FLAVOR QUESTIONS FOR THE LHC

J. Rosner - University of Chicago - 6/1/09 at FPCP 2009

Thanks to B. Bhattacharya, C.-W. Chiang, M. Gronau, M. Karliner, D. McKeen, B. Keren-Zur, H. Lipkin, D. Pirjol, A. Thalapillil, and CLEO colleagues

Flavor is perhaps the most poorly understood aspect of the Standard Model.
Ordinary matter makes up 4\% of known energy density of Universe
Dark matter comprises another 23% and we have little clue as to its nature.
Dark energy accounts for the remaining 73\%; we know even less about it. Tip of the iceberg: ordinary quarks and leptons \Rightarrow

Unseen part of the iceberg: \Rightarrow could be clue to nature of ordinary matter

QUARKS: MASSES, COUPLINGŚ

Black transitions $\mathcal{O}(1)$
Blue transitions $\mathcal{O}(0.23) \equiv \lambda$
Red transitions $\mathcal{O}(0.04) \sim \lambda^{2}$
Green trans. $<\mathcal{O}(0.001) \sim \lambda^{3}$
Phases (Kobayashi-Maskawa) give CP violation

Standard Model: coupling pattern arises from same physics giving quark masses
Leptons: differ by having very small neutrino masses, large mixings
What kind of physics is giving rise to this pattern? It is likely we will understand it much more fully if we know how much of the pattern we are already seeing.

Two familar examples give conflicting prospects for understanding the pattern

TWO FAMILIAR PATTERNS

TWO FAMILIAR PATTERNS

Periodic Table of the Elements
Each element has a different nuclear charge; electron shell structure governs chemistry; existience of Technetium predicted

Planetary orbits
Titius/Bode: $a(\mathrm{AU})=0.4+0.3 k$ where $k=0,1,2,4,8, \ldots$
predicted orbits of Ceres, Uranus

Titius/Bode law failed to predict orbit of Neptune; Pluto approximately where Neptune should have been; other dwarf planets don't fit; no dynamical explanation Simulations can give similar relations; \Leftrightarrow "anarchy" in quark-lepton masses.

MORE QUARKS?

Examples: fourth family, extended GUTs, Kaluza-Klein excitations
GUTs: $\operatorname{SU}(5)\left(5^{*}+10\right.$ account for all known left-handed quarks and leptons) SO(10) Add left-handed antineutrino (large Majorana mass?) to make a 16 -plet E_{6} : Add $\mathrm{SO}(10) 10$-plet and singlet to 16 -plet; gives a 27 -plet
E_{6} has subgroup $\mathrm{SU}(3)_{\mathrm{L}} \otimes \mathrm{SU}(3)_{\mathrm{R}} \otimes \mathrm{SU}(3)_{\text {color }}$: 27-plet is

New isosinglet $Q=-1 / 3$ quarks h; new vector-like leptons $E^{ \pm}$and their neutrinos $\nu_{E}, \bar{\nu}_{E}$ (center); new sterile neutrino n (center). The h could mix with b and be responsible for $m_{b} \ll m_{t}$; searches at Fermilab exclude masses up to $\sim 300 \mathrm{GeV}$.

FOURTH FAMILY

If a fourth quark-lepton family exists, its neutrino must be heavier than $\sim M_{Z} / 2$ Particles in loops affect W, Z, γ propagators and SM coupling relations: $\frac{G_{F}}{\sqrt{2}}=\left(1+\frac{\alpha S}{4 \sin ^{2} \theta}\right) \frac{g^{2}}{8 M_{W}^{2}}, \quad \frac{G_{F} \rho}{\sqrt{2}}=\frac{g^{2}+g^{\prime 2}}{8 M_{Z}^{2}}, \quad \rho \equiv 1+\alpha T, \quad \alpha \simeq 1 / 129$ New quark-lepton family: $\Delta S=2 /(3 \pi) \simeq 0.2, \Delta T \simeq 0.4\left(m_{t^{\prime}}^{2}-m_{b^{\prime}}^{2}\right) /(100 \mathrm{GeV})^{2}$

Labels: Higgs, top masses (GeV)
Vertical dot-dashed line shows effect of small triplet-Higgs VEV $V_{1,0}$ (up to 0.03 of Standard Model VEV v)
Here $\Delta \rho=4\left(V_{1,0} / v\right)^{2}$
Large $t^{\prime}-b^{\prime}$ mass splitting behaves like triplet Higgs, causing positive $\Delta \rho=\alpha \Delta T$
B. Holdom et al., arXiv:0904.4698: also can relax M_{H} constraint

CHARM AND BOTTOM

Decays of mesons containing c, b quarks can give information on new physics.
Large menu of possibilities: supersymmetry, extra dimensions, new sectors associated with electroweak symmetry breaking or dark matter.

However, must distinguish genuine signatures of new physics from incompletely understood Standard Model effects such as arise in low-energy strong interactions.

Today: Some Standard Model and experimental questions raised by recent experiments on charm and B decays.

Cabibbo-Kobayashi-Maskawa (CKM) matrix; parameters
$B_{s}-\bar{B}_{s}$ mixing and CP violation in $B_{s} \rightarrow J / \psi \phi$
CP asymmetries and rates in $B \rightarrow(K \pi, \pi \pi)$
Progress on decay constants (beauty and charm)
Inclusive $D_{s} \rightarrow \omega X$: puzzle for strong dynamics?
Comments on models, dark matter scenarios, LHCb topics

A convenient parametrization suggested by Wolfenstein:
$V=\left[\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right] \simeq\left[\begin{array}{ccc}1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\ -\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\ A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1\end{array}\right]$
Here $\lambda \simeq 0.2255, A \simeq 0.81, \rho \simeq 0.14-0.18, \eta \simeq 0.34-0.36$. (Two groups, UTfit and CKMfitter, slightly different parameters)

Unitarity $\left(V^{\dagger} V=1\right)$ implies (e.g.) $V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$ or dividing by the middle term, $(\rho+i \eta)+(1-\rho-i \eta)=1$. This generates the unitarity triangle:

Learn shape from:
Kaon $C P$ violation $\Rightarrow \eta(1-\rho)$
$B-\bar{B}$ mixing $\Rightarrow|1-\rho-i \eta|$
Charmless B decays $\Rightarrow|\rho+i \eta|$
Direct measurements satisfy $\alpha+\beta+\gamma=\pi$ (Trabelsi, 2009 Moriond EW): $\alpha=\left(89.0_{-4.2}^{+4.4}\right)^{\circ}, \beta=(21.0 \pm 0.9)^{\circ}, \gamma=\left(70_{-29}^{+27}\right)^{\circ}$. Sides more constraining.

MIXING OF STRANGE B'S

Mixing is stronger than for $B^{0}-\bar{B}^{0}$
because $\left|V_{t s} / V_{t d}\right| \simeq 5$
Unitarity implies $\left|V_{t s}\right| \simeq\left|V_{c b}\right| \simeq 0.041$
so $B_{s}-\bar{B}_{s}$ mixing probes hadron physics
Matrix element between B_{s} and \bar{B}_{s} involves a combination $f_{B_{s}}^{2} B_{B_{s}}$: $f_{B_{s}}$ is the " B_{s} decay constant" (matrix element of $b \bar{s}$ operator between B_{s} and vacuum); $B_{B_{s}} \simeq 1$ parametrizes degree to which W exchange graphs dominate mixing.

Lattice QCD (arXiv:0902.1815): $f_{B_{s}} \sqrt{B_{B_{s}}} /\left[f_{B} \sqrt{B_{B}}\right]=1.258 \pm 0.033$.
$B^{0}-\bar{B}^{0}$ mixing amplitude well-measured: $\Delta m_{d}=(0.507 \pm 0.005) \mathrm{ps}^{-1}$.
Consequently, B_{s} mixing measurement implies a value of $\left|V_{t d} / V_{t s}\right|$
CDF measurement at Fermilab $\Delta m_{s}=(17.77 \pm 0.10 \pm 0.07) \mathrm{ps}^{-1}$ gives $\left|V_{t d} / V_{t s}\right|=0.214 \pm 0.005$ and hence $|1-\rho-i \eta|=0.950 \pm 0.026$ Implies $\gamma \simeq(72 \pm 5)^{\circ}$, great improvement over value based on Δm_{d}. $B^{+} \rightarrow D^{0}\left(\bar{D}^{0}\right) K^{+}$may improve this (CLEO $K_{S} \pi^{+} \pi^{-}$Dalitz plot, arXiv:0903.1681)

$B_{s}-\bar{B}_{s}$ MIXING AND CP VIOLATION

$B_{s} \rightarrow J / \psi \phi$ expected in SM to have small CP asymmetry: governed by $B_{s}-\bar{B}_{s}$ mixing phase $\phi_{M}=-2 \beta_{s}$
$\beta_{s} \equiv \operatorname{Arg}\left(-V_{t s} V_{t b}^{*} / V_{c s} V_{c b}^{*}\right)=\lambda^{2} \eta \simeq 0.02$ with $\lambda=0.2255 \pm 0.0019, \eta \simeq 0.36$
Extract three independent partial waves $(L=0,1,2)$ or three independent amplitudes $A_{0}, A_{\|}, A_{\perp}$ using fits to angular and time distributions

CDF and D0 at Fermilab Tevatron favor mixing phase differing from $-2 \beta_{s}$. Defining $\phi_{B_{s}}=\beta_{s}+\phi_{M} / 2$, HFAG average (A. Chandra, 2009 Moriond EW): $\phi_{B_{s}} \in$ $[-163,-95]^{\circ},[-84,-17]^{\circ}, 2.2 \sigma$ away from SM $\left(\Delta \Gamma_{s} \simeq 0.1 \sqrt{ } \mathrm{SM}\right)$.

Discrete ambiguity $\phi_{M} \rightarrow \pi-\phi_{M}$ associated with uncertainty in strong phases $\delta_{\|} \equiv \operatorname{Arg}\left(A_{\|} A_{0}^{*}\right), \delta_{\perp} \equiv \operatorname{Arg}\left(A_{\perp} A_{0}^{*}\right)$ can be eliminated by comparison with $B^{0} \rightarrow$ $J / \psi K^{* 0}$ as most contributions are similar [M. Gronau and JLR, Phys. Lett. B 669, 321 (2008)]; phases equal within 10°

Advocate showing an explicit time-dependence which exhibits CP violation; not an easy task as oscillations are quite rapid (recall large Δm_{s})

See A. Buras, arXiv:0902.0501 for mixing models, e.g., "littlest Higgs," extra dim.

Isolate CP violation by tagging at $t=0: \eta= \pm 1$ for $\operatorname{tagged}\left(B_{s}, \bar{B}_{s}\right)$
Functions $\mathcal{I}_{+}, \mathcal{I}_{-}$associated with $\left|A_{\|}\right|^{2},\left|A_{\perp}\right|^{2}$ (different angular dependences) $\left.\mathcal{T}_{ \pm} \equiv e^{-\Gamma t}\left[\cosh (\Delta \Gamma t) / 2 \mp \cos \left(\phi_{M}\right) \sinh (\Delta \Gamma t) / 2\right) \pm \eta \sin \left(\phi_{M}\right) \sin \left(\Delta m_{s} t\right)\right]$

Time-dependence of $\mathcal{T}_{ \pm}$based on best-fit CDF parameters for $B_{s} \rightarrow J / \psi \phi$ decays

Solid: \mathcal{T}_{+}, B_{s} tag;
Dashed: $\mathcal{T}_{+}, \bar{B}_{s}$ tag;
Similar curves for \mathcal{T}_{-}
Such a plot would be clearer evidence for $C P$ violation in $B_{s} \rightarrow J / \psi \phi$ at a level beyond the Standard Model

$B \rightarrow(K \pi, \pi \pi)$

CP asymmetries in $B^{0} \rightarrow K^{+} \pi^{-}$and $B^{+} \rightarrow K^{+} \pi^{0}$ predicted equal if colorsuppressed amplitude neglected: M. Gronau and JLR, PR D 59, 113002 (1999)

Decay	Amplitude	BR $\left(10^{-6}\right)$	$A_{C P}$
$B^{0} \rightarrow K^{+} \pi^{-}$	$-(t+p)$	19.4 ± 0.6	-0.097 ± 0.012
$B^{+} \rightarrow K^{+} \pi^{0}$	$-(t+p+c+A) / \sqrt{2}$	12.9 ± 0.6	0.050 ± 0.025
$B^{0} \rightarrow K^{0} \pi^{0}$	$(p-c) / \sqrt{2}$	9.8 ± 0.6	0.00 ± 0.10
$B^{+} \rightarrow K^{0} \pi^{+}$	$p+A$	23.1 ± 1.0	0.009 ± 0.025

$$
t \equiv T+P_{\mathrm{EW}}^{C}, \quad c \equiv C+P_{\mathrm{EW}}, \quad p \equiv P-(1 / 3) P_{\mathrm{EW}}^{C}
$$

SU(3) fit to $B \rightarrow(K \pi, \pi \pi)$ [Chiang et al., PR D 70, 034020 (2004)]: $|C / T|=$ $0.46_{-0.30}^{+0.43}, \operatorname{Arg}(C / T)=(-119 \pm 15)^{\circ}$; confirmed by Li-Mishima (arXiv:0901.1272).

WHAT'S THE PROBLEM?

Large C also needed for $\mathcal{B}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)=(1.55 \pm 0.19) \times 10^{-6}$
A priori calculations: color-suppressed amplitude too small; no similar enhancement in $B \rightarrow \rho \rho$. Li-Mishima: special role for pseudoscalars

Kaidalov-Vysotsky (PL B 652, 203 (2007): $\mathcal{B}(B \rightarrow \rho \rho) \gg \mathcal{B}(B \rightarrow \pi \pi)$; rescattering $(\rho \rho \rightarrow \pi \pi) \gg(\pi \pi \rightarrow \rho \rho) \Rightarrow$ more C in $\pi \pi$ than in $\rho \rho$

Rescattering via $\bar{b} \rightarrow \bar{c} c \bar{s}$ also a likely source of enhanced $\bar{b} \rightarrow \bar{s}$ "charming" penguin Consistency tested by $A_{C P}$ sum rule [M. Gronau, PL B 627, 82 (2005)]:
$\Delta\left(K^{+} \pi^{-}\right)+\Delta\left(K^{0} \pi^{+}\right)=2 \Delta\left(K^{+} \pi^{0}\right)+2 \Delta\left(K^{0} \pi^{0}\right), \Delta(f) \equiv \Gamma(\bar{B} \rightarrow \bar{f})-\Gamma(B \rightarrow f)$.
Predicts $A_{C P}\left(B^{0} \rightarrow K^{0} \pi^{0}\right)=-0.148 \pm 0.044$ vs. expt. -0.01 ± 0.10
Standard Model seems to be able to accommodate large C; no need for new-physics scenarios involving P_{EW} contribution to $c=C+P_{\mathrm{EW}}$
$A_{C P}$ sum rule provides diagnostic for $\Delta I=1$ new physics: S. Baek et al., arXiv:0905.1495. Measure $A_{C P}\left(B^{0} \rightarrow K^{0} \pi^{0}\right)$ to 0.03 or better.

DECAY CONSTANTS

$B^{+} \rightarrow \tau^{+} \nu_{\tau}$ probes B meson decay constant f_{B}, CKM element $V_{u b}$, new physics such as charged Higgs (H) exchange:

$$
\Gamma\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=\frac{G_{F}^{2}}{8 \pi}\left|V_{u b}\right|^{2} f_{B}^{2} m_{B} m_{\tau}^{2}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2}\left[1-\frac{m_{B}^{2}}{m_{H}^{2}} \tan ^{2} \beta\right]^{2}
$$

where $\tan \beta \equiv v_{2} / v_{1}$, with $v_{1,2}$ v.e.v.'s of two neutral Higgs bosons
Since review by JLR and S. Stone for PDG, arXiv:0802.1043:
(1) New (Belle,BaBar) measurements (arXiv:0809.3834,4027): $\mathcal{B}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=\left[\left(1.65_{-0.37-0.37}^{+0.38+0.35}\right),(1.8 \pm 0.8 \pm 0.1)\right] \times 10^{-4} \Rightarrow$ New average (Artuso et al., arXiv:0902.3743) $(1.73 \pm 0.35) \times 10^{-4}$;
(2) New calculation by HPQCD group (arXiv:0902.1815) of $f_{B}=190(13) \mathrm{MeV}$ Taken with $\left|V_{u b}\right|=(3.9 \pm 0.5) \times 10^{-3}$, (2) implies

$$
\mathcal{B}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=(0.97 \pm 0.28)\left[1-\frac{m_{B}^{2}}{m_{H}^{2}} \tan ^{2} \beta\right]^{2} \times 10^{-4}
$$

so the coefficient of $[\ldots]^{2}$ is 1.7σ below experiment
With $B \rightarrow D \tau \nu$: constrains (arXiv:0902.3743) $\left(m_{B} \tan \beta / m_{H}\right)^{2}$ to be very small

HPQCD finds $f_{B_{s}} / f_{B}=1.226(26)$, in agreement with [JLR, PR D 42, 3732 (1990)] $\left(m_{s} / m_{d}\right)^{1 / 2}=1.25$ for quark masses $m_{s}=485 \mathrm{MeV}, m_{d}=310 \mathrm{MeV}$

CLEO: $f_{D}=(205.8 \pm 8.5 \pm 2.5) \mathrm{MeV}[P R$ D 78, 052003 (2008)] vs. lattice [HPQCD, PRL 100, $062002(2008)] f_{D}=(207 \pm 4) \mathrm{MeV}$, or [Fermilab/MILC, arXiv:0904.1895] (207 $\pm 11) \mathrm{MeV}$

CLEO's $f_{D_{s}}=(259.5 \pm 6.6 \pm 3.1) \mathrm{MeV}$ (J. P. Alexander et al., PR D 79, 052001) is 2.3σ above HPQCD prediction $f_{D_{s}}=(241 \pm 3) \mathrm{MeV}$ but consistent with Fermilab/MILC prediction (249 ± 11) MeV

CLEO ratio $f_{D_{s}} / f_{D}=1.268 \pm 0.064$ consistent with quark model estimate 1.25
A. G. Akeroyd and F. Mahmoudi (arXiv:0902.2393): constraints on charged Higgs
$\Gamma\left(D_{s}^{+} \rightarrow \ell^{+} \nu_{\ell}\right)=\frac{G_{F}^{2}}{8 \pi} f_{D_{s}}^{2} m_{\ell}^{2} M_{D_{s}}\left(1-\frac{m_{\ell}^{2}}{M_{D_{s}}^{2}}\right)^{2}\left|V_{c s}\right|^{2} r_{s}^{2}$, where
$r_{s} \equiv 1+\left(\frac{1}{m_{c}+m_{s}}\right)\left(\frac{m_{D_{s}}}{m_{H^{+}}}\right)^{2}\left(m_{c}-m_{s} \tan ^{2} \beta\right)$ in Type II 2-Higgs-doublet model
B. Dobrescu + A. Kronfeld [PRL 100, 241802 (2008)]: New-physics scenarios including leptoquarks or unconventional charged Higgs

INCLUSIVE $D_{s} \rightarrow \omega X$

CLEO's $\mathcal{B}\left(D_{s}^{+} \rightarrow \omega X\right)=(6.1 \pm 1.4) \%$ was a surprise: knew only $\mathcal{B}\left(D_{s}^{+} \rightarrow \pi^{+} \omega\right)=$ ($0.25 \pm 0.09 \%$) but now have accounted for (5.4 ± 1.0)\% (preliminary)

Mechanisms for $D_{s}^{+} \rightarrow \omega X^{+}$are not so obvious: often have to get rid of an $s \bar{s}$ pair.

$D_{s}^{+} \rightarrow\left(\right.$ virtual $\left.W^{+}\right) \rightarrow u \bar{d}$
is helicity-suppressed
G-parity forbids
$\pi^{+} \omega,(3 \pi)^{+} \omega$
${ }^{1}$ PR D 79, 074022 (2009)
$c \rightarrow u \bar{d} s$ with spectator s could give $\omega \pi^{+} \eta^{1}$
Could get $\omega\left(\pi^{+}, \rho^{+}, a_{1}^{+}\right)$
if $s \bar{s} \rightarrow \omega$ (OZl-suppressed ${ }^{2}$)
2 PR D 79, 074006 (2009)
If right-hand graph is important might expect $D_{s} \rightarrow \omega \ell^{+} \nu_{\ell}$ to be observable Helicity-suppression also not apparent in CLEO's result [PRL 100, 181802 (2008)]: $\mathcal{B}\left(D_{s} \rightarrow p \bar{n}\right)=\left(1.30 \pm 0.36_{-0.16}^{+0.12}\right) \times 10^{-3}$ (reasonable form factor)

SOME MODELS

Extra Z bosons arise in many extensions of SM; not guaranteed to have flavordiagonal couplings if SM fermions also mix with new fermions in such extensions

Example: Grand Unified Theories based on the exceptional group E_{6} have two extra Z bosons Z_{χ}, Z_{ψ} (only one linear combination of which may be relatively light) and extra isoscalar quarks with $Q=-1 / 3$ which can mix with d, s, b

Many grand unified theories have $\mathrm{SU}(4)_{\text {color }} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}}$ subgroup. $\mathrm{SU}(4)_{\text {color }}$ unifies quarks and leptons and contains $\mathrm{U}(1)_{\mathrm{B}-\mathrm{L}}$ and leptoquarks; $\mathrm{SU}(2)_{\mathrm{R}}$ has right-handed W^{\prime} 's and $\mathrm{U}(1)_{\mathrm{R}}$ such that EM charge is $Q=I_{3 \mathrm{~L}}+I_{3 \mathrm{R}}+(B-L) / 2$ Leptoquarks can contribute to leptonic meson decays; right-handed W's contribute to mixing; strong constraints on $W_{L}-W_{R}$ box diagrams

Supersymmetry: box diagrams can change flavor unless specifically forbidden
Electroweak-symmetry-breaking schemes (Littlest Higgs [Nambu-Goldstone] with T-parity, Technicolor, ...) generically have flavor-changing interactions

Theories with extra dimensions [Fitzpatrick-Perez-Randall, PRL 100, 171604 (2008)]: top sector flavor violation (ILC!), 2 TeV scale Kaluza-Klein excitations

DARK MATTER SCENARIOS

Imagine a TeV-scale effective symmetry $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1) \otimes \mathrm{G}$, where G could be SUSY with R-parity, extra-dimensional excitations with Kaluza-Klein parity, little Higgs models with T-parity, Technicolor, or some other group.

Possible types of matter (JLR, Snowmass 2005, astro-ph/0509196):

Type of matter	Std. Model	G	Example(s)
Ordinary	Non-singlet	Singlet	Quarks, leptons
Mixed	Non-singlet	Non-singlet	Superpartners
Shadow	Singlet	Non-singlet	E_{8}^{\prime} of $\mathrm{E}_{8} \otimes \mathrm{E}_{8}^{\prime}$

Ordinary matter could be singlets under G even if subconstituents were non-singlets (e.g., in composite-Higgs models). Loops could involve G-nonsinglets.

Many dark matter scenarios involve mixed matter, such as superpartners or particles with odd KK- or T-parity. Flavor-changing loops can occur.

Mixed-matter scenarios may be different if G is more general than a "parity."
Shadow matter may not interact with ordinary matter at all except gravitationally.

HIDDEN SECTOR IN LOOPS

Box diagram

Mixed particles must have same $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$ quantum numbers as the quarks to which they couple, but off-diagonal flavor couplings are allowed

Flavor-diagonal couplings still can affect muon anomalous moment a_{μ} For coupling $\mathcal{O}(\alpha)$, mass scale to explain 3σ discrepancy in a_{μ} is $\sim 50 \mathrm{GeV}$

Hidden
D. McKeen [arXiv:0903.4982 \Rightarrow PRD] suggests
looking for light "hidden" states in quarkonium decay
i-Mixed Example: $\Upsilon(2 S) \rightarrow \gamma \chi_{b 0} \rightarrow \gamma X X$, where X could be a light dark matter candidate

Hidden WIMPless DM: Feng + Kumar, PRL 101, 231301 (2008)

SOME LHCb TOPICS

Unique window to B_{s} decays:
Better $J / \psi \phi$ studies, with explicit time dependence plots
$B_{s} \rightarrow J / \psi\left(\eta, f_{0}\right): \mathcal{B}$ less $(1 / 3$ for $\eta)$ but no helicity analysis needed.
L. Zhang (poster): $\mathcal{B}\left(B_{s} \rightarrow J / \psi f_{0}\right) / \mathcal{B}\left(B_{s} \rightarrow J / \psi \phi\right)=(42 \pm 11) \%$
$A\left(B_{s} \rightarrow D_{s}^{+} K^{-}\right) \sim V_{u b}^{*} V_{c s} ; A\left(\bar{B}_{s} \rightarrow D_{s}^{+} K^{-}\right) \sim V_{u s}^{*} V_{c b}$
$\left(B, B_{s}\right) \rightarrow(\pi \pi, K \pi)$ [Fleischer; Gronau +JLR$] \Rightarrow \gamma$
Many tests of flavor $\operatorname{SU}(3)$ by comparison with B decays
Hidden valley scenario suggests energy threshold (TeV ?) for production of new matter; some may end up in new light (few GeV?) states. M. Kuharczyk \& S. Stone, "Status of Hidden Valley in LHCb," Exotica Workshop, LHCb week, May 26, 2009: examples of $3 \mathrm{TeV} Z^{\prime}, 35 \mathrm{GeV}$ "v-pion," SM Higgs $\rightarrow \Pi_{v}^{0} \Pi_{v}^{0}$

Charm studies: virgin territory. Large production cross sections; small Standard Model CP violation; probes loop/penguin diagrams involving mixed/hidden sector

LOOKING FORWARD

Belle, Fermilab Tevatron still running; Babar and CLEO analyzing data. (CLEO capable of searching for light scalars or pseudoscalars in bottomonium decay.)
Nearest future: LHCb (whenever LHC begins operation) and some b physics capabilities at ATLAS and CMS. Questions include many on the strange B system, e.g., pinning down the mixing and/or CP-violating phase in $B_{s}-\bar{B}_{s}$ system

Other LHCb questions: (a) flavor symmetry and departures from it in B_{s} decays provide reality checks for schemes seeking to calculate strong-interaction properties (e.g., non-factorizable amplitudes); (b) effects of any new sector on loops and direct production of new particles
KEK-B/Belle upgrade: initially $10 \mathrm{ab}^{-1}$; eventually >5 times that; super-B more
Simplest motivation: Anything studied previously with single- B decays now can be studied with double-tagged events if tagging efficiency approaches 1%.
ILC to explore Higgs, SUSY, top sector
Rich program of understanding strong-interaction and nonperturbative effects will be needed to complement searches for rare processes in order to interpret apparent departures from SM as genuine signs of new physics

S PARAMETER IN $B^{0} \rightarrow K^{0} \pi^{0}$

M. Gronau + JLR, PL B 666, 467 (2008): $B^{0} \rightarrow K^{0} \pi^{0}$ dominated by $\bar{b} \rightarrow \bar{s}$; expect small $C_{K \pi}=-A_{C P}\left(B^{0} \rightarrow K^{0} \pi^{0}\right), S_{K \pi}=\sin \left(2 \phi_{1}\right)=0.67 \pm 0.02$ ($c \bar{c}$ value)

Time-dependent asymmetry $A(t)=-C_{K \pi} \cos (\Delta m t)+S_{K \pi} \sin (\Delta m t)$
Small deviations from $S_{K \pi}=\sin \left(2 \phi_{1}\right)$ predicted in $\operatorname{SU}(3)$ fits and most other approaches; Fleischer et al. (arXiv:0806.2900) found $S_{K \pi}=0.99$. We asked why.

Took $I_{K \pi}=3 / 2$ amplitude from $I_{\pi \pi}=2$ amplitude from $B^{+} \rightarrow \pi^{+} \pi^{0}$ using $\mathrm{SU}(3)$

Found large relative phase of $A_{00} \equiv A\left(B^{0} \rightarrow K^{0} \pi^{0}\right)$ vs. \bar{A}_{00}
$=A\left(\bar{B}^{0} \rightarrow \bar{K}^{0} \pi^{0}\right)[$ sol. (1) $]$
Results sensitive to $K^{0} \pi^{0} \mathrm{BR}$ and weak phase $\phi_{3}\left(65^{\circ}\right.$ here)

Ciuchini et al. (arXiv:0811.0341): Implies too small $\mathcal{B}\left(K^{0} \pi^{+}\right)$

If $\phi_{3}, \mathcal{B}\left(B^{0} \rightarrow K^{0} \pi^{0}\right)$ lowered by $1 \sigma, S_{K \pi}$ prediction more in line with $\operatorname{SU}(3)$ fit

STRANGE PENGUINS

As quoted by K. Trabelsi, 2009 Moriond EW

$\sin \left(2 \beta^{\text {eff }}\right) \equiv \sin \left(2 \phi_{1}^{\text {eff }}\right) \underset{\substack{\text { (CKMAOO8 } \\ \text { PRELMNARY }}}{\text { HFAG }}$

-2
-1
0
1

Several B decays involving K 's in final state seem to be dominated by the $b \rightarrow s$ penguin.

Expect coefficient of $\sin \Delta m t$ decay rate modulation to be $\sin 2 \phi_{1}=0.67 \pm 0.02$ as for $B^{0} \rightarrow J / \psi K_{S}$.
$b \rightarrow s$ penguin-dominated decays can provide information on new physics [Y. Grossman and M. Worah, PL B395, 241 (1997)] but no such evidence at present 0.67 ± 0.02; could several-percent corrections be due to rescattering from $b \rightarrow u \bar{u} s$? [M. Ciuchini et al., PRL 95, 221804 (2005); S. Faller et al., arXiv:0809.0842]
M. Gronau and JLR, arXiv:0812.4796, \Rightarrow PL B: using measured BRs for charmless $|\Delta S|=1 B^{0}$ decays, place an upper bound of order 10^{-3} on these corrections

Ratio ξ of $b \rightarrow u \bar{u} s$ penguin to $b \rightarrow c \bar{c} s$ color-suppressed amplitudes is small because (1) $\left|V_{u b} V_{u s}^{*} / V_{c b} V_{c s}^{*}\right| \simeq 0.02$; (2) Wilson coefficients for penguin operators are small; and (3) final state must be produced by Okubo-Zweig-lizuka (OZI) rule violation

Perturbative estimates indicated $\xi<10^{-3}$ but if $b \rightarrow c \bar{c} s$ processes could enhance $b \rightarrow s$ penguins, why not $b \rightarrow u \bar{u} s$ as well?

Rescattering from charmless final states was compared with rescattering from charm-anticharm, using detailed balance and accounting for contributions from several charmless modes; $r_{f} \equiv \mid\langle f| T^{u}\left|B^{0}\right\rangle /\langle f| T^{c}\left|B^{0}\right\rangle$

Example: Compare "tree" amplitude contribution in $B^{0} \rightarrow K^{*+} \pi^{-} \rightarrow J / \psi K^{0}$ with $B^{0} \rightarrow D_{s}^{+} D^{*-} \rightarrow K^{*+} \pi^{-}$

u-PENGUIN CONTRIBUTIONS

Vector-pseudoscalar modes:

Mode f	\mathcal{B} $\left(10^{-6}\right)$	p^{*} (MeV)	r_{f}	Upper bound on ξ_{f} $\left(10^{-4}\right)$
$K^{*+} \pi^{-}$	10.3 ± 1.1	2563	0.31 ± 0.03	7.9 ± 1.1
$\rho^{-} K^{+}$	8.6 ± 1.0	2559	0.26 ± 0.03	5.6 ± 1.0
$K^{* 0} \pi^{0}$	2.4 ± 0.7	2562	0.09 ± 0.04	0.6 ± 0.3
$\rho^{0} K^{0}$	5.4 ± 1.0	2558	0.04 ± 0.03	0.5 ± 0.4
ωK^{0}	5.0 ± 0.6	2557	0.04 ± 0.03	0.5 ± 0.4
$K^{* 0} \eta$	15.9 ± 1.0	2534	0.04 ± 0.02	1.6 ± 0.7
$K^{* 0} \eta^{\prime}$	3.8 ± 1.2	2471	0.08 ± 0.04	0.8 ± 0.4

Large branching ratio: $\mathcal{B}\left[B^{0} \rightarrow K_{0}^{*}(1430)^{+} \pi^{-}\right]=\left(50_{-9}^{+8}\right) \times 10^{-6}$
Nevertheless, u-quark tree amplitude contribution to this process is small and one finds $r_{f}=0.015 \pm 0.013$, leading to $\xi_{f}<(1.9 \pm 0.4) \times 10^{-4}$
Inter alia, the estimate of the tree contribution depends on knowing $f_{K_{0}^{*}}$, for which theoretical estimates give $40 \pm 6 \mathrm{MeV}$

Measure in τ decays: $\mathcal{B}\left(\tau \rightarrow K_{0}^{*} \nu\right)<5 \times 10^{-4}$ vs. prediction $\sim 8 \times 10^{-5}$

$V_{u b}$ AND "WEAK ANNIHILATION"

Extract $\left|V_{u b}\right|$ from charmless semileptonic B decays
$\left|V_{u b} / V_{c b}\right|^{2}=1 \%$; phase space favors u over c by factor of 2. Need strategies to extract 2% charmless semileptonic decay signature; e.g., higher E_{ℓ} endpoint
"Weak annihilation" (WA) (M. Gronau + JLR, arXiv:0902.1363 for references) can contaminate E_{ℓ} endpoint signal: B^{+}turns into a soft $I=0$ hadronic system plus a vector $\bar{b} u$ which then can annihilate freely into $\ell \nu$ (pseudoscalar: helicity suppressed)

CLEO [PRL 96, 121801 (2006)] and BaBar (arXiv:0708.1753) place upper limit for WA of few \% of charmless semileptonic b decays; Gambino et al. [JHEP 0710, 058 (2007)] estimate couple of \%

Process is supposed to be of order $1 / m_{b}^{3}$ so it should be more visible in charm decays $D_{s} \rightarrow \omega \ell \nu$ probes WA: semileptonic D_{s} decay $\rightarrow s \bar{s}$ but ω mostly nonstrange $s \bar{s}$ admixture in $\omega \Rightarrow \mathcal{B}\left(D_{s} \rightarrow \omega \ell \nu\right)<2 \times 10^{-4}$, vs. $\mathcal{B}\left(D_{s} \rightarrow \phi \ell \nu\right) \simeq 2 \%$ If $D_{s}^{+} \rightarrow \omega \pi^{+}$is due to WA, estimate $\mathcal{B}\left(D_{s} \rightarrow \omega \ell \nu\right) \simeq\left[\mathcal{B}\left(D_{s} \rightarrow \omega \pi^{+}\right) / \mathcal{B}\left(D_{s} \rightarrow\right.\right.$ $\left.\left.\phi \pi^{+}\right)\right] \mathcal{B}\left(D_{s} \rightarrow \phi \ell^{+} \nu\right) \simeq(1.3 \pm 0.5) \times 10^{-3}$, nearly order of magnitude larger

