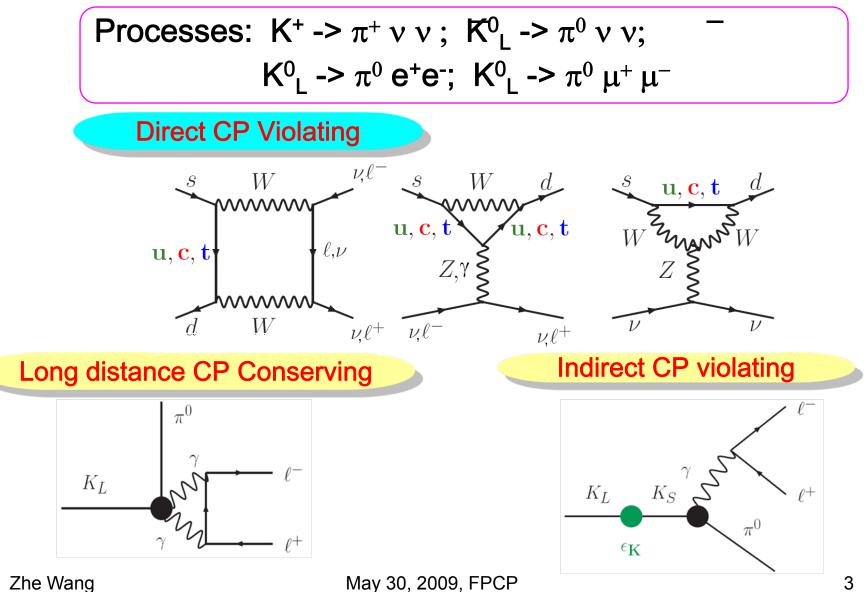

K⁺ -> $\pi^+ \sqrt{\nu} \sqrt{\nu}$ & Other Semileptonic Kaon Decays

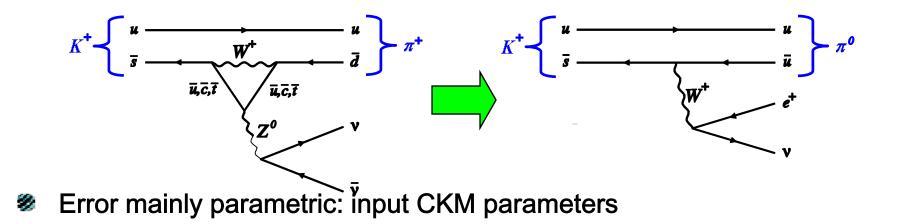
Zhe Wang Physics Department

May 30, 2009, FPCP

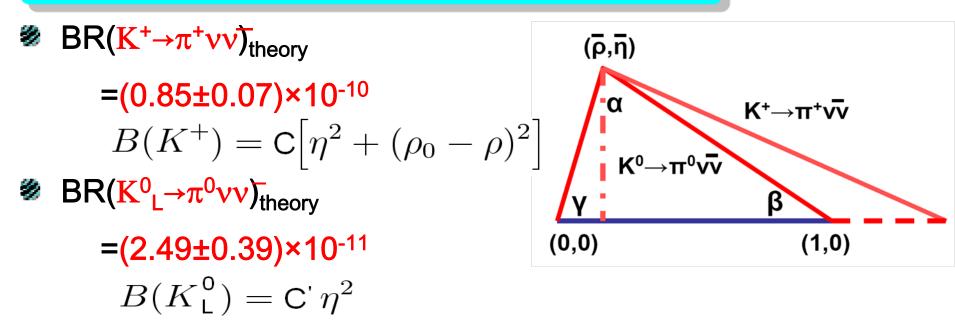

Outline:

- I Rare Kaon decays
 - K⁺ -> π⁺ ν ν
 - $K_{L}^{0} \rightarrow \pi^{0} \nu \nu$ -
 - $K_{L}^{0} \rightarrow \pi^{0} e^{+}e^{-}$ and $K_{L}^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-}$
- **II** Lepton Flavor Violation

III Summary


 Apologies for the missing of many other interesting topics for lack of time

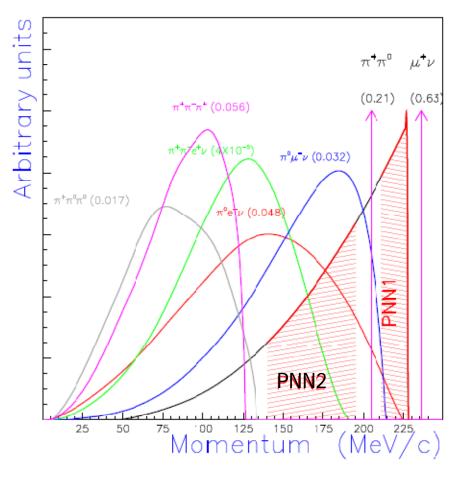
I Rare Kaon decays: K-> π ((



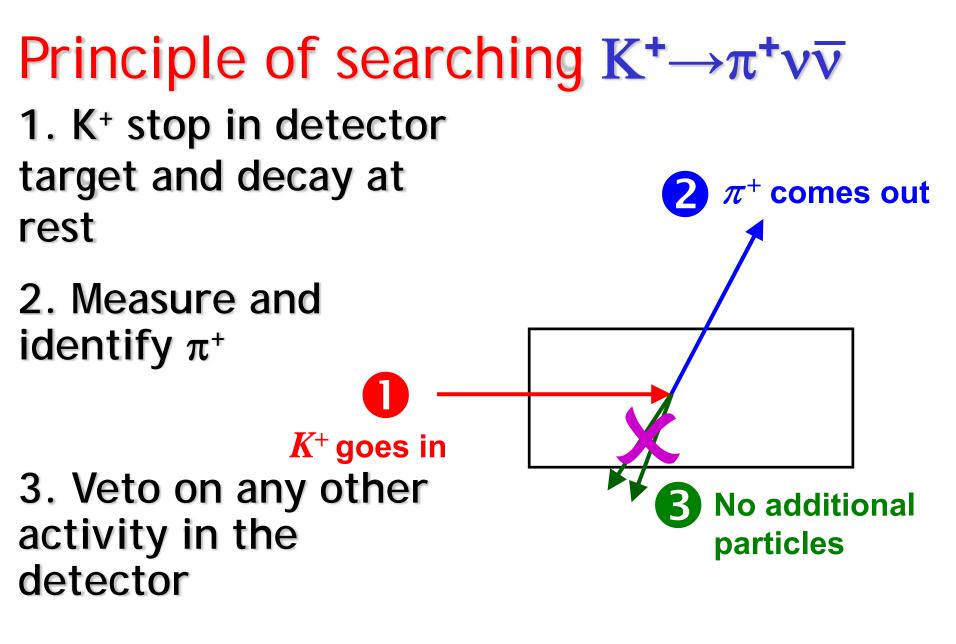
Two golden channels: $K^+ > \pi^+ \nu \nu$ and $K^0_L - > \pi^0 \nu \nu$

- FCNC process is forbidden at tree level
- Only loop contributions: W Boxes and Z Penguins which can be precisely predicted by perturbation theory
- No long distance CP conserving and Indirect CPV contribution
- Relevant hadronic operator matrix element can be extracted from $K^+ \rightarrow \pi^0 e^+ \nu$

Theoretical Status for $\pi v v$ decays

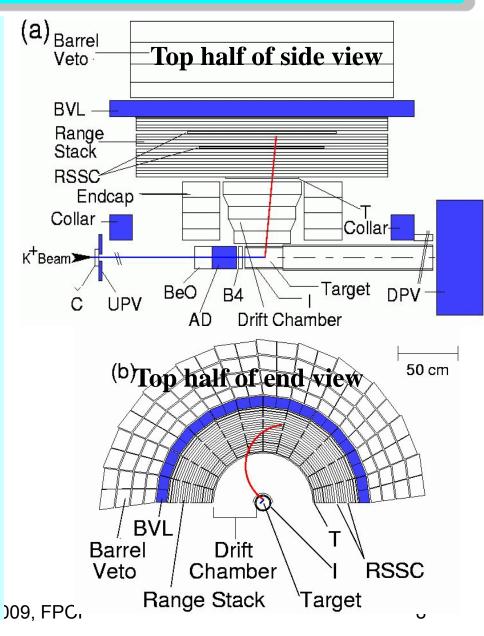


Top quark contribution is dominant ~70% in BR(K⁺-> $\pi^+\nu\nu$) ~ >99% in BR(K⁰_L-> $\pi^0\nu\nu$) ~

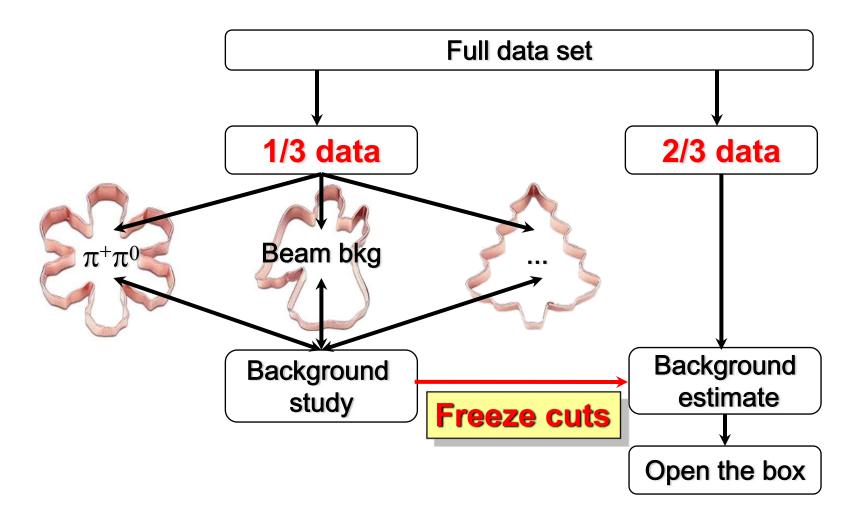

Sensitive to new physics (Probe SM at quantum level, thereby allowing an indirect test of high-energy scales through a low-energy process)

Search for K⁺ -> $\pi^+ \nu \nu a$ t E787/E949

PRL **101**, 191802; PR D **79**, 092004 Our web page: http://www.phy.bnl.gov/e949/

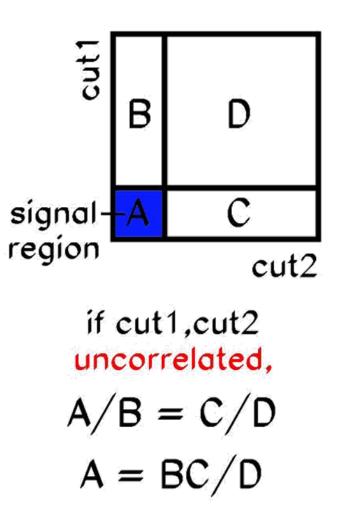


- 1. E787 is the predecessor of E949
- 2. There are two independent search regions, pnn1 and pnn2
- 3. Previously E787 and E949 found 4 candidates

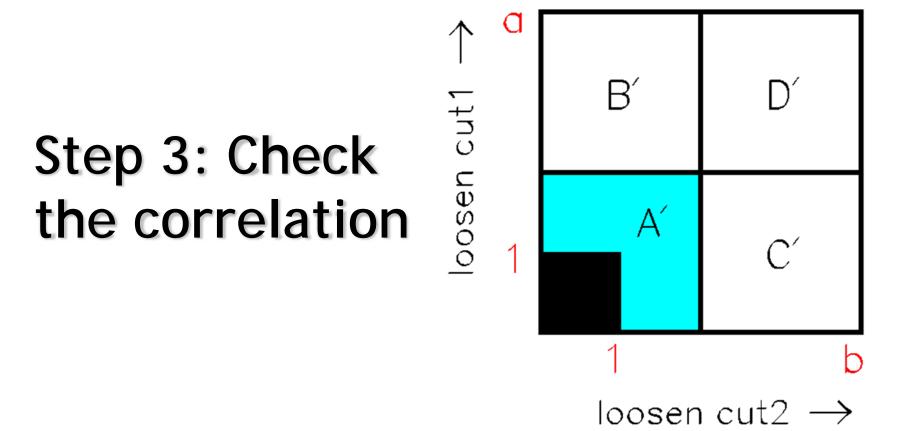


E949 is dedicated to rare kaon decay study

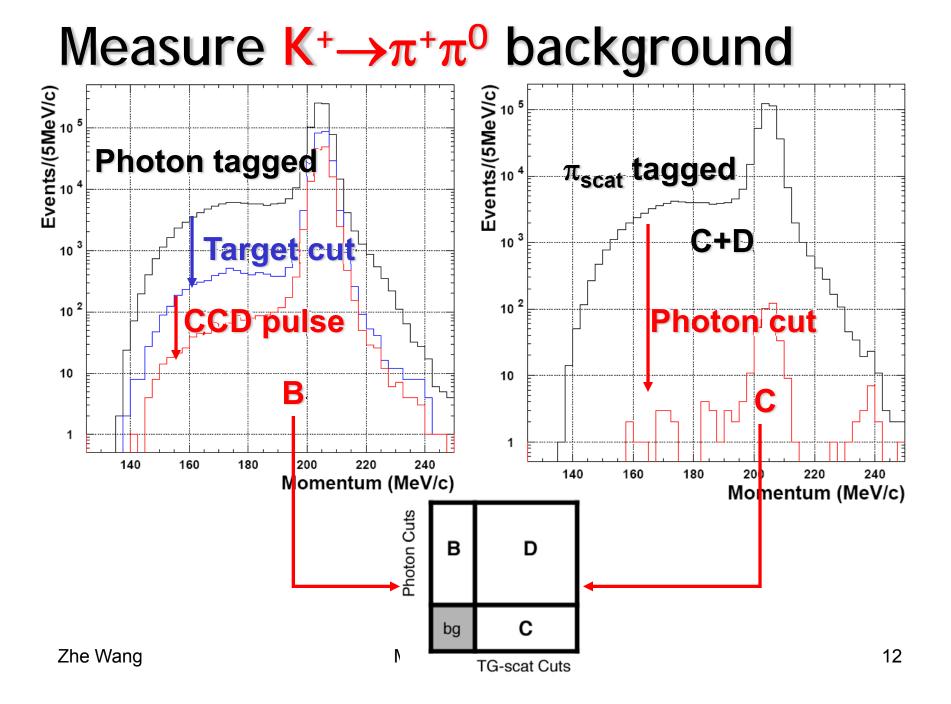
- 1. ~700 MeV/c K⁺ beam
- 2. Stop K⁺ in scintillation fiber target,
- 3. Powerful and redundant particle ID for beam and daughter particles
- 4. Photon veto: 4π coverage
- 5. Each target fiber is read out by ADC, TDC and CCD
- 6. Observe $\pi^+ \to \mu^+ \to e^+$ in RS



Strategy 1: avoid bias in cut tuning

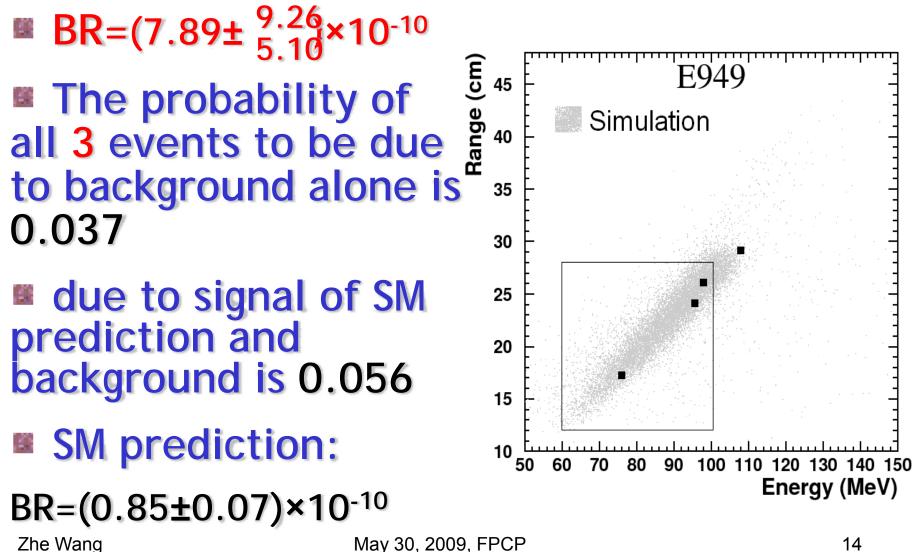


Strategy 2: blind analysis - bifurcation


- Step 1: Background isolation
- Step 2: Suppress each background with two independent cuts

Strategy 2: blind analysis - bifurcation

bg' = bg(A') - bg(A) = B'C'/D' - BC/D

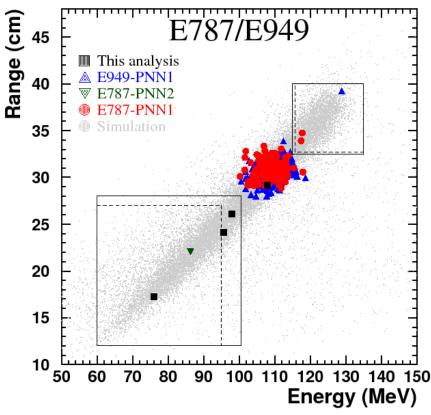

Total background and sensitivity

Bkgd events (E949)	Bkgd events (E787)
$0.649 \pm 0.150^{+0.067}_{-0.100}$	1.030 ± 0.230
$0.076 \pm 0.007 \pm 0.006$	0.033 ± 0.004
$0.176 \pm 0.072^{+0.233}_{-0.124}$	0.052 ± 0.041
$0.013 \pm 0.013^{+0.010}_{-0.003}$	0.024 ± 0.017
0.011 ± 0.011	0.016 ± 0.011
0.001 ± 0.001	0.066 ± 0.045
$0.93 \pm 0.17^{+0.32}_{-0.24}$	1.22 ± 0.24
E949 pnn2	E787 pnn2
$1.70 imes10^{12}$	$1.73 imes10^{12}$
$1.37 imes10^{-3}$	$0.84 imes10^{-3}$
$4.3 imes10^{-10}$	$6.9 imes10^{-10}$
	$\begin{array}{c} 0.649 \pm 0.150^{+0.067}_{-0.100} \\ 0.076 \pm 0.007 \pm 0.006 \\ 0.176 \pm 0.072^{+0.233}_{-0.124} \\ 0.013 \pm 0.013^{+0.010}_{-0.003} \\ 0.011 \pm 0.011 \\ 0.001 \pm 0.001 \\ \hline 0.001 \pm 0.001 \\ \hline 0.93 \pm 0.17^{+0.32}_{-0.24} \\ \hline \text{E949 pnn2} \\ 1.70 \times 10^{12} \\ 1.37 \times 10^{-3} \end{array}$

For E787+E949 pnn1 SES=0.63×10⁻¹⁰

SES is the branching ratio for a single event observed w/o background MC is used to estimate kinematics cuts acceptance and the rejection of some well understood cut in background study.

Measured $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ BR of this analysis



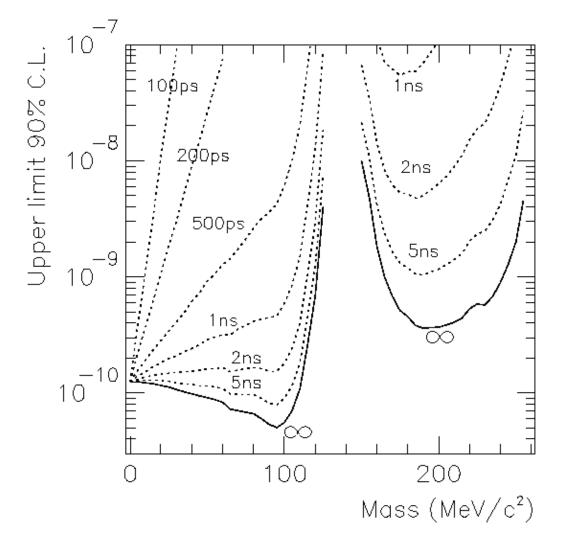
Combined with all E787/E949 result


■ BR=(1.73± 1.15/1.05×10⁻¹⁰

final

- The probability of all 7 events to be due to background alone is 0.001
- due to signal of SM prediction and background is 0.07
- SM prediction: BR=(0.85±0.07)×10⁻¹⁰

BR of Scalar and Tensor form factors



Limit on the BR of $K^+ \rightarrow \pi^+ X$

The mass of X is unknown.

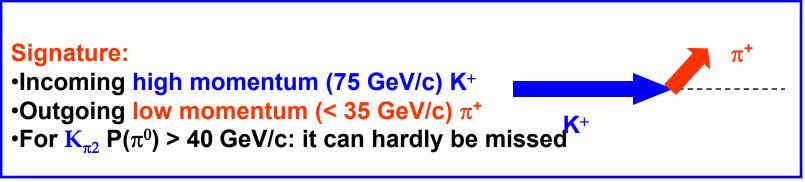
X might have some limited lifetime

We assume the detection efficiency of X's daughter particle is 100% if decay within detector

K⁺-> $\pi^+\nu\nu$: Experimental Prospect

✤ The Sensitivity of E787/E949 experiment is limited by low statistics.

The main background is from scattering and inefficiency of low energy photon detection

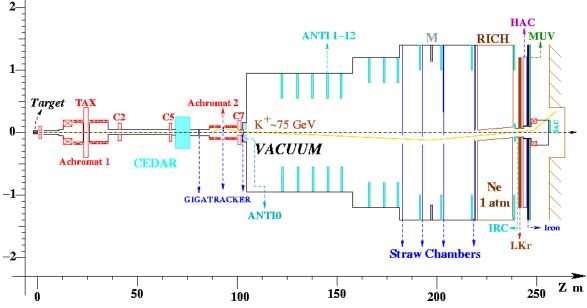

A well supported NA62: aiming at O(100) events

•K⁺ Decay in-flight to avoid the scattering and the backgrounds introduced by the stopping target

→long decay region

•High momentum to improve the background rejection

 \rightarrow unseparated hadron beam

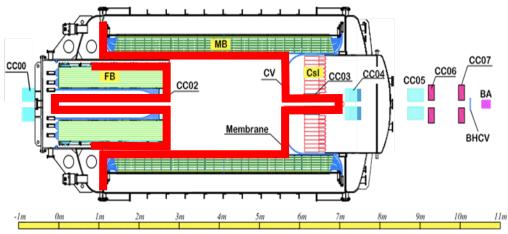

A. Ceccucci @ New Opportunities in the Physics Landscape at CERN

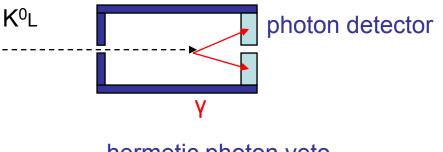
1. Precise timing to associate the decay to the correct incoming parent particle (K⁺) in a ~800 MHz beam

 \rightarrow Beam tracker with $\sigma_t \sim 100$ (GTK)

- 2. Kinematical Rejection →low mass tracking (GTK + STRAW in vacuum tank)
- 3. Vetoes (γ and μ)
 - → ANTI (OPAL lead glass) + NA48 LKR
 - → MUV
- 4. Particle Identification $\xrightarrow{2}$
 - $\rightarrow \pi/\mu$ (RICH)

Very challenging experimentally; aims at 50 evts/year, ready > 2012

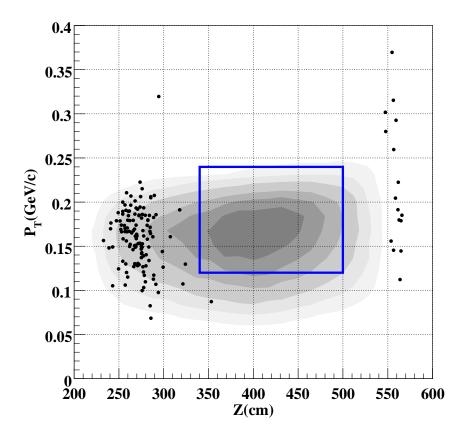



II Search for $K_L \rightarrow \pi^0 v v$

E391a, PRL 100, 201802

- KL→π⁰{ decay L_{γγ}
 two photons w/o any other observable charged or neutral particles.
- Constraint of two photon effective mass,

 $m_{\gamma\gamma} = m_{\pi0}$ gives distance z to the decay point.



hermetic photon veto

$K_L \rightarrow \pi^0 v v$ analysis result

- Background: 0.41 ±0.11
- Acceptance: A = 0.67%
- Flux: N_{KL} = 5.1 x 10⁹
- S.E.S = 1 / (A•N_{KL}) = (2.9 ± 0.3) x 10⁻⁸
- Upper Limit
 - 0 event observed2.3 events w/ Poisson stat.
 - Br(K_L→π⁰vv) < 6.7 x 10⁻⁸
 (@90% C.L.)
- SM prediction
 - = (2.49 ±0.39) x 10⁻¹¹

KEK E391a → J-PARC E14

Takao Shinkawa, seminar@BNL 2008

- High intensity proton accelerator at Tokai beam intensity x100 12-GeV PS
- Csl

 $-7x7x30cm^3 \rightarrow 2.5x2.5x50cm^3$, $5x5x50cm^3$ (from KTeV)

- Reduce leakageBetter positioning
- Readout Electronics

-Wave-form digitization

- New Detectors
 - -Beam Hole Photon Veto
 - -Full active CC02
 - -MB liner
 - -New CV

E14 tentative schedule:

Private communication with Takeshi Komatsubara

• JFY2009

(JFY2009 = Japanese Fiscal Year 2009: from April 2009 to March 2010)

(Proton beam intensity might still be very low)

Beam line construction is started and on schedule

Beam survey

KL flux measurement

with $K^L \rightarrow \pi^+ \pi^- \pi^0$ decay.

Flux might be three times more.

Csl-calorimeter prototype test

• From late in JFY2009 to JFY2010

(Proton beam intensity would be higher)

Begin Csl stacking

Construct the Csl calorimeter and do Engineering run with it

Beam survey again

• JFY2011

Complete the detector construction

Full engineering run

First physics run (limited run time and beam intensity)

May 30, 2009, FPCP

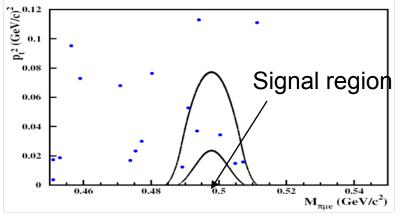
$K_{L}^{0} - \pi^{+}e^{+}e^{-}$ and $K_{L}^{0} - \pi^{0}\mu^{+}\mu^{-}$

In SM three components (Direct CPV, indirect CPV and LD CP conserving) be of comparable size

Long distance dominant (ChPT); Possible interference -> Can add to our understanding of flavor physics

New physics might only appear in πee and $\pi \mu \mu$ channels while not in $\pi \nu \nu$ channels (C. Smith CKM 2008)

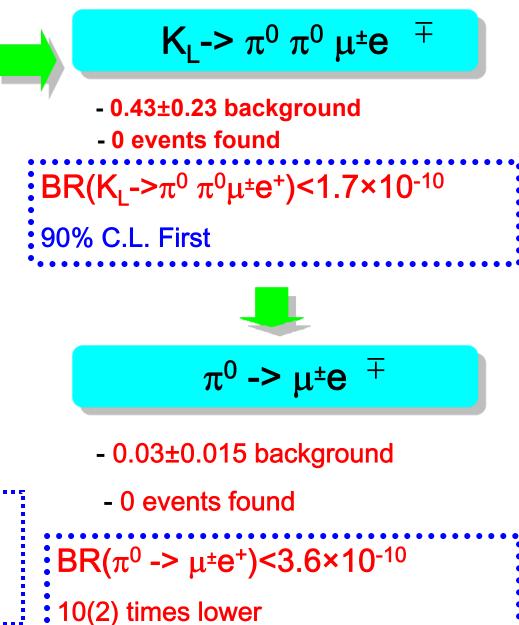
	$\Gamma_{\rm SD}/$ Γ	Irreducible theory err. (amp)	SM BR (×10 ⁻¹¹)	Experiment
K ⁰ _I ->π ⁺ e ⁺ e ⁻	38%	15%	3.54+0.98	< 28 x 10 ⁻¹¹
			-0.85	KTEV, PRL 93, 021805 (2004) 97, 99 data set
K^{0} , -> $\pi^{0}\mu^{+}\mu^{-}$	28%	30%	1.41+0.28	< 38 x 10 ⁻¹¹
			-0.26	KTEV, PRL 84, 5279 (2000) 97 data set
Zhe Wang		May 30, 20	009, FPCP	A new result is coming 24


II Lepton Flavor Violation

KTeV: $K_L \rightarrow \pi^0 \mu^{\pm} e^{\mp}$ $K_L \rightarrow \pi^0 \pi^0 \mu^{\pm} e^{\mp}$ $\pi^0 \rightarrow \mu^{\pm} e^{\mp}$ (PRL 100, 131803)

- In SM lepton generation number violating decays are possible with nonzero neutrino masses and mixing, but beyond the reach of current experiment
- Total lepton number conservation may break with a heavy Majorana neutrino, like neutrinoless double beta decay ($0\nu\beta\beta$ only study the first generation)
- Many scenarios beyond SM could predict observable LFV decays, SUSY, Technicolor
- Searching LFV in kaon decays is independent and complementary. It provides important constrain to new physics.

 $K_L -> \pi^0 \mu^{\pm} e^{\mp}$


- Background estimate:
- 0.66±0.23 in signal region

- Blind regions opened:
- 0 events in signal region

BR(K_I ->π⁰ μ[±]e)< 7.6×10⁻¹¹

90% C.L. Factor of 83 lower than previous limit

Zhe Wang

A brief summary of LFV experimental result in semileptonic kaon decays (CL=90%)

K _L ->π ⁰ μ [±] e	<7.6×10 ⁻¹¹	
K _L ->π ⁰ π ⁰ μ [±] e	<1.7×10 ⁻¹⁰	
K ⁺ ->π ⁺ μ ⁺ e ⁻	<1.3×10 ⁻¹¹	**
K ⁺ ->π ⁺ μ ⁻ e ⁺	<5.2×10 ⁻¹⁰	*
K ⁺ ->π ⁻ μ ⁺ e ⁺	<5.0×10 ⁻¹⁰	*
K ⁺ ->π ⁻ μ ⁺ μ ⁺	<6.4×10 ⁻¹⁰	*
K ⁺ ->π ⁻ e ⁺ e ⁺	<3.0×10 ⁻⁹	*

* E865, PRL 85, 2877;

** E865, PR D72, 012005; PDG 2008

III Summary

E787/E949: found 7 candidates BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) =(1.73± $^{1.15}_{1.05}$ ×10⁻¹⁰ (final)

This result is twice of standard model prediction, however consistent with it within uncertainty

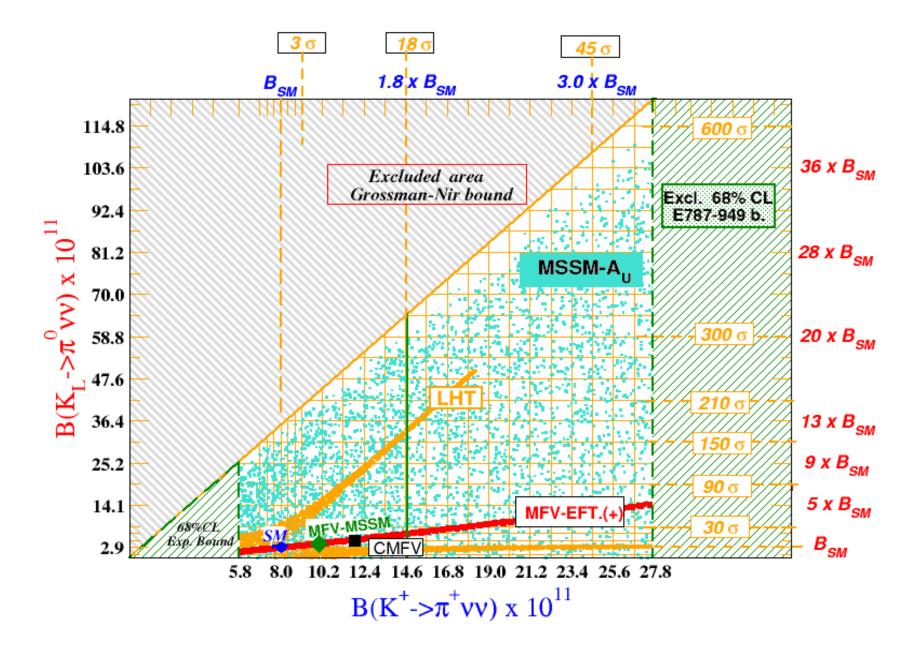
E787/E949 is the first experiment reaching the SM prediction level.

- **E391a presented Br(K_L\rightarrow \pi^0 vv)** $\leq 6.7 \times 10^{-8}$
- KTeV improved Kaon LFV search result.
- So far no NP is found in rare kaon decay and LFV
- Expect the new result from E391a/E14 and NA62

Backup slides

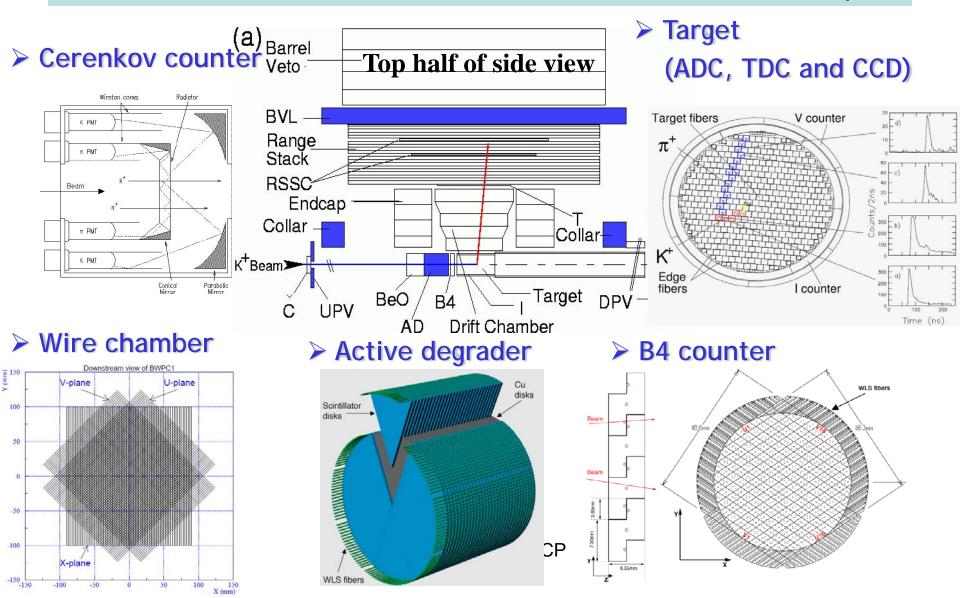
Branching ratio prediction: $K^+ \rightarrow \pi^+ \nu \nu$

Effective Hamiltonian:

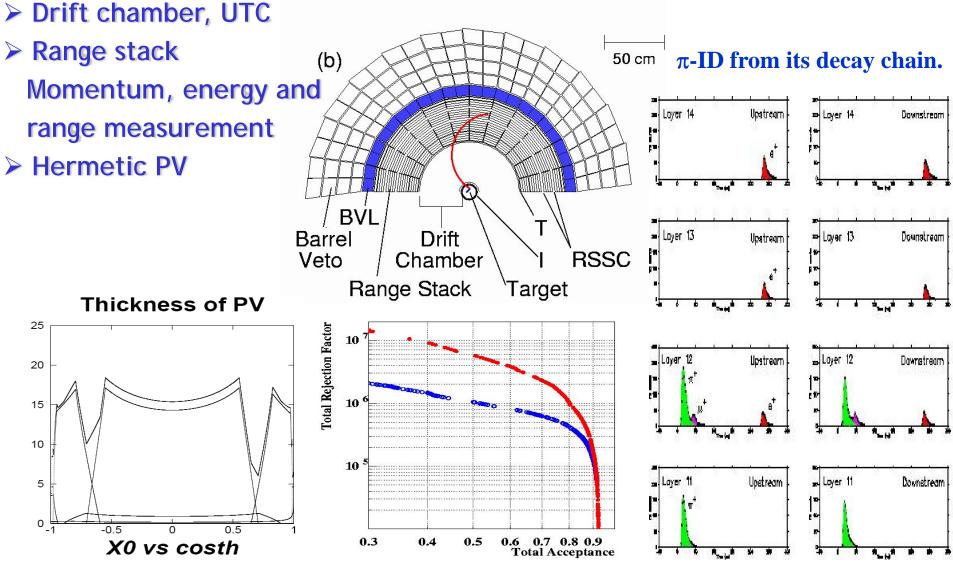

$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \frac{\alpha}{2\pi \sin^2 \theta_W}$$

$$\cdot \sum_{l=e,\mu,\tau} [V_{cs}^* V_{cd} X_{NL}^l + V_{ts}^* V_{td} X(x_t)] (\bar{s}d)_{V-A} (\bar{\nu}_l \nu_l)_{V-A}$$

$$\kappa^* \left\{ \begin{array}{c} \mathbf{u} \\ \mathbf{v} \\$$


X: Wilson coefficients Short-distance interaction dominant

Relevant hadronic operator matrix element can be extracted from $K^+ \rightarrow \pi^0 e^+ v$ Zhe Wang May 30, 2009, FPCP M.K. Gailard and Benjamin W. Lee 1904

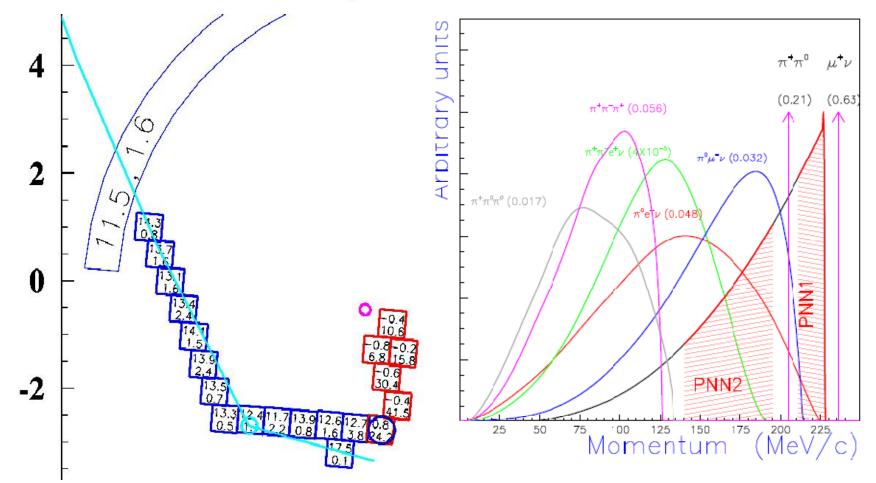


Search for K⁺ -> $\pi^+ \nu \nu a$ E949

E949 detectors: A dedicated detector for rare kaon study

E949 detectors: Powerful and redundant particle ID

Zhe Wang


May 30, 2009, FPCP

Important background list

Cut Bkg	Kinematics cuts (P/R/E)	Particle ID (K/π/μ)	Photon veto	Target pattern	Timing cuts
$K^+ \rightarrow \pi^+ \pi^0$ scattering			\checkmark	\checkmark	
${f K}^+ o \pi^+ \pi^0 \gamma$	\checkmark		\checkmark		
Beam		\checkmark		\checkmark	\checkmark
muon	\checkmark	\checkmark	\checkmark		
$\mathbf{K}^+ \rightarrow \pi^+ \pi^- \mathbf{e}^+ \mathbf{v}$			\checkmark	\checkmark	
Charge exchange			\checkmark	\checkmark	\checkmark
$K^+n \rightarrow K^0p$					

An example: $K^+ \rightarrow \pi^+ \pi^0$ target scattering

Transversal Scattering:

Longitudinal scattering CCD pulse cut

 \mathcal{O}

7 0.6

3

4

 \rightarrow

5

ptot 185.309 MeV/c rtot 20.3727 cm etot 83.3469 MeV 86.3568" trs 8.739

π

8,

310. 0.5

> 0.1 10.

1

2

9.6 1.6

run 48133 event 1001 itg 0

ns

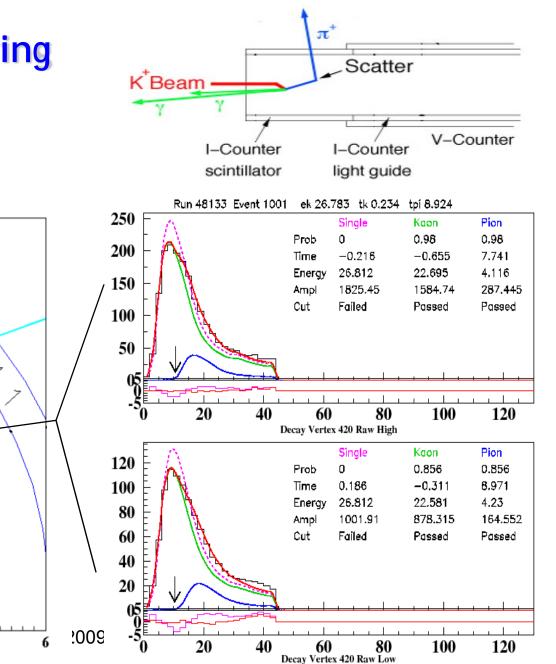
MeV

6

5

3

2

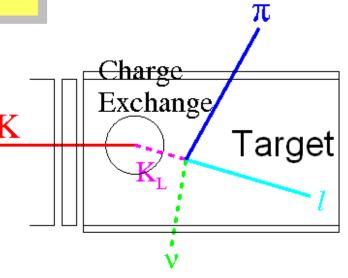

0

-1

-1

-7.9--6.1 1.6 1.4

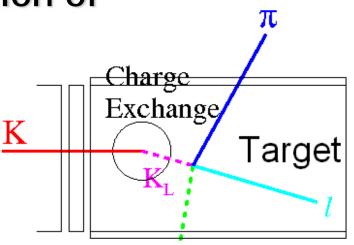
0



In some case we need MC to estimate background Charge exchange $(K^+n \rightarrow K^0p)$

$$K^+n \rightarrow K^0 p, \quad K^0_L \rightarrow \pi^+ l^- \nu$$

One serious background from low energy K⁺ nuclear interaction


- The momentum of proton is very \underline{K} low and e or μ could also be missing
- Cross section varies with K⁺ momentum (0-50MeV) and different nucleus

- Cross section is not completed measured
- K⁺ momentum (close to stop) are not measurable
- K⁰_L momentum and vertex are not known

MC is used to estimate the rejection of some well understood cut

- MC study found:
- a gap between K⁺ and π^+
- z info of π⁺ is not consistent with K⁺ track

- A K_s sample is collected ($K_s -> \pi^+ \pi^-$). Model K_L momentum and vertex distribution with this K_s sample
- A CEX rich sample is tagged in data by selecting events with a gap between K⁺ and π^+
- Use MC to evaluate the rejection of the gap cut which only needs the knowledge of K_L lifetime