Quarkonium and the New States

Estia Eichten

Plan of Talk
D Narrow States Below Threshold
O Spin singlets
O Why it works so well

a Above Threshold and New States

- $Z^{+}(4430)$

O X(3872)
O States in the 3940 and 4160 mass regions
O Y(4260) et. al.
\square Summary and Outlook

Narrow States Below Threshold

\square The NRQCD approach:

Kinetic Potential

$$
\mathcal{H}=\mathbf{Q}^{\dagger}\left[\delta \mathbf{m}_{Q}-\frac{\mathbf{D}^{2}}{2 \mathbf{m}_{Q}}\right] \mathbf{Q}+\int d^{3} x \mathrm{j}_{a}^{0}(x) \mathcal{G}^{\mathrm{ab}} \mathrm{j}_{b}^{0}(0)
$$

relativistic $-\mathbf{Q}^{\dagger}\left[\frac{c_{4}}{8 \mathbf{m}_{Q}^{3}}\left(\mathbf{D}^{2}\right)^{2}+\frac{c_{D}}{8 \mathbf{m}_{q}^{2}}(\mathbf{D} \cdot g \mathbf{E}-g \mathbf{E} \cdot \mathbf{D})\right] \mathbf{Q}$ corrections $-\mathbf{Q}^{\dagger}\left[\frac{c_{s}}{8 \mathbf{m}_{q}^{2}} i \sigma(\mathbf{D} \times g \mathbf{E}+g \mathbf{E} \times \mathbf{D})+\frac{c_{f}}{2 \mathbf{m}_{q}} \sigma \cdot g \mathbf{B}\right] \mathbf{Q}+\ldots$
\square Consistency between (b \bar{b}) and (c \bar{c}) systems validates NRQCD approach.

- masses
- spin splittings
- EM transitions
- hadronic transitions
- direct decays

B Below threshold for heavy flavor meson pair production

O Narrow states allow precise experimental probes of the subtle nature of QCD.

O Lattice QCD supports and will supplant potential models

O A variety of lattice approaches

S. Gottlieb et al., PoS LAT2006

Figure 5: Summary of charmonium spectrum.

QCD Static Energy

L Lattice calculation of the QCD static energy between $Q Q$ versus R.

- Agrees with potential models.
- Masses of low-lying states directly calculable by LQCD.

- Excitation of gluonic degrees of freedom (string) also calculable.

\square Lattice QCD calculation of the spin-dependent relativistic corrections.

Heavy quark potential To $O\left(1 / m^{2}\right)$

$$
\begin{aligned}
V(r) & =V^{(0)}(r)+\left(\frac{1}{m_{1}}+\frac{1}{m_{1}}\right) V^{(1)}(r)+O\left(\frac{1}{m^{2}}\right) \\
& +\left(\frac{\vec{s}_{1} \vec{l}_{1}}{2 m_{1}^{2}}-\frac{\vec{s}_{2} \vec{l}_{2}}{2 m_{2}^{2}}\right)\left(\frac{V^{(0)}(r)^{\prime}}{r}+2 \frac{V^{(1)}(r)^{\prime}}{r}\right)+\left(\frac{\vec{s}_{2} \vec{l}_{1}}{2 m_{1} m_{2}}-\frac{\vec{s}_{1} \vec{l}_{2}}{2 m_{1} m_{2}}\right) \frac{V^{(2)}(r)^{\prime}}{r} \quad \text { Long range component } \\
& +\frac{1}{m_{1} m_{2}}(\frac{\left(\vec{s}_{1} \vec{r}\right)\left(\vec{s}_{2} \vec{r}\right)}{r^{2}}-\underbrace{\left.\frac{\vec{s}_{1} \vec{s}_{2}}{3}\right) V^{(3)}(r)+\frac{\vec{s}_{1} \vec{s}_{2}}{3 m_{1} m_{2}} V^{(4)}(r) \quad \text { Short range }}
\end{aligned}
$$

Fine and hyper-fine splitting

Spin Singlet States

- hc

O Observation CLEOc, NEW - BESIII

$$
\begin{aligned}
& M\left(h_{c}\right)=3524.4 \pm 0.6 \pm 0.4 \\
& \mathcal{B}\left(\psi(2 S) \rightarrow \pi^{0} h_{c}\right) \times \mathcal{B}\left(h_{c} \rightarrow \gamma \eta_{c}\right)=(4.0 \pm 0.8 \pm 0.7) \times 10^{-4}
\end{aligned}
$$

O Partial widths and decay modes:

$$
\begin{aligned}
& \Gamma\left(h_{c} \rightarrow \gamma \eta_{c}\right)=\left(\frac{k_{h_{c}}^{\gamma}}{k_{\chi_{c 1}}^{\gamma}}\right)^{3} \Gamma\left(\chi_{c 1} \rightarrow \gamma J / \psi\right) \approx 340 \mathrm{keV} \\
& \Gamma\left(h_{c} \rightarrow \text { light hadrons }\right)
\end{aligned}
$$

$$
e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \pi^{0} h_{c}, \quad h_{c} \rightarrow \gamma \eta_{c}, \quad \pi^{0} \rightarrow \gamma \gamma .
$$

Briere

J. L. Rosner et al., PRL 95, 102003 (2005)

O Spin-dependent forces:

$$
\Delta M_{\mathrm{hf}}\left(\left\langle M\left({ }^{3} P_{J}\right)\right\rangle-M\left({ }^{1} P_{1}\right)\right)=+1.0 \pm 0.6 \pm 0.4 \mathrm{MeV} .
$$

Confirms the short range nature of spin-spin and tensor potentials. Phenomenological models which closely follow pert QCD are best.

S. Godfrey [hep-ph/0501083]

- M1 transition was a theoretical disaster
+ Basics

$$
\Gamma(i \xrightarrow{\mathrm{M} 1} f+\gamma)=\frac{4 \alpha e_{Q}^{2}}{3 m_{Q}^{2}}\left(2 J_{f}+1\right) k^{3}\left[\mathcal{M}_{i f} \mid\right]^{2}
$$

+ pNRQCD

$$
\begin{aligned}
& \mathcal{M}_{i f}=\int r^{2} d r R_{n_{\mathrm{L}} \mathrm{~L}_{i}}(r) j_{0}\left(\frac{r k}{2}\right) R_{n_{f} \mathrm{~L}_{f}}(r) \\
& \mathrm{j}_{0}=1-(\mathrm{kr})^{2} / 24+\ldots, \text { so in NR limit } \\
& \begin{aligned}
k=0: \mathcal{M}_{i f} & =1 n_{i}=n_{f} ; L_{i}=L_{f} \\
& =0 \text { otherwise }
\end{aligned}
\end{aligned}
$$

Model independent - completely accessible by perturbation theory to o $\left(v^{2}\right)$

$$
\Gamma\left(J / \psi \rightarrow \eta_{c} \gamma\right)=\frac{16}{3} \alpha e_{c}^{2} \frac{k_{\gamma}^{3}}{M_{J / \psi}^{2}}\left[1+C_{F} \frac{\alpha_{s}\left(M_{j / \psi} / 2\right)}{\pi}+\frac{2}{3}\left(C_{F} \alpha_{s}\left(p_{J / \psi}\right)\right)^{2}\right]
$$

No large anomalous magnetic moment No scalar long range interaction

$$
\Gamma\left(J / \psi \rightarrow \eta_{c} \gamma\right)=(1.5 \pm 1.0) \mathrm{keV}
$$

+ LQCD

$$
\Gamma\left(J / \psi \rightarrow \eta_{c} \gamma\right)=(2.0 \pm 0.1 \pm 0.4) \mathrm{keV}
$$

$+J / \Psi-\gamma+\eta_{c} \quad M 1$ transition

$$
1.19 \pm 0.33 \mathrm{keV} \quad \begin{gathered}
\text { Exp } \\
{[\text { Crystal Ball] }}
\end{gathered}
$$

half the expected theoretical result

- CLEO measurement solves the issue
R. E. Mitchell et al., [arXiv:0805.0252] [hep-ex]

$$
\begin{aligned}
\mathcal{B}\left(\psi(2 S) \rightarrow \gamma \eta_{c}\right) & =(4.32 \pm 0.16 \pm 0.60) \times 10^{-3} \\
\mathcal{B}\left(J / \psi \rightarrow \gamma \eta_{c}\right) & =(1.98 \pm 0.09 \pm 0.30) \times 10^{-3}
\end{aligned}
$$

O Mass splittings

$$
\begin{aligned}
M\left(\eta_{c}\right) & =2976.7 \pm 0.6 \mathrm{MeV} / c^{2} \quad \text { Breit - Wigner } \\
& =2982.2 \pm 0.6 \mathrm{MeV} / c^{2} \quad \text { Modified Breit - Wigner }
\end{aligned}
$$

long tail

Figure 4: Hyperfine splitting of the $1 S$ states
S. Gottlieb et al., PoS LAT2006

- $\eta_{c}{ }^{\prime}$:

O Spin splitting $\quad \Delta M=M(\Upsilon(2 S))-M\left(\eta_{c}^{\prime}\right)=49 \pm 4 \mathrm{MeV} / c^{2}$ PDG 2008
Too small - scaling from 1S; most models.
Are we seeing threshold effects?

- Effects of light quark loops significant

Effects on spectrum seen in LQCD
C.T.H. Davies et al. [HPQCD, Fermilab Lattice, MILC, and UKQCD Collaborations], PRL 92, 02200I (2004)

O Strong coupling to virtual decay channels induces spin-dependent forces in charmonium near threshold, because $M\left(D^{*}\right)>M(D)$

O Spin dependent shifts small far below threshold

	State	Mass	Centroid	Splitting (Potential)	Splitting (Induced)
	$1^{1} \mathrm{~S}_{0}$	2979.9^{a}	3067.6^{b}	-90.5^{e}	+2.8
	$1^{3} \mathrm{~S}_{1}$	$3096.9^{\text {a }}$		$+30.2^{e}$	-0.9
Less that 1 MeV shift	$1^{3} \mathrm{P}_{0}$	$3415.3^{\text {a }}$		$-114.9{ }^{\text {e }}$	+5.9
	$1^{3} \mathrm{P}_{1}$	$3510.5^{\text {a }}$		$-11.6{ }^{\text {e }}$	-2.0
	$1^{1} \mathrm{P}_{1}$	$3524.4{ }^{f}$	$3525.3{ }^{\text {c }}$	$+0.6^{e}$	+0.5
Reduces $\Delta \mathrm{M}(2 \mathrm{~S})$ by 21 MeV	$1^{3} \mathrm{P}_{2}$	$3556.2^{\text {a }}$		$+31.9^{e}$	-0.3
	$2^{1} \mathrm{~S}_{0}$	$3638^{\text {a }}$	$3674{ }^{\text {b }}$	$-50.1{ }^{e}$	+15.7
	$2^{3} \mathrm{~S}_{1}$	$3686.0^{\text {a }}$	3674	$+16.7^{e}$	-5.2
	$1^{3} \mathrm{D}_{1}$	$3769.9{ }^{\text {a }}$	$(3815)^{d}$	-40	-39.9
ELQ PRD 73:014014 (2006)	$1^{3} \mathrm{D}_{2}$	3830.6		0	-2.7
	$1^{1} \mathrm{D}_{2}$	3838.0		0	+4.2
	$1^{3} \mathrm{D}_{3}$	3868.3		+20	+19.0
	$2^{3} \mathrm{P}_{0}$	3881.4	$(3922){ }^{\text {d }}$	-90	+27.9
	$2^{3} \mathrm{P}_{1}$	3920.5		-8	+6.7
	$2^{1} \mathrm{P}_{1}$	3919.0		0	-5.4
	$2^{3} \mathrm{P}_{2}$	$3931{ }^{9}$		+25	-9.6
	$3^{1} \mathrm{~S}_{0}$	3943^{h}	$(4015)^{i}$	-66^{e}	-3.1
	$3^{3} \mathrm{~S}_{1}$	$4040^{\text {a }}$		$+22^{e}$	+1.0

- Observed by BaBar in $Y(3 S)$ radiative decays

$$
\begin{aligned}
& E_{\gamma}=921.2_{-2.8}^{+2.1} \pm 2.4 \\
& M\left(\eta_{b}\right)=9388.9_{-2.3}^{+3.1} \pm 2.7 \mathrm{MeV}
\end{aligned}
$$

- Hyperfine splitting: $M(\Upsilon(1 S))-M\left(\eta_{b}\right)=71.4_{-3.1}^{+2.3} \pm 2.7 \mathrm{MeV}$

$$
\begin{aligned}
\text { Naive } & : \frac{\alpha_{s}\left(m_{b}^{2}\right)}{\alpha_{s}\left(m_{c}^{2}\right)} \frac{4 \Gamma_{e^{+} e^{-}}(\Upsilon)}{\Gamma_{e^{+} e^{-}}(J / \Psi)}\left[M(J / \Psi)-M\left(\eta_{c}\right)\right] \approx 68(\mathrm{MeV}) \\
\text { QCD NNL } & : 39 \pm 11_{-8}^{+9}(\mathrm{MeV})[\mathrm{PRL} 92242001(2004)] \\
\text { LQCD } & : 61 \pm 14(\mathrm{MeV}) \quad[\mathrm{PR} \text { D72: } 094507(2005)]
\end{aligned}
$$

- Hindered M1 Transitions:
- Relativistic corrections poorly understood. Phenomenological models for $\gamma(3 S) \rightarrow \gamma \eta_{b}$ and $\gamma(2 S) \rightarrow \gamma \eta_{b}$ vary greatly.

PNRQCD

$$
k_{\gamma}(\mathrm{MeV})
$$

- $\quad \Upsilon(3 S) \rightarrow \gamma \eta_{b}: \operatorname{Br}\left(\Upsilon(3 S) \rightarrow \gamma \eta_{b}\right)=(4.8 \pm 0.5 \pm 1.2) \times 10^{-4}$
- Expectations for $Y(2 S) \rightarrow \gamma \eta_{b}: C L E O<0.09 \mathrm{keV}$ (90\%c.l.) at $E_{Y}=615 \mathrm{MeV}$
- Narrow states still missing

O Charmonium - $3-{ }^{1} D_{2},{ }^{3} D_{2}$, and ${ }^{3} D_{3}$
O Bottomonium - 23- $1^{3} D_{1}, 1^{3} D_{3}, 1^{3} F_{J}, 2^{3} D_{J}, 1^{3} G_{J}, 3^{3} P_{J}$, $1^{1} P_{1}, 2^{1} S_{0}, 1^{1} D_{2}, 2^{1} P_{1}, 3^{1} S_{0}, 1^{1} F_{3}, 2^{1} D_{2}, 1^{1} G_{4}, 3^{1} P_{1}$
\square Multipole expansion approach for EM and hadronic transitions works well.

O Puzzling exceptions to expectations resolved by well understood dynamical suppression of the leading order expansion coefficient: $\Upsilon(3 S) \rightarrow \gamma+\chi_{b}(1 P)$ El rate; $\psi(2 S) \rightarrow \gamma+\eta_{c}, \gamma(2 S) \rightarrow \gamma+\eta_{b}(1 S)$ and $\Upsilon(3 S)$) $\gamma+\eta_{b}(1 S) M 1$ rates; $\Upsilon(3 S) \rightarrow \Upsilon(1 S)+2 \pi$ E1-E1 term; $\Upsilon(n S)->\Upsilon(m S)+2 \pi, \quad \mathrm{Ml}-\mathrm{Ml}$ terms.

O Higher order relativistic corrections needs better theory \rightarrow Lattice QCD.
\square Direct decays provide a wealth of information

Why it works so well

D What about the gluon and light quark degrees of freedom of QCD?

- Two thresholds:
- Usual $(\mathbb{Q} \bar{q})+(q \bar{Q})$ decay threshold

O Excite the string - hybrids
\square Hybrid states will appear in the spectrum associated with the potential Π_{u}...
\square In the static limit this occurs at

separation: $r \approx 1.2 \mathrm{fm}$.
Between 3S-4S in (cç); just above the 5S in (bb).

Above Threshold and New States

\square Need to account for strong decays

- Threshold Formalism For Strong Decays
Ψ_{1} : one particle states
Ψ_{2} : multi particle states
Eliminating Ψ_{2} :
All the complexity of the strong decay in the matrix $\Omega(z)$:

$$
\begin{gathered}
\left(\begin{array}{cc}
\mathcal{H}_{0} & \mathcal{H}_{I}^{\dagger} \\
\mathcal{H}_{I} & \mathcal{H}_{2}
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}=z\binom{\psi_{1}}{\psi_{2}} \\
\left(\mathcal{H}_{0}+\mathcal{H}_{I}^{\dagger} \frac{1}{z-\mathcal{H}_{2}} \mathcal{H}_{I}\right) \psi_{1}=z \psi_{1} \\
\Omega(\mathbf{Z})
\end{gathered}
$$

- Simplifying assumptions of phenomenological models (CCCM)
- \mathcal{H}_{2} - free heavy meson pairs - No final state or exchange interactions.

No bound states like a $X(3872)$ molecule.

- $\mathcal{H}_{0} \Psi_{1}=\mathrm{z} \Psi_{1}$ - A complete basis set quarkonium states $|\mathrm{n}\rangle$ - No hybrid states.
- Generalized VMD

$$
<n|\mathcal{G}(z)| m>=<n\left|\frac{1}{z-\mathcal{H}_{0}-\Omega(z)}\right| m>
$$

$$
R_{Q} \sim \frac{1}{s} \sum_{n m} \lim _{r \rightarrow 0} \psi_{n}^{*}(r) \operatorname{Im} \mathcal{G}_{n m}(W+i \epsilon) \psi_{m}(r)
$$

\square Decay amplitudes

$$
\Omega_{n L, m L^{\prime}}(W)=\sum_{i} \int_{0}^{\infty} P^{2} d P \frac{\dot{H}_{n L, m L^{\prime}}^{i}(P)}{W-E_{1}(P)-E_{2}(P)+i 0}
$$

where

$$
\begin{gathered}
\text { Statistical factor } \\
H_{n L, m L^{\prime}}^{i}(P)=f^{2} \sum_{i} C\left(J L L^{\prime} ; l\right) I_{n L}^{l}(P) I_{m L^{\prime}}^{l}(P)
\end{gathered}
$$

and reduced decay amplitude is given by

$$
I_{n L}^{l}(P)=\int_{0}^{\infty} d t \Phi(t) R_{n L}\left(t \beta^{-1 / 2}\right) j_{l}\left(\mu_{c} \beta^{-1 / 2} P t\right)
$$

ONLY the function $\Phi(t)$ depends on the pair production dynamics.
(separation between heavy quarks: $r=\dagger \sqrt{ } \beta$)

Details for CCCM:

$\left\langle C_{1}\left(\overrightarrow{\mathrm{P}} \lambda_{1}\right) \bar{C}_{2}\left(\overrightarrow{\mathrm{P}}^{\prime} \lambda_{2}\right)\right| H_{I}\left|\psi_{n}\right\rangle=-i(2 \pi)^{-3 / 2} \delta^{3}\left(\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{p}}^{\prime}\right) 3^{-1 / 2} A_{12}\left(\overrightarrow{\mathrm{P}}_{1} \lambda_{2} ; n\right)$
radial wavefunctions:
$n^{2 s+1} L_{J}$ QQbar state: $R_{n L}(r)$ Qqbar ground state:

$$
\phi(x) \sim \exp \left(-x^{2} \beta_{S}\right) \quad\left[\beta_{\mathrm{S}}=\frac{1}{2 \mathrm{a}^{2}}\left(\frac{4 \mu \mathrm{a}}{3 \sqrt{(\pi)})}\right)^{2 / 3}\right]
$$

$A_{12}\left(\overrightarrow{\mathrm{P}} \lambda_{1} \lambda_{2} ; n\right)=\frac{1}{m_{q}} \sum_{\{s \mid} \int d^{3} x d^{3} y\left[\chi^{\dagger}\left(s_{2}^{\prime}\right) \vec{\sigma} \cdot \hat{x} \chi\left(-s_{1}^{\prime}\right)\right] \frac{d V(|\overrightarrow{\mathrm{x}}|)}{d|\overrightarrow{\mathrm{x}}|} \phi_{1}^{*}\left(\overrightarrow{\mathrm{x}} s_{1} s_{1}^{\prime}\right) \phi_{2}^{*}\left(\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{y}}, s_{2} s_{2}^{\prime}\right) \psi_{n}\left(\overrightarrow{\mathrm{y}} s_{1} s_{2}\right) e^{-i \mu_{c} \overrightarrow{\mathrm{P}} \cdot \overrightarrow{\mathrm{y}}}$

Sample decay amplitudes (CCCM)
O Contains all dependence on light quark pair production dynamics.
e.g. for CCCM: $\quad \Phi(t)=t e^{-t^{2}}+(\pi / 2)^{1 / 2}\left(t^{2}-1\right) e^{-t^{2} / 2} \operatorname{erf}(t / \sqrt{2})$

O Using HQET, $\Phi(t)$ is the same for all final states in a j^{P} multiplet.

- Apart from overall light quark mass factors $\Phi(\mathrm{t})$ is approximately $\mathrm{SU}(3)$ invariant.
- One universal function, $\Phi(\mathrm{t})$, determines $\Omega(W)$ in the threshold region.
- Lattice QCD can be used to calculate $\Phi(\mathrm{t})$:

$$
\begin{align*}
& C(t)=\left(\begin{array}{ll}
C_{Q Q}(t) & C_{Q B}(t) \\
C_{B Q}(t) & C_{B B}(t)
\end{array}\right) \\
& =e^{-2 m_{Q} t}\left(\begin{array}{cc}
\square & \sqrt{n_{f}} \square \\
\sqrt{n_{f}} \square & \\
-n_{f} \text { आny } \\
\square
\end{array}\right) \tag{1}\\
& g=\left.\frac{d C_{Q B}(t)}{d t}\right|_{t=0} \frac{1}{\sqrt{C_{B B}(0) C_{Q Q}(0)}} .
\end{align*}
$$

FIG. 18: The transition rate g between $|B\rangle$ and $|Q\rangle$ states, as a function of \bar{r}.

$p(G e V)$
G.S. Bali, H. Neff, T. Dussel, T. Lippert and K. Schilling [SESAM Collaboration],
Phys. Rev. D 71, 114513 (2005) [arXiv:hep-lat/0505012]

O Suppose we had no NRQCD expectations and had first measured the exclusive charm pair production contributions to Rc in the threshold region.

O How many resonances would you find?

O But in fact we know that the coupled channel calculations with only the usual charmonium resonances describes the data fairly well.
o We don't have this analysis for other production modes: B decays, $\gamma \gamma$, recoil against J / Ψ in $e^{+} e^{-}$, ppbar. Proceed with caution.

New States Above Charm Threshold

State	EXP	$M+i \Gamma(M e V)$	JPC	Decay Modes Observed	Production Modes Observed
X(3872)	Belle, CDF, DO, BaBar	$3871.2 \pm 0.5+\mathrm{i}(<2.3)$	1^{++}	$\pi^{+} \pi^{-} J / \Psi, \quad \pi^{+} \pi^{-} \pi^{0} J / \Psi$, ҮJ/ Ψ	B decays, ppbar
	Belle BaBar	$3872.6{ }^{+0.5}-0.4 \pm 0.4+i\left(3.9^{+2.5}-1.3^{+0.8}-0.3\right)$		$D^{0} D^{* 0}$	B decays
		$3875.1^{+0.7}{ }_{-0.5} \pm 0.5+\mathrm{i}\left(3.0^{+1.9}{ }_{-1.4} \pm 0.9\right)$			
Z(3930)	Belle	$3929 \pm 5 \pm 2+i(29 \pm 10 \pm 2)$	2^{++}	$D^{0} D^{0}, D^{+} D^{-}$	rr
Y(3940)	Belle BaBar	$3943 \pm 11 \pm 13+i(87 \pm 22 \pm 26)$	$\mathrm{J}^{\text {P+ }}$	$\omega J / \Psi$	B decays
		$3914.3^{+3.8}-3.4 \pm 1.6+\mathrm{i}\left(33^{+12}-8 \pm 0.60\right)$			
X(3940)	Belle	$3942{ }^{+7}{ }_{-6} \pm 6+\mathrm{i}\left(37^{+26}{ }_{-15} \pm 8\right)$	$\mathrm{J}^{\mathrm{P}+}$	DD*	$e^{+} e^{-}($recoil against $J / \Psi)$
Y(4008)	Belle BaBar	$4008 \pm 40^{+72}-28+\mathrm{i}\left(226 \pm 44^{+87}{ }_{-79}\right)$	1^{--}	$\pi^{+} \pi^{-J / \Psi}$	$e^{+} e^{-}$(ISR)
		(not seen)			
Y(4140)	CDF	$4143.0 \pm 2.9 \pm 1.2+\mathrm{i}\left(11.7{ }^{+8.3}-5.0 \pm 3.7\right)$	$\mathrm{J}^{\mathrm{P}+}$	ϕ J/ Ψ	ppbar
X(4160)	Belle	$4156{ }^{+25}-20 \pm 15+\mathrm{i}(139+111-61 \pm 21)$	$J^{\text {P+ }}$	$D^{*} D^{*}$	$e^{+} e^{-}($recoil against $J / \Psi)$
$Y(4260)$	BaBar Cleo Belle	$\begin{gathered} 4259 \pm 6^{+2}-3+i\left(105 \pm 18^{+4}-6\right) \\ 4284^{+17}-16 \pm 4+i\left(73^{+39}-25 \pm 5\right) \\ 4247 \pm 12^{+17}-32+i(108 \pm 19 \pm 10) \end{gathered}$	1^{--}	$\begin{gathered} \pi^{+} \pi^{-} J / \Psi, \pi^{0} \pi^{0} J / \Psi, \\ K^{+}-J / \Psi \end{gathered}$	$e^{+} e^{-}$(ISR), $e^{+} e^{-}$
$Y(4350)$	BaBar Belle	$\begin{gathered} 4324 \pm 24+i(172 \pm 33) \\ 4361 \pm 9 \pm 9+i(74 \pm 15 \pm 10) \end{gathered}$	1^{--}	$\pi^{+} \pi^{-} \Psi(2 S)$	$e^{+} e^{-}$(ISR)
$Z^{+}(4430)$	Belle BaBar	$4433 \pm 4 \pm 1+\mathrm{i}\left(44^{+17}{ }_{-13}{ }^{+30}{ }_{-11}\right)$	J^{P}	$\pi^{+} \Psi(2 S)$	B decays
		(not seen)			
$Y(4660)$	Belle	$4664 \pm 11 \pm 5+\mathrm{i}(48 \pm 15 \pm 3)$	1^{--}	$\pi^{+} \pi^{-} \Psi(2 S)$	$e^{+} e^{-}$(ISR)

General Comments

O Basic Questions:

- Is it a new state?
- What are its properties?: Mass, width, JPC, decay modes
- Charmonium state or not?
- If not what? New spectroscopy.

O Options for new states:

- Four quark states -
$(Q \bar{q})(q \bar{Q}) \quad$ Molecules
$(Q q)(\bar{q} \bar{Q}) \quad$ Diquark-Antidiquark L. Maiani et.al. PRD 71,014028 (2005)
$(Q q)(q Q)$ Diquark-Antidiquark T-W Chiu and T.H. Hsieh PRD 73, 111503 (2006)
D. Ebert et.al. PLB 634, 214 (2006)
$(Q \bar{Q})(\bar{q} q) \quad$ Hadro-charmonium S. Dubynski et al PLB 666,344 (2008)
- Hybrids - Exciting the gluonic degrees of freedom:

```
valance gluons, string
```

F. E. Close and P.R. Page PLB 628, 215 (2005)
E. Kou and O. Pene PLB 631, 164 (2005)
S.L. Zhu PLB 625, 212 (2005)

- Strong threshold effects:
strong interactions, interplay of decay channels
Y. S. Kalashnikova PR D72, 034010 (2005)
E.van Beveren G. Rupp [arXiv:0811.1755v1]
$\square \mathrm{Z}^{+}(4430)$
O Belle
- Mass and Width
$M\left(Z^{+}\right)=4433 \pm 4 \pm 1 \mathrm{MeV}$
$\Gamma\left(Z^{+}\right)=44_{-13-11}^{+17+30} \mathrm{MeV}$
- Decay Modes
$Z^{+}(4433)->\pi^{+}+\Psi(2 S)$
- Updated analysis [arXiv:0905.4313] confirmed 6.4 sigma

O BaBar [arXiv:0811.0564v1]

- Not seen

O Tetraquark state (if confirmed)

Isospin multiplet
Possible production mechanism

J. Rosner PRD, 76, 114002 (2007)

$\square \times(3872)$

O Mass

- At threshold within errors:
$M(X)=3871.51 \pm 0.22 \mathrm{MeV}$ (+CDF)
$M\left(D^{0}\right)+M\left(D^{* 0}\right)=3871.81 \pm 0.36 \mathrm{MeV}$ (CLEO)
O Decay Modes
- $\quad X(3872)->\pi^{+} \pi^{-}+J / \Psi\left(\Gamma_{0}\right)$ (ρ like) (Belle, CDF, DO, BaBar)
- $\Gamma\left(X(3872)->^{\prime} \omega^{\prime}+J / \Psi\right) / \Gamma_{0}=1.0 \pm 0.4 \pm 0.3_{-3.0}^{+2.3}$
\Rightarrow Isospin violating large (Belle)
- $\Gamma(X(3872)->Y+J / \Psi) / \Gamma_{0}=0.14 \pm 0.05$
$\Rightarrow C=+1 \quad$ (Belle, BaBar)
- $\Gamma\left(X(3872)->Y+\Psi^{\prime}\right) / \Gamma(X(3872)->Y+J / \Psi)$
$=3.4 \pm 1.4_{-2.0}^{+1.2} \quad$ (BaBar)
Compare $2^{3} P_{1}(b b)$ ratio $=2.5 \pm 0.5$
- $\quad J^{P C}=1^{++}$Strongly favored (Belle, CDF)

BaBar [arXiv:0809.0042v2] $X->Y+\Psi^{\prime}$

\square Decay Modes (above threshold)
O $\Gamma\left(X(3875)->D^{0} D^{* 0}+D^{* 0} D^{0}\right) / \Gamma 0=12.2 \pm 3.1+2.3$
BaBar:

$$
\begin{aligned}
& M=3875.1_{-0.5}^{+0.7} \pm 0.7 \mathrm{Mev} / \mathrm{c}^{2} \\
& \Gamma=3.0_{-1.4}^{+1.9} \pm 0.9 \mathrm{MeV}
\end{aligned}
$$

Belle:

$$
\begin{aligned}
& M=3872.6_{-0.4}^{+0.5} \pm 0.4 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma=3.9_{-1.3}^{+2.5}-0.8 \mathrm{MeV}
\end{aligned}
$$

If its same state as the $X(3872)$?
$\Gamma\left(X(3872)->Y+\Psi^{\prime}\right) \approx(5.7 \pm 1.6) \times 10^{-2} \Gamma\left(X(3875)->D^{0} D^{* 0}+D^{*} D^{0}\right)$ $\approx 170 \pm 50 \mathrm{keV}$
 M(D*D) (MeV/c ${ }^{2}$)

FIG. 4: Distribution of $M_{D^{*} D}$ for $M_{\mathrm{bc}}>5.27 \mathrm{GeV}$, for $D^{* 0} \rightarrow D^{0} \gamma$ (left) and $D^{* 0} \rightarrow D^{0} \pi^{0}$ (right) The points with error bars are data, the dotted curve is the Flatte distribution, the dashed curve is the background, the dash-dotted curve is the sum of the background and the $B \rightarrow D^{*} D K$ component, the dot-dot-dashed curve is the contribution from $D^{0}-\bar{D}^{0}$ reflections, and the solid curve is the total fitting function.

Same as the expected rate for the charmonium $\left.2^{3} P_{1} \rightarrow\right\rangle+\Psi^{\prime}$ transition !!

- Key feature $X(3872)$ extremely close to threshold.

$$
\begin{gathered}
\text { CLEO precise } D^{0} \text { mass measurement }[\text { PRL } 98,092002 \text { (2007)] } \\
1864.847 \pm 0.150 \pm 0.095 \mathrm{MeV} \\
\text { CDF precise } X \text { mass measurement [CDF note 9454] } \\
3871.61 . \pm 0.16 \pm 0.19 \mathrm{MeV} \\
\Rightarrow M(X)-M\left(D^{0}\right)-M\left(D^{0 *}\right)=-0.3 \pm 0.4 \mathrm{MeV}
\end{gathered}
$$

DD* "Binding Energy?":

$$
M-\left(m_{D 0^{+}}+m_{D^{*} 0}\right)=+4.3 \pm 0.7_{-1.7}^{+0.7} \mathrm{MeV}
$$

- Options -Tetraquark state or Hybrid state highly improbable to be this near threshold.
- $D^{0} D^{* 0}$ molecule seemed the most likely possibility.
- Need to measure the line shape of the X in various production modes and decay channels to establish it's true mass. Braaten and Lu [PR D 76:094028 (2007)]

$$
B^{0} \rightarrow K^{0}+X
$$

Dependence of $d \Gamma / d E$ on inverse scattering length γ

- Revisiting the $2^{3} P_{1}$ charmonium $\left(X^{\prime}{ }_{c 1}\right)$ interpretation
- The binding of the "molecule" must come from short distance.

The long range pion exchange force is weak.

$$
\begin{aligned}
& \mu^{2}=\left(m\left(D^{0 *}\right)-m\left(D^{0}\right)\right)^{2}-m\left(\pi^{0}\right)^{2} \\
& \frac{g^{2}}{2 f_{\pi}^{2}} \frac{\vec{\epsilon}^{*} \cdot \vec{q} \vec{\epsilon} \cdot \vec{q}}{\vec{q}^{2}-\mu^{2}}, \quad \mathrm{NN} \text { system } \quad \frac{g_{A}^{2} M_{N} m_{\pi}}{8 \pi f_{\pi}^{2}} \approx \frac{1}{2} \\
& \begin{array}{c}
\text { M. Suzukl PR D72, 114013 (2005) } \\
\text { S. Fleming, M. Kusunoki, T. Mehen and U. van Kolck PR D76, 034006 (2007) }
\end{array} \\
& \mathrm{DD}^{*} \text { system }
\end{aligned} \frac{g^{2} M_{D D^{*} \mu}^{4 \pi f_{\pi}^{2}}}{} \approx \frac{1}{20}-\frac{1}{10}
$$

- The coupling between the $2^{3} \mathrm{P}_{1}$ state and the D^{*} final states is S -wave and strong. The ${ }^{3} \mathrm{P}_{1}$ states have no coupling to DD final state.

- The photon transitions ratio to Ψ^{\prime} over J / Ψ is naturally satisfied.
- What about the miracle of nearness to threshold?

Dynamical Focusing!

$$
\text { Physical pole at } E=\left[M_{0}\left(2^{3} P_{1}\right)+\text { real } \Omega(E)\right] \text {. }
$$

Hence real $\Omega(E)$ shifts the $2^{3} P_{1}$ pole position.

The large and rapid energy dependence near $D D^{*}$ threshold

42 MeV

$\Rightarrow \quad$ More than 10:1 dynamically focusing

Assuming no $D^{0} D^{* 0}$ binding other than its coupling to charmonium ${ }^{3} P_{1}$ states

Produces the same behaviour as expected for "molecule" interpretation.

- General conditions require a nearby $Q Q$ state with appropriate JPC for which:
(a) Strong decay into two very narrow hadrons;
(b) S-wave threshold;
(c) $\mid M_{s}-M($ threshold $) \mid<\Gamma_{s}$.
- Remaining issue is the induced isospin breaking (from $D^{+}-D^{0}$ mass difference) is about 6%. This implies a large implied decay partial rate to omega $\omega \mathrm{J} / \Psi$ (if not phase space suppressed). We also see this in the $Y(5 \mathrm{~S}) \rightarrow \pi \pi J / \Psi$ decays. Are the mechanisms related?
- Comments:
(a) compare $D^{0 *} D^{0} / D^{+} D^{*-}$ channels just above $D^{+} D^{-*}$ threshold.
(b) look for $\pi \pi 1^{3} \mathrm{P}_{1}$ decay. S. Dubynskiy, M. B. Voloshin PR D77, 014013 (2008)
(c) unlikely to see an $B B^{*}$ molecule. (the P states are too far away).
- $C=+1$ states in the $Y(3940)$ and $Y(4160)$ mass regions.

Two new states seen:

O new structure observed by Belle:

- Produced in $\mathrm{YY}\left(\mathrm{J}^{P C}=0^{++}, 2^{++}\right)$
- Observed in the decay mode $\omega+J / \Psi$
- Near the Z(3930) previously observed by Belle in the YY channel via the DD decay mode. [$2^{3} \mathrm{P}_{2}$ (cc) state]

O Y(4140) discovery at CDF

- Mass $=4143 \pm 2.9 \pm 1.2 \mathrm{MeV}$
- Width $=11.7_{-5.0}^{+8.3} \pm 3.7 \mathrm{MeV}$
- Produced in B decays
- Observed in the decay mode $\phi+J / \psi$
- Near the $Y(4160)$ previously observed by Belle in $e^{+} e^{-}$(recoil against J / Ψ).

Could it be the $Z(3930)$?

Plus the previously observed states:

O Y(3940)

- Belle discovery in B decays confirmed by BaBar.

Belle BaBar
Mass $=3943 \pm 11 ; 3914.6{ }_{-8}^{+12} \pm 5.0 \mathrm{MeV}$ Width $=83 \pm 22 ; \quad 39{ }_{-3.4}^{+3.8} \pm 2.0 \mathrm{MeV}$

- Decay mode $\omega+J / \Psi$

- $\times(3940)$
- Mass $=3942{ }_{-6}^{+7} \pm 6 \mathrm{MeV}$
- Width $=37{ }_{-15}^{+26} \pm 8 \mathrm{MeV}$
- Produced in $e^{+} e^{-}($recoil against $J / \psi)$
- Observed in the decay mode DD*

O In the 3940 region the $Z(3930)$ is the $2^{3} P_{2}$ charmonium state. The remaining $2^{3} P_{0}$ and $2^{3} \mathrm{P}^{1}$ are not clearly identified yet. In the 4160 region, may have the $3^{3} P_{0}$ or $3^{1} S_{0}$ states. Identifying the J^{P} of the observed states will be very useful.
O The η_{c} is produced copiously in B decays. Should observe the $3^{1} \mathrm{~S}_{0}$ state.

O Using the observed production of narrow charmonium states, we expect large production of $\mathrm{J}^{P C}=0^{++}, 0^{--}$states recoiling against J / Ψ in $e+e-$ and $J^{P C}=0^{-+}, 1^{--}, 1^{++}$in B decays $X+K$.

O There is an observed pairing of nearby states. One is seen in the decay mode light hadrons $+J / \Psi$ and the other in charm meson pair decays. Is this like the $X(3872)$ case? If true both states must have the same J ${ }^{\text {PC. }}$

S: D wave thresholds for P states.

$J^{P C}$	$Q Q$	$H H$	$H H^{*}$	$H^{*} H^{*}$
0^{++}	${ }^{3} P_{0}$	$1: 0$	$0: 0$	$1 / 3: 8 / 3$
1^{++}	${ }^{3} p_{1}$	$0: 0$	$4 / 3: 2 / 3$	$0: 2$
2^{++}	${ }^{3} P_{2}$	$0: 2 / 5$	$0: 6 / 5$	$4 / 3: 16 / 15$

State	$D ~ D$	$D D^{*}$	$D^{*} D^{*}$
$X(3930)$	$\Gamma(D D) \approx$ 37 MeV	$\Gamma\left(D D^{*}\right)$ not seen	not allowed
$X(3940)$	$\Gamma(D D)$ not seen	$\Gamma\left(D D^{*}\right) \approx$ 29 MeV	not allowed
$Y(4160)$	$\Gamma(D D) / \Gamma\left(D^{*} D^{*}\right)$ <0.09	$\Gamma\left(D D^{*}\right) / \Gamma\left(D^{*} D^{*}\right)$ <0.22	$\Gamma\left(D^{*} D^{*}\right) \approx$ 140 MeV

- Y(4260) and the 1-- states beyond

O Y(4260)
Seen by BaBar in ISR production confirmed by CLEO and Belle

$$
\Rightarrow J^{P C}=1^{--}
$$

Mass $=4264 \pm{ }_{12}^{10} \mathrm{MeV}$; Width $=83 \pm{ }_{17}^{20} \mathrm{MeV}$

- Decays
- $Y(4260) \rightarrow \pi^{+} \pi^{-}+J / \Psi$ (BaBar, CLEO, Belle)
- $Y(4260)->\pi^{0} \pi^{0}+J / \Psi(C L E O)$
- $Y(4260) \rightarrow K^{+} K^{-}+J / \Psi(C L E O)$
consistent with $\mathrm{I}=0$
- Not a charmonium state
- Small $\Delta R-4^{3} \mathrm{~S}_{1}$ state at 4.26 would have
 $\Delta R \approx 2.5$
- $1^{3} D_{1}$ state $\Psi(4160)$
- X(4008)
$\begin{array}{ll}\text { Mass }=4008 \pm 40{ }_{-28}^{+72} \mathrm{MeV} / \mathrm{c}^{2} \\ \text { Width }=226 \pm 44{ }_{-79}^{87} \mathrm{MeV} & \mathrm{J}^{\mathrm{PC}}=1^{--}\end{array}$ Seen by Belle in $\pi^{-7} \pi^{-}+J / \psi$ final state Not confirmed by BaBar [arXiv:0808.1543v2]

O $Y(4350)$
Mass $=4361 \pm 9 \pm 9 \mathrm{MeV} / \mathrm{c}^{2}$ Width $=74 \pm 15 \pm 10 \mathrm{MeV}$

$$
J^{P C}=1^{--}
$$

Seen byBaBar, Belle in $\pi^{+} \pi^{-}+\psi(2 S)$ final state

O $Y(4660)$
Mass $=4664 \pm 11 \pm 5 \mathrm{MeV} / \mathrm{c}^{2}$

$$
J^{P C}=1^{--}
$$

Width $=48 \pm 15 \pm 3 \mathrm{MeV}$
Seen by Belle in $\pi^{+} \pi^{-}+\Psi(2 S)$ final state

PRL 99, 182004 (2007)

X. L. Wang, et al. PRL 99:142002 (2007)

O What are the $Y(4260), Y(4350)$ and $Y(4660)$?

- Various options - see

Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E.
[Rev. Mod. Phys. 80, 1161 (2008)]

- One attractive possibility - hybrid states
- Lattice calculations put states in this region
- The $Y(4660)$ state could be the first radial excitation of the charm quarks from the ground state $Y(4260)$ (analog of Ψ^{\prime} to J / Ψ). This would naturally explain its preference for decays to $\pi \pi+\Psi^{\prime}$.

McNeile ICHEP 2006
$M-M_{S}$ mass splitting

- Similarly, the $Y(4360)$ would the radial excitation of the charm quarks from a ground state $X(4008)$.
- Heavy quark spin symmetry: $1^{--} \rightarrow 0^{-+}, 1^{-+}, 2^{-+}$ states nearby (for Π_{u} potential)

$V_{\Pi_{u}}$	4664
4361	
	4264
4008	$\Sigma^{\text {g }}$

- How many states would be narrow?

Summary and Outlook

O The wealth of precision data has solidified our confidence in the NRQCD approach

- The velocity expansion for the spectrum and the multipole expansions for both electromagnetic and hadronic transitions hold up well.
- Relativistic corrections: Significant relativistic for the cc system. Reduced for the bb system. Generally consistent with velocity scaling expectations. Here phenomenological models inadequate. Need lattice QCD and PNRQCD.

O Quarkonium resonances have been used as factories:

- $\quad Y(4 S), Y(5 S)-B^{ \pm}, B^{0}, B_{s}{ }^{ \pm}$studies
- $\Psi(3772)-D^{ \pm}, D^{0}$ studies
- $\Psi(4160)-D_{s}{ }^{ \pm}$studies
- J $/ \Psi, \Psi^{\prime}, Y, Y^{\prime \prime}, \ldots$. - direct decays

O The situation above threshold is not yet clear:

- Need JP determination for many of the new states.
- New states and possibly a new spectroscopy: $X(3872)$, $X(4008), Y(4140), Y(4260), Y(4350), Y(4660), Z^{+}(4430), \ldots$
- $X(3872)$ large $2^{3} \mathrm{P}_{1}$ component. Molecular interpretation less attractive. Strong decay dynamics plays an important role. Look for decay mode $\pi \pi X_{c 1}$
- The states in the 3940 and 4160 regions also seem paired. A signal of decay dynamics in the $\mathrm{J}^{\mathrm{PC}}=2^{++}, 0^{++}\left(2^{3} \mathrm{P}_{\mathrm{J}}\right)$, and/or the $0^{-+}\left(3^{1} \mathrm{~S}_{0}\right)$ channels? Any relation to unexpectedly large hadronic transition rates: $Y(5 S)->Y(n S)+2 \pi(n=1,2,3)$?
- The $Y(4260)$ and related 1^{--}new states. Hybrid states?
- [If confirmed] $Z^{+}(4430)$ smoking gun for four quark states. Not $I=0$. Look for isospin partners.

O Future prospects

- NRQCD and HQET allows scaling from c to b systems. This will eventually provide critical tests of our understanding of new charmonium states.
- Lattice calculations will provide insight into theoretical issues.
- Answers in many cases will require the next generation of heavy flavor experiments - BES III, LHCb and Super-B factories.

Extra Slides

- Charm Meson Pair Thresholds

$\mathrm{L}=0$	$c \bar{q}\left[j_{l}^{P}=\frac{1}{2}^{-}\right]$	
Meson Mass $\left(\mathrm{MeV} / c^{2}\right)$	Width (eV)	
D^{0}	1864.84 ± 0.17	$(1.60 \pm 0.01) \times 10^{-3}$
D^{+}	1869.62 ± 0.20	$(6.33 \pm 0.04) \times 10^{-4}$
D_{s}^{+}	1968.49 ± 0.34	$(1.32 \pm 0.02) \times 10^{-3}$
$D^{* 0}$	2006.97 ± 0.19	$77 \times 10^{3}[21]$
D^{*+}	2010.27 ± 0.17	$(96 \pm 4 \pm 22) \times 10^{3}$
D_{s}^{*+}	2112.3 ± 0.5	$440[21]$

$\mathrm{L}=1$	$c \bar{q}\left[j_{l}^{P}=\frac{1}{2}^{+}\right]$	
Meson ($J^{\text {P }}$)	Mass (MeV / c^{2})	Width (MeV)
$D^{* 0}\left(0^{+}\right)$	2352 ± 50	261 ± 50
$D^{*+}\left(0^{+}\right)$	2403 ± 38	283 ± 42
$D_{s}^{*+}\left(0^{+}\right)$	2317.8 ± 0.6	0.023 [21]
$D^{0}\left(1^{+}\right)$	2427 ± 35	$384{ }_{-105}^{+130}$
$D^{+}\left(1^{+}\right)$	2427 (a)	384 (a)
$D_{s}^{+}\left(1^{+}\right)$	$\begin{aligned} & 2459.6 \pm 0.6 \\ & \quad c \bar{q}\left[j_{l}^{P}=\frac{3}{2}^{+}\right] \end{aligned}$	0.038 [21]
Meson ($J^{\text {P }}$)	Mass (MeV / c^{2})	Width (MeV)
$D^{0}\left(1^{+}\right)$	2422.3 ± 1.3	20.4 ± 1.7
$D^{+}\left(1^{+}\right)$	2423.4 ± 3.1	25 ± 6
$D_{s}^{+}\left(1^{+}\right)$	2535.35 ± 0.6	0.29 (a)
$D^{* 0}\left(2^{+}\right)$	2461.1 ± 1.6	42 ± 4
$D^{*+}\left(2^{+}\right)$	$2460.1{ }_{-3.5}^{+2.6}$	37 ± 6
$D_{s}^{*+}\left(2^{+}\right)$	2572.6 ± 0.9	20 ± 5

Narrow Thresholds

$D \bar{D}$	$3729.7(+9.56)$	
$D \bar{D}^{*}+D^{*} \bar{D}$	$3,871.8(+8.08)$	
$D_{s} \bar{D}_{s}$	3, 937.0	
$D^{*} \bar{D}^{*}$	$4,013.9(+6.6)$	P-wave
$D_{s} \bar{D}_{s}^{*}+\bar{D}_{s} D_{s}^{*}$	$4,080.8$	
$D_{s}^{*} \bar{D}_{s}^{*}$	$4,224.6$	
$D \bar{D}\left(1^{+}\right)+D\left(1^{+}\right) \bar{D}$	$4,287.1(+5.9)$	
$D \bar{D}\left(2^{+}\right)+D\left(2^{+}\right) \bar{D}$	$4,325.9(+3.8)$	
$D^{*} \bar{D}\left(1^{+}\right)+D\left(1^{+}\right) \bar{D}^{*}$	4, 429.3(+4.4)	D-wave
$D^{*} \bar{D}\left(2^{+}\right)+D\left(2^{+}\right) \bar{D}^{*}$	$4,468.1(+2.3)$	
$D_{s} \bar{D}_{s}\left(1^{+}\right)+D_{s}\left(1^{+}\right) \bar{D}_{s}$	$4,428.1$	
$D_{s}^{*} \bar{D}_{s}\left(0^{+}\right)+D_{s}\left(0^{+}\right) \bar{D}_{s}^{*}$	4,430.1	S-wave
$D_{s}^{*} \bar{D}_{s}\left(1^{+}\right)+D_{s}\left(1^{+}\right) \bar{D}_{s}^{*}$	4,571.9	
$D_{s} \bar{D}_{s}\left(1^{+}\right)+D_{s}\left(1^{+}\right) \bar{D}_{s}$	4, 540.9	
$D_{s} \bar{D}_{s}\left(2^{+}\right)+D_{s}\left(2^{+}\right) \bar{D}_{s}$	4, 541.1	
$D_{s}^{*} \bar{D}_{s}\left(1^{+}\right)+D_{s}\left(1^{+}\right) \bar{D}_{s}^{*}$	4, 647.7	D-wave
$D_{s}^{*} \bar{D}_{s}\left(2^{+}\right)+D_{s}\left(2^{+}\right) \bar{D}_{s}^{*}$	4, 684.9	
\ldots		
wide	$D^{(*)} D^{\prime}\left(1^{+}\right), \ldots$	S-wave

New Belle Measurements - [hep-ex/0710.2577]

$$
Y(5 S)->\pi^{+} \pi^{-}+Y(n S) \quad(n=1,2,3)
$$

Process	N_{s}	Σ	Eff. $(\%)$	$\sigma(\mathrm{pb})$	$\mathcal{B}(\%)$	$\Gamma(\mathrm{MeV})$
$\Upsilon(1 S) \pi^{+} \pi^{-}$	325_{-19}^{+20}	20σ	37.4	$1.61 \pm 0.10 \pm 0.12$	$0.53 \pm 0.03 \pm 0.05$	$0.59 \pm 0.04 \pm 0.09$
$\Upsilon(2 S) \pi^{+} \pi^{-}$	186 ± 15	14σ	18.9	$2.35 \pm 0.19 \pm 0.32$	$0.78 \pm 0.06 \pm 0.11$	$0.85 \pm 0.07 \pm 0.16$
$\Upsilon(3 S) \pi^{+} \pi^{-}$	$10.5_{-3.3}^{+4.0}$	3.2σ	1.5	$1.44_{-0.45}^{+0.55} \pm 0.19$	$0.48_{-0.15}^{+0.18} \pm 0.07$	$0.52_{-0.17}^{+0.20} \pm 0.10$
$\Upsilon(1 S) K^{+} K^{-}$	$20.2_{-4.5}^{+5.2}$	4.9σ	20.3	$0.185_{-0.041}^{+0.048} \pm 0.028$	$0.061_{-0.014}^{+0.016} \pm 0.010$	$0.067_{-0.015}^{+0.017} \pm 0.013$

- Large partial rates.

Continuum $e^{+} e^{-}->\pi \pi Y(n S)$ background not subtracted.

- $M(\pi \pi)$ and angular distribution. Compare to $\mathrm{Y}(4 \mathrm{~S})$.

$M\left(\pi^{+} \pi^{-} \pi^{0}\right)$ vs $\mathrm{M}\left(l^{+} l^{-}\right)$

- 4 trks (≥ 1 lepton, no kaons)
- $\Sigma \mathrm{q}_{\mathrm{i}}=0$
$\bullet \geq 1 \pi^{0}<$ select best one
- veto $\psi^{\prime} \rightarrow \pi^{+} \pi^{-} \cdot \mathrm{J} / \psi$
- W<4.3 GeV
- $\Sigma \vec{p}_{\mathrm{T}}<0.1 \mathrm{GeV}$

Could it be the $Z(3930)$?
$\Sigma \overrightarrow{\mathrm{p}}_{\mathrm{T}}$ vs W

undetected

S states -> P states

\square Generally good agreement with NR MPE

D Relativistic corrections 10\%-20\% effects in cc system.
\square Need better theoretical guidance.

$c \bar{c}$		
State	$<\|r\|>(\mathrm{fm})$	$<v^{2}>$
J / ψ	0.32	0.26
$\chi_{c}(1 P)$	0.57	0.24
$\psi(2 S)$	0.70	0.29
$\psi(3770)$	0.78	0.28
$b b$		
State	$<\|r\|>(\mathrm{fm})$	$<v^{2}>$
$\Upsilon(1 S)$	0.19	0.091
$\chi_{b}(1 P)$	0.35	0.072
$\Upsilon(2 S)$	0.44	0.086
$\Upsilon(1 D)$	0.50	0.080
$\chi_{b}(2 P)$	0.56	0.089
$\Upsilon(3 S)$	0.63	0.100
$\Upsilon(4 S)$	0.80	0.116

$3^{3} S_{1} \rightarrow 2^{3} P_{J}(b \bar{b})$

Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E. [Rev. Mod. Phys. 80, 1161 (2008)]

- $\quad 3^{3} \mathrm{~S}_{1} \rightarrow 1^{3} \mathrm{P}_{\mathrm{J}}$ transition dynamically suppressed. Rate very sensitive to relativistic corrections.

$$
\begin{aligned}
\mathcal{E}\left(3^{3} S_{1}, 1^{3} P_{0}\right)= & 0.067 \pm 0.012 \mathrm{GeV}^{-1} \\
<\mathcal{E}\left(3^{3} S_{1}, 1^{3} P_{J}\right)>_{J}= & 0.050 \pm 0.006 \mathrm{GeV}^{-1} \\
J=(2,1,0) & (0.097,0.045,-0.015)
\end{aligned}
$$

Exp
GI Model

- nP -> mS transitions. Generally good agreement with NR predictions. Again better theoretical control for relativistic corrections needed

Table 1: Cancellations in $\mathcal{E}_{\text {if }}$ by node regions.

Final Predicted \mathcal{B} Measured \mathcal{B}

Level	state	$(\%)(2)$	(\%) (12)
$2^{3} P_{0}$	$\gamma+1 S$	0.96	0.9 ± 0.6
	$\gamma+2 S$	1.27	4.6 ± 2.1
$2^{3} P_{1}$	$\gamma+1 S$	11.8	8.5 ± 1.3
	$\gamma+2 S$	20.2	21 ± 4
$2^{3} P_{2}$	$\gamma+1 S$	5.3	7.1 ± 1.0
	$\gamma+2 S$	18.9	16.2 ± 2.4

$b b$	initial state node			
Transition	<1	1 to 2	2 to 3	total
$2 S \rightarrow 1 P$	0.07	-1.68		-1.61
$3 S \rightarrow 2 P$	0.04	-0.12	-2.43	-2.51
$3 S \rightarrow 1 P$	0.04	-0.63	0.65	0.06

- $\psi(3770)->1^{3} \mathrm{P}_{\mathrm{J}}$ transitions: Can study relativistic effects including coupling to decay channels.

	$\Gamma\left(\psi(3770) \rightarrow \gamma \chi_{c J}\right)$ in keV		
	$J=2$	$J=1$	$J=0$
Our results CLEO	<21	70 ± 17	172 ± 30
[PR D74 (2006) 031106]			
Rosner (non-relativistic) [7]	24 ± 4	73 ± 9	523 ± 12
Ding-Qin-Chao [6]			
non-relativistic	3.6	95	312
relativistic	3.0	72	199
Eichten-Lane-Quigg [8]			
non-relativistic	3.2	183	254
with coupled-channels corrections	3.9	59	225
Barnes-Godfrey-Swanson [9]			
non-relativistic	4.9	125	403
relativistic	3.3	77	213

- $\psi^{\prime}(2 S)$-> $1^{3} \mathrm{P}_{\mathrm{J}} \rightarrow \mathrm{J} / \Psi$ transitions: Can study size of higher multipole terms M2 and E3.

	$\chi_{c J} \rightarrow J / \psi+\gamma$		
J	theory	E 835	PDG
2	$a_{2} \approx-\frac{\sqrt{5}}{3} \frac{k}{4 m_{c}}\left(1+\kappa_{c}\right)$	$-0.093_{-0.041}^{+0.039} \pm 0.006$	-0.140 ± 0.006
2	$a_{3} \approx 0$	$0.020_{-0.044}^{+0.055} \pm 0.009$	$0.011_{-0.033}^{+0.041}$
1	$a_{2} \approx-\frac{k}{4 m_{c}}\left(1+\kappa_{c}\right)$	$0.002 \pm 0.032 \pm 0.004$	$-0.002_{-0.017}^{+0.008}$
J	$\psi^{\prime} \rightarrow \chi_{c J}+\gamma$ theory		
2	$a_{2} \approx-\frac{\sqrt{3}}{2 \sqrt{10}} \frac{k}{m_{c}}\left[\left(1+\kappa_{c}\right)\left(1+\frac{\sqrt{2}}{5} X\right)-i \frac{1}{5} X\right] /\left[1-\frac{1}{5 \sqrt{2}} X\right]$		
2	$a_{3} \approx-\frac{12 \sqrt{2}}{175} \frac{k}{m_{c}} X\left[1+\frac{3}{8} Y\right] /\left[1-\frac{1}{5 \sqrt{2}} X\right]$		
1	$a_{2} \approx-\frac{k}{4 m_{c}}\left[\left(1+\kappa_{c}\right)\left(1+\frac{2 \sqrt{2}}{5} X\right)+i \frac{3}{10} X\right] /\left[1+\frac{1}{\sqrt{2}} X\right]$		

M Model generally in good agreement with experiment

Table 4: Two pion transitions observed in the $c \bar{c}$ system.

Transition		$\begin{aligned} & \hline m_{\pi \pi}^{(\max)} \\ & (\mathrm{MeV}) \end{aligned}$	Branching Fraction (\%)	$\begin{array}{r} \hline \hline \text { Partial Width }{ }^{1} \\ (\mathrm{keV}) \end{array}$	$\Rightarrow\left\|C_{1}\right\|=8.87 \times 10^{-3}$
$\psi(2 S) \rightarrow J / \psi$	$\pi^{+} \pi^{-}$	589	$33.54 \pm 0.14 \pm 1.10$	113.0 ± 8.4	
$\psi(3770) \rightarrow J / \psi$	$\begin{aligned} & \pi^{0} \pi^{0} \\ & \pi^{+} \pi^{-} \\ & \pi^{0} \pi^{0} \end{aligned}$	676	$\begin{aligned} & (1.89 \pm 0.20 \pm 0.20) \times 10^{-1} \\ & (0.80 \pm 0.25 \pm 0.16) \times 10^{-1} \end{aligned}$	$\begin{array}{r} 55.7 \pm 4.1 \\ 43.5 \pm 11.5 \\ 184+08 \end{array}$	$\Rightarrow\left\|C_{2}\right\| /\left\|C_{1}\right\|=1.52^{+0.35}$

Table 5: Two pion transitions observed in the $b \bar{b}$ system.

Transition		$\begin{aligned} & \hline m_{\pi \pi}^{(\max)} \\ & (\mathrm{MeV}) \end{aligned}$	Branching Fraction (\%)	$\begin{array}{r} \hline \hline \text { Partial Width }{ }^{2} \\ (\mathrm{keV}) \\ \hline \end{array}$
$\Upsilon(2 S) \rightarrow \Upsilon(1 S)$	$\pi^{+} \pi^{-}$	563	18.8 ± 0.6	6.0 ± 0.5
	$\pi^{0} \pi^{0}$		9.0 ± 0.8	2.6 ± 0.2
$\Upsilon(3 S) \rightarrow \Upsilon(1 S)$	$\pi^{+} \pi^{-}$	895	4.48 ± 0.21	0.77 ± 0.06
	$\pi^{0} \pi^{0}$		2.06 ± 0.28	0.36 ± 0.06
$\Upsilon(3 S) \rightarrow \Upsilon(2 S)$	$\pi^{+} \pi^{-}$	332	2.8 ± 0.6	0.48 ± 0.12
	$\pi^{0} \pi^{0}$		2.00 ± 0.32	0.35 ± 0.07
$\Upsilon(4 S) \rightarrow \Upsilon(1 S)$	π^{+}	1120	$(0.90 \pm 0.15) \times 10^{-2}$	1.8 ± 0.4
$\Upsilon(4 S) \rightarrow \Upsilon(2 S)$	$\pi^{+} \pi^{-}$	557	$(0.83 \pm 0.16) \times 10^{-2}$	1.7 ± 0.5
$\chi_{b 2}(2 P) \rightarrow \chi_{b 2}(1 P)$	$\pi^{+} \pi^{-}$	356	$(6.0 \pm 2.1) \times 10^{-1}$	0.83 ± 0.32
$\chi_{b 1}(2 P) \rightarrow \chi_{b 1}(1 P)$	$\pi^{+} \pi^{-}$	363	$(8.6 \pm 3.1) \times 10^{-1}$	0.83 ± 0.32

Rescaled Kuang \&Yan model $\begin{aligned}\} & 9.4 \\ \} & 1.4 \\ \} & 0.6 \\ & \\ & 0.6 \\ & 0.6\end{aligned}$

Like the El case?

$\Delta \mathrm{n}=2$ overlap suppressed.

Predicted for $Y(3 S)->Y(1 S)$

Below lowest intermediate state threshold

$$
\sum_{n l} \frac{\left|\Psi_{n l}><\Psi_{n l}\right|}{E_{i}-E_{n l}} \sim \frac{1}{E_{i}-E_{\mathrm{string}}^{\mathrm{TH}}}+\cdots
$$

Hence transition rates fairly insensitive to intermediate states details

Transition	G $\left(\mathrm{GeV}^{7}\right)$	$\|<i\| r^{2} \mid f>$ $\left(\mathrm{GeV}^{-2}\right)$	$G<i\left\|r^{2}\right\| f>^{2}$ $\times 10^{2}$
$\psi(2 S) \rightarrow J / \psi$	3.56×10^{-2}	3.36	40.2
$\Upsilon(2 S) \rightarrow \Upsilon(1 S)$	2.87×10^{-2}	1.19	4.06
$\Upsilon(3 S) \rightarrow \Upsilon(1 S)$	1.09	2.37×10^{-1}	0.61
$\Upsilon(3 S) \rightarrow \Upsilon(2 S)$	9.09×10^{-5}	3.70	0.12
$\Upsilon(4 S) \rightarrow \Upsilon(1 S)$	5.58	9.74×10^{-2}	0.48
$\Upsilon(4 S) \rightarrow \Upsilon(2 S)$	2.61×10^{-2}	4.64×10^{-1}	0.56

Note the large variations in phase space and overlaps for the various Y states.

If leading <E1-E1> suppressed, can the <M1-M1> significant?

D Single hadron transitions

higher order <E1 M1>; <M1 M1>, <E1 M2>

$$
\mathrm{C}_{i} \mathrm{C}_{f}=-1 \quad+1
$$

$$
O(v) \quad O\left(v^{2}\right)
$$

symmetry
breaking:
$\pi ; \eta, \omega$
$\tilde{\pi}^{0}=\pi^{0}+\epsilon \eta+\epsilon^{\prime} \eta^{\prime}$

Transition		Branching Fraction ${ }^{3}$	Partial Width
$i \rightarrow f(\mathrm{keV})$			
$\psi(2 S) \rightarrow J / \psi$	η	$3.25 \pm 0.06 \pm 0.11$	11.0 ± 0.84
	π^{0}	$0.13 \pm 0.01 \pm 0.01$	0.44 ± 0.06
$\psi(2 S) \rightarrow h_{c}(1 P)$	π^{0}	$(1.0 \pm 0.2 \pm 0.18) \times 10^{-1}$	0.34 ± 0.10
$\psi(3770) \rightarrow J / \psi$	η	$(0.87 \pm 0.33 \pm 0.22) \times 10^{-1}$	20 ± 11

$\tilde{\eta}=\eta-\epsilon \pi^{0}+\theta \eta^{\prime}$
$\tilde{\eta}^{\prime}=\eta^{\prime}-\theta \eta-\epsilon^{\prime} \pi^{0}$,

Transition		Branching Fraction (\%)	Partial Width ${ }^{4}$$(\mathrm{keV})$
$i \rightarrow f+$	X		
$\Upsilon(2 S) \rightarrow \Upsilon(1 S)$	η	$(2.5 \pm 0.7 \pm 0.5) \times 10^{-2}$	$(7.2 \pm 2.3) \times 10^{-3}$
$\chi_{b 1}(2 P) \rightarrow \Upsilon(1 S)$	ω	$1.63 \pm 0.33 \pm 0.16$	1.56 ± 0.59
$\chi_{b 2}(2 P) \rightarrow \Upsilon(1 S)$	ω	$1.10 \pm 0.30 \pm 0.11$	1.52 ± 0.64

chiral effective theory:

$$
\epsilon=\frac{\left(m_{d}-m_{u}\right) \sqrt{3}}{4\left(m_{s}-\frac{m_{u}+m_{d}}{2}\right)}, \quad \epsilon^{\prime}=\frac{\tilde{\lambda}\left(m_{d}-m_{u}\right)}{\sqrt{2}\left(m_{\eta^{\prime}}^{2}-m_{\pi^{0}}^{2}\right)}, \quad \theta=\sqrt{\frac{2}{3}} \frac{\tilde{\lambda}\left(m_{s}-\frac{m_{u}+m_{d}}{2}\right)}{m_{\eta^{\prime}}^{2}-m_{\eta}^{2}}
$$

\square Hybrid states and Lattice QCD

$$
-\frac{1}{2 \mu} \frac{d^{2} u(r)}{d r^{2}}+\left\{\frac{\left\langle\boldsymbol{L}_{Q \bar{Q}}^{2}\right\rangle}{2 \mu r^{2}}+V_{Q \bar{Q}}(r)\right\} u(r)=E u(r)
$$

Spectroscopic notation of diatomic molecules

$$
\begin{aligned}
& P=\varepsilon(-1)^{L+\Lambda+1}, \quad C=\eta \varepsilon(-1)^{L+S+\Lambda} \\
& \Lambda=0,1,2, \ldots \text { denoted } \Sigma, \Pi, \Delta, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \Psi_{Q \bar{Q}}(\vec{r})=\frac{u_{n l}(r)}{r} \mathrm{Y}_{\operatorname{lm}}(\theta, \phi) \\
& \boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}, \quad \boldsymbol{S}=\boldsymbol{s}_{Q}+\boldsymbol{s}_{\bar{Q}}, \quad \boldsymbol{L}=\boldsymbol{L}_{Q \bar{Q}}+\boldsymbol{J}_{\varepsilon} \\
& \left\langle L_{r} J_{g r}\right\rangle=\left\langle J_{\Omega_{r}}^{2}\right\rangle=\Lambda^{2} \\
& \left\langle\boldsymbol{L}_{Q \bar{Q}}^{2}\right\rangle=L(L+1)-2 \Lambda^{2}+\left\langle\boldsymbol{J}_{g}^{2}\right\rangle . \\
& \left\langle J_{g}^{2}\right\rangle=0,2,6, \ldots
\end{aligned}
$$

naively $0,1,2, \ldots$ valence gluons
$\eta= \pm 1$ (symmetry under combined charge conjugation and spatial inversion) denoted $g(+1)$ or $u(-1)$.
$|L S J M ; \lambda \eta\rangle+\varepsilon|L S J M ;-\lambda \eta\rangle$ with $\varepsilon=+1$ for Σ^{+}and $\varepsilon=-1$ for Σ^{-} both signs for $\Lambda>0$.
D Potentials computed by lattice QCD
K.J. Juge, J. Kuti and C. Morningstar [PRL 90, 161601 (2003)]

Short distance: gluelumps Perturbative QCD, pNRQCD singlet: $-4 / 3 \alpha_{s} / r$ octet : $2 / 3 \alpha_{s} / r$

Large distance: String
$\sigma r+\pi N / r$
Nambu-Gato string behavour

FIG. 2: Short-distance degeneracies and crossover in the spectrum. The solid curves are only shown for visualization. The dashed line marks a lower bound for the onset of mixing effects with glueball states which requires careful interpreta-

O Non DD decays of the $\psi(3770)$

-X J/ Ψ

Theory expectation for $\pi^{+} \pi^{-} J / \Psi: 0.1-0.7 \%$

$\psi^{\prime \prime} \rightarrow \pi^{+} \pi^{-} J / \psi$	$0.34 \pm 0.14 \pm 0.09$	BES
	$0.189 \pm 0.020 \pm 0.020$	CLEO
$\psi^{\prime \prime} \rightarrow \pi^{0} \pi^{0} J / \psi$	$0.080 \pm 0.025 \pm 0.016$	CLEO
$\psi^{\prime \prime} \rightarrow \eta^{0} J / \psi$	$0.087 \pm 0.033 \pm 0.022$	CLEO

- $\mathrm{YX}_{\mathrm{CJ}}$

Good agreement with theory expectations including relativistic effects

Mode	$\begin{gathered} \hline \hline E_{\gamma}(\mathrm{MeV}) \\ {[55]} \\ \hline \end{gathered}$	Predicted (keV)					$\begin{gathered} \hline \hline \text { CLEO (keV) } \\ {[136]} \end{gathered}$
		(a)	(b)	(c)	(d)	(e)	
$\chi^{\prime} \chi_{c 2}$	208.8	3.2	3.9	4.9	3.3	24 ± 4	<21
$\gamma \chi_{c 1}$	251.4	183	59	125	77	73 ± 9	70 ± 17
$\gamma \chi_{c 0}$	339.5	254	225	403	213	523 ± 12	172 ± 30

-light hadrons

No evidence for direct decays
to light hadrons seen yet.
Puzzle of missing decays

$$
\begin{aligned}
& \sigma_{\psi(3770)}=6.38 \pm 0.08_{-0.30}^{+0.41} \mathrm{nb} \\
& \sigma_{\psi(3770)}-\sigma_{\psi(3770) \rightarrow D \bar{D}}=-0.01 \pm 0.08_{-0.30}^{+0.41} \mathrm{nb} \text { CLEO } \\
& \sigma_{\psi(3770)}=7.25 \pm 0.27 \pm 0.34 \mathrm{nb} \text { BES }
\end{aligned}
$$

No evidence of unexpected rates for non DD decays

Decay Mode	$\sigma_{\psi(3770) \rightarrow f}$ $\quad$$\sigma_{p b}$	up $\psi(3770) \rightarrow f$ $[\mathrm{pb}]$	$\mathcal{B}_{\psi(3770) \rightarrow f}^{\text {up }}$ $\left[\times 10^{-3}\right]$
$\phi \pi^{0}$	$<12.5^{t n}$	<3.5	<0.5
$\phi \eta$	$7.4 \pm 15.0 \pm 2.8 \pm 0.8$	<32.5	<4.8
$2\left(\pi^{+} \pi^{-}\right)$	<12.6	<1.9	
$K^{+} K^{-} \pi^{+} \pi^{-}$	$-19.6 \pm 19.6 \pm 3.3 \pm 2.1^{z}$	<32.7	<4.8
$\phi \pi^{+} \pi^{-}$	$<11.1^{t n}$	<11.1	<1.6
$2\left(K^{+} K^{-}\right)$	$-2.7 \pm 7.1 \pm 0.5 \pm 0.3^{z}$	<11.6	<1.7
$\phi K^{+} K^{-}$	$-0.5 \pm 10.0 \pm 0.9 \pm 0.1^{z}$	<16.5	<2.4
$p \bar{p} \pi^{+} \pi^{-}$	$-6.2 \pm 6.6 \pm 0.6 \pm 0.7^{z}$	<11.0	<1.6
$p \bar{p} K^{+} K^{-}$	$1.4 \pm 3.5 \pm 0.1 \pm 0.2$	<7.2	<1.1
$\phi p \bar{p}$	$<5.8^{t n}$	<5.8	<0.9
$3\left(\pi^{+} \pi^{-}\right)$	$16.9 \pm 26.7 \pm 5.5 \pm 2.4$	<61.7	<9.1
$2\left(\pi^{+} \pi^{-}\right) \eta$	$72.7 \pm 55.0 \pm 7.3 \pm 8.2$	<164.7	<24.3
$2\left(\pi^{+} \pi^{-}\right) \pi^{0}$	$-35.4 \pm 24.6 \pm 6.6 \pm 4.0^{z}$	<42.3	<6.2
$K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$	$-36.9 \pm 43.8 \pm 12.8 \pm 4.2^{z}$	<75.2	<11.1
$2\left(K^{+} K^{-}\right) \pi^{0}$	$18.1 \pm 7.7 \pm 0.7 \pm 2.0^{n}$	<31.2	<4.6
$p \bar{p} \pi^{0}$	$1.5 \pm 3.9 \pm 0.5 \pm 0.1$	<7.9	<1.2
$p \bar{p} \pi^{+} \pi^{-} \pi^{0}$	$26.0 \pm 13.9 \pm 2.6 \pm 3.2$	<49.7	<7.3
$3\left(\pi^{+} \pi^{-}\right) \pi^{0}$	$-12.7 \pm 55.9 \pm 8.7 \pm 1.8^{z}$	<92.8	<13.7

BES [hep-ex/0705.2276]

