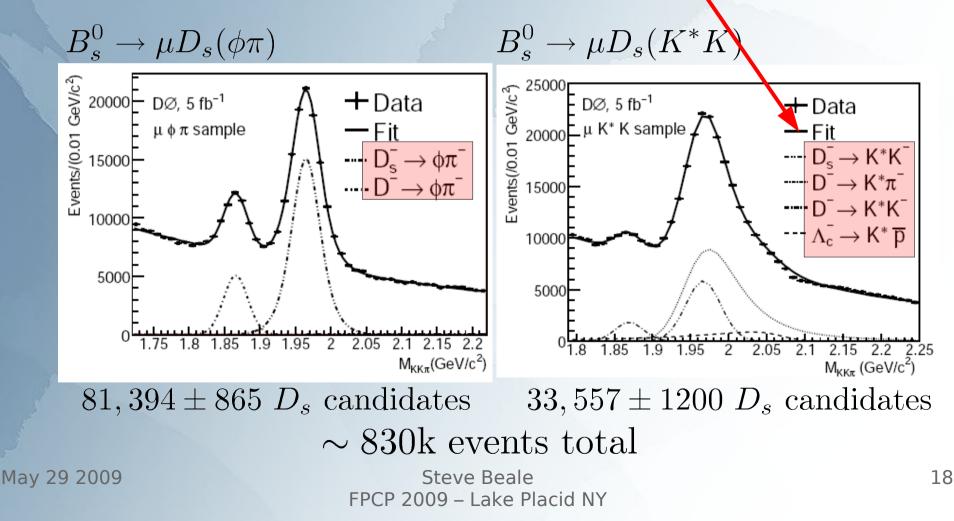
From MC or data

Probability of measured parameters is determined event-by-event (i) for each channel (j).

 P_i^j (lifetime) P_i^j (resolution) $\times P_i^j$ (mass) $\times P_i^j$ (others)

Fit to **Function of** data Asymmetry Sum over all channels. Sum In P_i for all events. $L_{\text{mode}} = -2 \cdot \sum_{i}^{\text{events}} \ln \left(\sum_{j}^{\text{channels}} Fr^{j} P_{i}^{j} \right)$ Add Loglikelihood for two decay modes.

Minimize negative loglikelihood (L) by varying asymmetry parameters.


$$L = L_{K^*K} + L_{\phi\pi}$$

May 29 2009

Mass Fit to D_s candidates

In addition to the mass pdf, the fit also determines the fractions for each channel

Lifetime Function

Truth unmixed decay rate:

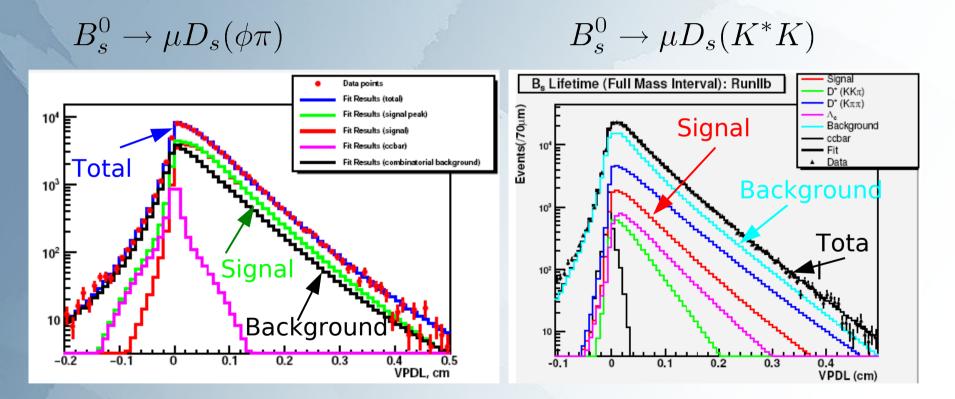
 $\Gamma(B_s \to \mu^+ X) \propto \exp(-\Gamma t) \left[\cosh(\Delta \Gamma_s t/2) + \cos(\Delta m_s t)\right]$ $\Gamma(\bar{B}_s \to \mu^- X) \propto \exp(-\Gamma t) \left[\cosh(\Delta \Gamma_s t/2) + \cos(\Delta m_s t)\right]$

Truth mixed decay rate:

 $\Gamma(\bar{B}_s \to \mu^+ X) \propto (1 + A_{sl}^s) exp(-\Gamma t) \left[\cosh\left(\Delta\Gamma_s t/2\right) - \cos\left(\Delta m_s t\right)\right]$ $\Gamma(B_s \to \mu^- X) \propto (1 - A_{sl}^s) exp(-\Gamma t) \left[\cosh\left(\Delta\Gamma_s t/2\right) - \cos\left(\Delta m_s t\right)\right]$

But initial state flavour is not 100% accurate:

$$\mathsf{Example} = \Gamma\left(\bar{B}_s \to \mu^+\right) \frac{1+D}{2} + \Gamma\left(B_s \to \mu^+\right) \frac{1-D}{2}$$


initial and final state tags

Weight the mixed/unmixed decay rate functions according to dilution

Lifetime Fit

Determine contributions to the background and B_s⁰ lifetime

Detector Asymmetries

- Three non-CP conserving variables, μ charge (q), μ sign of the pseudorapidity (γ), sign of the toroid polarity (β).
- Seven possible asymmetries
 - → A_q: Charge asymmetry, IE A_{sl}
 - A_{β} : Toroid asymmetry, determined from data (fixed)
 - A_y: North/South Detector asymmetry (A_{det})
 - \rightarrow A_{gy}: Beam related, forward-backward asymmetry (A_{fb})
 - → A_{qβ}: Possible efficiency changes related to toroid
 - $A_{\beta\gamma}$: Possible forward-backward asymmetry related to toroid
 - $A_{q\beta\gamma}$: Asymmetry due to muons in toroid bending towards/away from beam axis (range out asymmetry A_{ro}) - large

May 29 2009

es to be measured

ve Detector

Asymmetry Results

		$\mu^+ \phi \pi^-$	$\mu^+ K^{*0} K^-$	Combined
a	$\frac{s}{fs} \times 10^3$	-7.0 ± 9.9	20.3 ± 24.9	-1.7 ± 9.1
	$d_{fs} \times 10^3$	-21.4 ± 36.3	$50.1 {\pm} 19.5$	40.5 ± 16.5
	$b_{bg} \times 10^3$	$-2.2{\pm}10.6$	-0.1 ± 13.5	-3.1 ± 8.3
Ŀ	$A_{ m fb} imes 10^3$	$-1.8{\pm}1.5$	$-2.0{\pm}1.5$	$-1.9{\pm}1.1$
A	$A_{ m det} imes 10^3$	$3.2{\pm}1.5$	$3.1{\pm}1.5$	$3.1{\pm}1.1$
	$A_{\rm ro} imes 10^3$	-36.7 ± 1.5	-30.2 ± 1.5	-33.3 ± 1.1
	$A_{\beta\gamma} \times 10^3$	$1.1{\pm}1.5$	$0.2{\pm}1.5$	$0.6{\pm}1.1$
Ŀ	$A_{q\beta} \times 10^3$	$4.3 {\pm} 1.5$	$2.0{\pm}1.5$	$3.1{\pm}1.1$

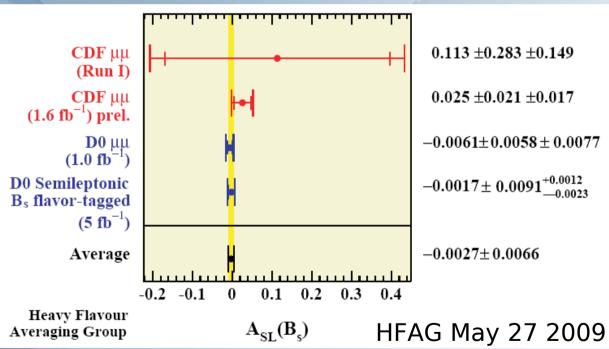
Detector Asymmetries

Systematic Uncertainties

- Calibration of the Opposite Side Tagger
 (Turn off) to grad a bift in A 5
 - 'Turn off' tagger, shift in $A_{sl}^{s} = -0.0022$
- Large Shift in A_{sl}^d (from SM), A_{sl}^s, A_{sl}^d and A_{sl}^{bg} correlated
 - Fix $A_{sl}^{d} = 0$, shift in $A_{sl}^{s} = +0.0012$
- Fraction of Signal/Background from mass fit
- Parameters from lifetime fit
- $\Delta \Gamma_{\rm s,} \Delta {\rm m_{s}}$
 - Branching fractions

 $A_{sl}^{s} = -0.0017 \pm 0.0091 (\text{stat})_{-0.0023}^{+0.0012} (\text{syst})$

Small



Conclusions

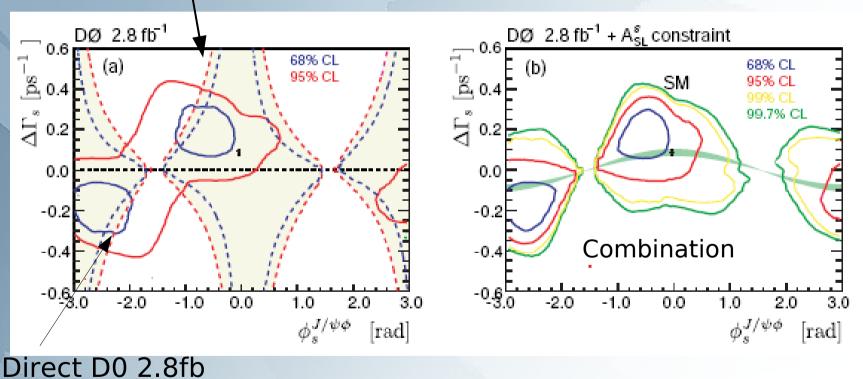
The B_s^o semileptonic asymmetry has been measured with a 5fb⁻¹ data sample to be: $-0.0017 \pm 0.0091(\text{stat})^{+0.0012}_{-0.0023}(\text{syst})$

Submitted to PRL arXiv: 0904.3907

This analysis supersedes the previous semileptonic CP asymmetry at D0, and improves statistical uncertainty by ~2x

Compare, Apr 09: $A_{sl}^s = -0.0037 \pm 0.0094$

May 29 2009



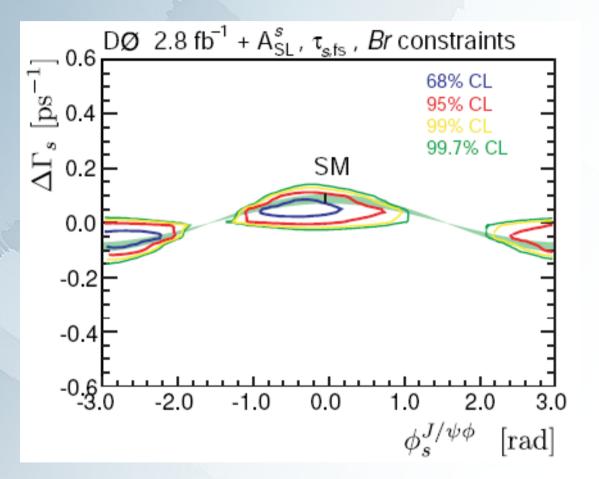
Conclusions

Impact of A_{sl}^{s} constraint on $\Delta \Gamma_{s} \& \phi_{s}$ (only D0 results)

World average A_{sl}^{s} constraint

 $(B_s \rightarrow J/\psi\phi)$

May 29 2009


Conclusions

2.8fb⁻¹ D0 results from $B_s \rightarrow J/\psi \varphi$

constraints from A_{sl} , fs lifetime and $Br(B_s \rightarrow D_s D_s)$

Combination with CDF results coming soon!

p-value at SM point is 10%

May 29 2009

Backup Slides

Untagged time integrated

TABLE I. The numbers of events $n_q^{\beta\gamma}(D_s) [n_q^{\beta\gamma}(D)]$ in the D_s [D] mass peak and in the background $n_q^{\beta\gamma}(bkg)$ for eight subsamples.

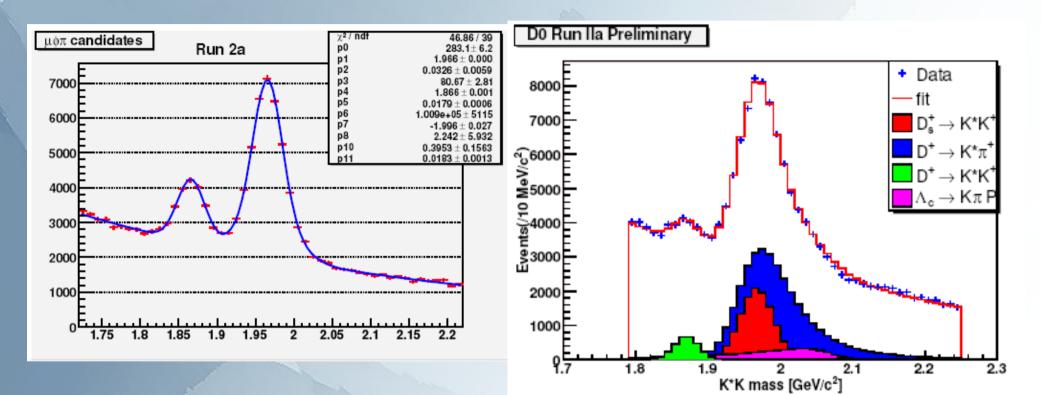
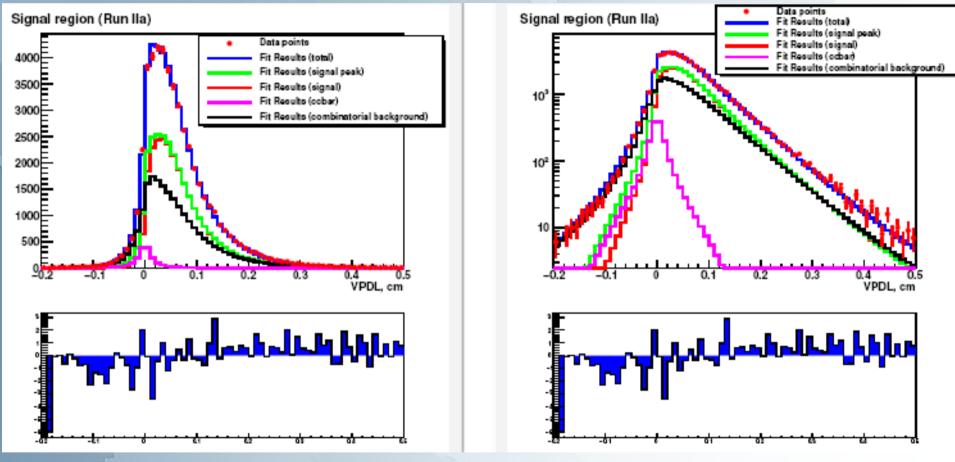
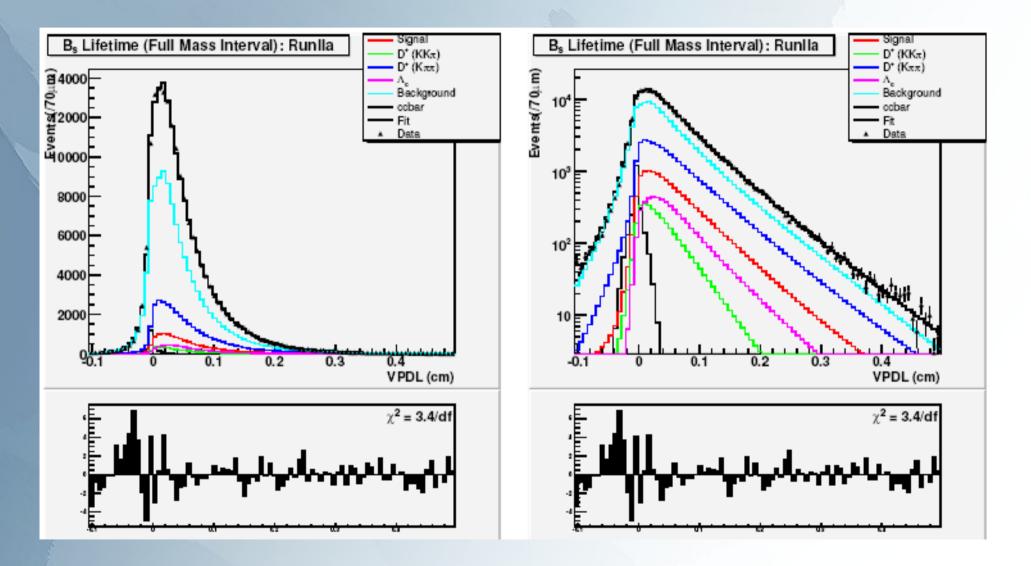

Subsample: $\beta \gamma q$	$n_q^{\beta\gamma}(D_s)$ (events)	$n_q^{\beta\gamma}(D)$ (events)	$n_q^{\beta\gamma}(\text{bkg})$ (events)
+ + +	3216 ± 76	907 ± 55	9797 ± 124
+ - + + - +	3586 ± 79 3391 ± 78	$965 \pm 56 \\ 1037 \pm 57$	10387 ± 127 10390 ± 127
+	3225 ± 76	963 ± 55	9832 ± 124
- + +	3616 ± 80	1003 ± 57	10508 ± 128
+ -+-	3370 ± 77 3353 ± 77	$801 \pm 54 \\ 831 \pm 55$	9987 ± 125 10215 ± 125
	3532 ± 79	1116 ± 59	10701 ± 129

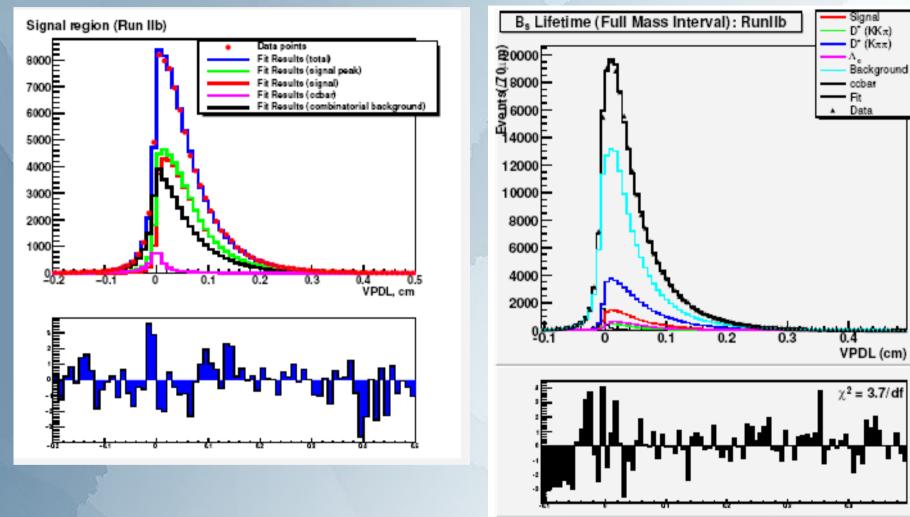
TABLE II. The physics and detector asymmetries for (μD_s) , (μD) , and background events. Uncertainties are statistical.


		(μD_s)	(μD)	Background
	Ν	27289 ± 220	7623 ± 162	81817 ± 357
	ϵ^+	0.492 ± 0.004	0.510 ± 0.011	0.494 ± 0.002
	Α	0.0102 ± 0.0081	-0.0345 ± 0.0211	-0.0056 ± 0.0045
	$A_{ m fb}$	-0.0046 ± 0.0081	0.0480 ± 0.0210	-0.0020 ± 0.0043
	$A_{\rm det}$	-0.0051 ± 0.0081	-0.0072 ± 0.0212	0.0001 ± 0.0044
	$A_{ m ro}$	-0.0352 ± 0.0081	-0.0819 ± 0.0209	-0.0263 ± 0.0044
	$A_{\beta\gamma}$	-0.0097 ± 0.0081	0.0104 ± 0.0213	-0.0010 ± 0.0044
	$A_{q\beta}$	0.0030 ± 0.0081	0.0014 ± 0.0212	0.0046 ± 0.0044
May 29 2009				

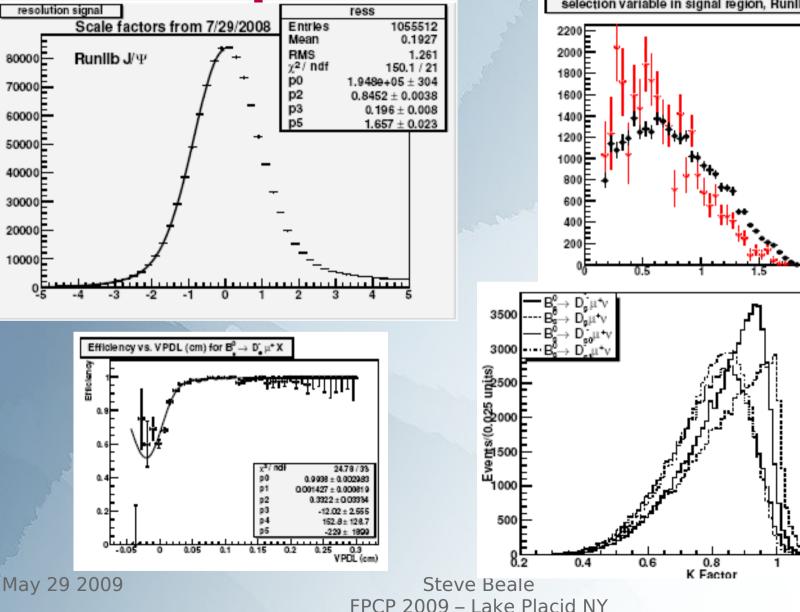
FPCP 2009 – Lake Placid NY


Mass Runlla

Lifetime Runlla phipi



Lifetime Runlla KstK



May 29 2009

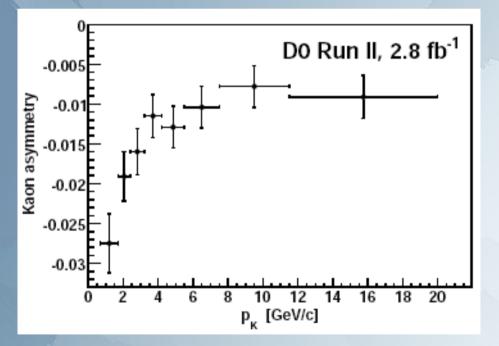
Lifetime Runllb (linear)

Various other inputs and studies...

20

33

1.4


1.2

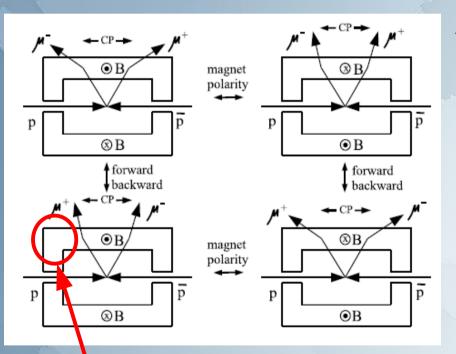
Kaon asymmetry

 $K^- N \to Y \pi$

Efficiency for K⁺ is higher than K⁻ due to interactions with detector material that do not occur for K⁺. Causes momentum dependent asymmetry.

Only an issue in K^{*}K decay mode:

Kaons asymmetric


$$D_s^+ \to K^* K^+ \to (\pi^+ K^-) K^+$$

vs.
$$D_s^+ \to \phi \pi^+ \to (K^+ K^-) \pi^+$$

Kaons symmetric

Detector Asymmetry

D0 flips muon toroid polarity regularly. Approx 50% of the data is β =+1, β =-1.

Acceptance of central muon system μ^+ acceptance μ^{-} acceptance $\otimes B$ p

Gives an asymmetry of $\sim 3\%$ 'range out asymmetry' A_{ro}

ΘB

Low efficiency where forward and central toroid meet

May 29 2009

Steve Beale FPCP 2009 – Lake Placid NY

p