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 The NRQCD approach:

Narrow States Below Threshold
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Consistency between       and      systems 
validates NRQCD approach.

• masses
• spin splittings
• EM transitions
• hadronic transitions
• direct decays
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 Below threshold for heavy flavor 
meson pair production

Narrow states allow precise 
experimental probes of the subtle 
nature of QCD.
Lattice QCD supports and will 
supplant potential models
A variety of lattice approaches
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Update on onium masses with three flavors of dynamical quarks Steven Gottlieb

Figure 3: Splitting between the hc(1P) and spin-
averaged 1S states.

Figure 4: Hyperfine splitting of the 1S states.

Figure 5: Summary of charmonium spectrum.

The !c2(1P) has only been studied on two ensembles so far. We have new results on one fine

ensemble. In Fig. 5, we summarize the results for all the states studied. Except for the !c2(1P),

we plot results from our linear chiral extrapolation for each lattice spacing. For the ground states,

if we focus our attention on the diamonds representing our smallest lattice spacing, we find the

most serious discrepancy between our results and experiment is for the !c1. We have seen that

our linear chiral extrapolation may be the culprit here, as the two more chiral ensembles are in

good agreement with the experimental value. The S wave first excited states are not that well

determined, but are rather heavy compared to the observed values. We have seen that on the finest

lattice spacing, the high slope of the chiral extrapolation is accentuating the difference between our

calculation and observations. Furthermore, the observed states are quite close to the DD̄ threshold,

which makes these states harder to calculate on the lattice without careful attention to finite volume

effects. Thus, we are not seriously concerned about the high masses we are seeing for the 2S states.
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QCD Static Energy

 Lattice calculation of the 
QCD static energy 
between QQ versus R.

 Agrees with potential 
models. 

 Masses of low-lying 
states directly calculable 
by LQCD.

 Excitation of gluonic 
degrees of freedom 
(string) also calculable.
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Fig. 3.6: The singlet static energy (quenched and unquenched data) from Ref. [51], see also [143]

2.3.3 The QCD static spectrum and mechanism of confinement18

The spectrum of gluons in the presence of a static quark–antiquark pair has been extensively studied with

high precision using lattice simulations. Such studies involve the calculation of large sets of Wilson loops

with a variety of different spatial paths. Projections onto states of definite symmetries are done, and the

resulting energies are related to the static quark–antiquark potential and the static hybrids potentials. With

accurate results, such calculations provide an ideal testing ground for models of the QCD confinement

mechanism.

The singlet static energy

The singlet static energy is the singlet static potential V (0)
s .

In the plot3.6, we report simulation results both with and without light quark–antiquark pair cre-

ation. Such pair creation only slightly modifies the energies for separations below 1 fm, but dramatically

affects the results around 1.2 fm, at a distance which is too large with respect to the typical heavy quarko-

nium radius to be relevant for heavy quarkonium spectroscopy. At finite temperature, the so-called string

breaking occurs at a smaller distance (cf. corresponding Section in Chapter 7,Media).

One can study possible nonperturbative effects in the static potential at short distances. As it has

already been mentioned in the ”static QCD potential” subsection, the proper treatment of the renormalon

effects has made possible the agreement of perturbation theory with lattice simulations (and potential

models) [78,88–92]. Here we would like to quantify this agreement assigning errors to this comparison.

In particular, we would like to discern whether a linear potential with the usual slope could be added to

perturbation theory. In order to do so we follow here the analysis of Ref. [90, 144], where the potential

is computed within perturbation theory in the Renormalon Subtracted scheme defined in Ref. [81]. The

comparison with lattice simulations [145] in Fig. 3.7 shows that nonperturbative effects should be small

and compatible with zero, since perturbation theory is able to explain lattice data within errors. The

systematic and statistical errors of the lattice points are very small (smaller than the size of the points).

Therefore, the main sources of uncertainty of our (perturbative) evaluation come from the uncertainty in

the value of ΛMS (±0.48 r−1
0 ) obtained from the lattice [146] and from the uncertainty in higher orders

in perturbation theory. We show our results in Fig. 3.7. The inner band reflects the uncertainty in ΛMS
whereas the outer band is meant to estimate the uncertainty due to higher orders in perturbation theory.

We estimate the error due to perturbation theory by the difference between the NNLO and NNNLO

evaluation. The usual confining potential, δV = σr, goes with a slope σ = 0.21GeV2. In lattice units

18Authors: N. Brambilla, C. Morningstar, A. Pineda
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Heavy quark potential To O(1/m2)
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pNRQCD ←− Effective theory for the study of heavy quarkonium systems

Brambilla et al.

Y. Koma, M. Koma and H. Wittig
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Short range

Long range component

 Lattice QCD calculation of the spin-dependent 
relativistic corrections. 
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Fig. 8. Spin-orbit potential V ′
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Fig. 9. Spin-orbit potential V ′
2(r) at β = 6.0 and β = 6.3. The dotted line is the fit

curve Eq. (3.8), applied to the data of β = 6.0.

We start our discussion with the spin-orbit potentials V ′
1(r) and V ′

2(r).
For V ′

1(r), we find that the potential is negative and almost constant at r !
0.25 fm (see Fig. 8). This behavior clearly contradicts Eq. (3.9) and suggests
the existence of the Lorentz-scalar piece in the interaction kernel in terms
of the BS equation. Our data at β = 6.3 suggest that one cannot exclude a
deviation from a constant at small distances, an observation which was also
made by Bali et al. [29,30]. For V ′

2(r), we see a decreasing behavior with r (see
Fig. 9), which is not restricted to the short range, but rather seems to have a
finite tail up to intermediate distances.

Before discussing the functional form of V ′
1(r) and V ′

2(r) quantitatively, we
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Fig. 13. Spin-spin potential V4(r) at β = 6.0 and β = 6.3. The dotted line is the fit
curve Eq. (3.12), applied to the data of β = 6.0.

V3(r) (see Fig. 12) if the ansatz motivated by one-gluon-exchange in Eq. (3.9)
is appropriate. The fit to this function yields the coefficient c = 0.214(2) with
χ2

min/Ndf = 3.7. This value of χ2
min/Ndf is relatively large and the result for c

is 28 % smaller than the Coulombic coefficient in V ′
0(r). A better fit can be

achieved using an ansatz in which the power of 1/r is left as a free parameter,
i.e.

V3;fit(r) =
3c′

rp
. (3.11)
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V3(r) (see Fig. 12) if the ansatz motivated by one-gluon-exchange in Eq. (3.9)
is appropriate. The fit to this function yields the coefficient c = 0.214(2) with
χ2

min/Ndf = 3.7. This value of χ2
min/Ndf is relatively large and the result for c

is 28 % smaller than the Coulombic coefficient in V ′
0(r). A better fit can be

achieved using an ansatz in which the power of 1/r is left as a free parameter,
i.e.

V3;fit(r) =
3c′

rp
. (3.11)
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Spin Singlet States
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 hc    

Observation  CLEOc,     
NEW - BESIII 

Partial widths and decay 
modes: 

Spin -dependent forces:

To summarize, we have observed the hc state, the 1P1
state of charmonium, in the reaction  !2S" ! !0hc, hc !
"#c, in exclusive and inclusive analyses. The significance
of our observation is greater than 5$ under a variety of
methods to evaluate this quantity. We combine the results
of the exclusive and inclusive analyses to obtain M!hc" #
3524:4$ 0:6$ 0:4 MeV and B! !2S" ! !0hc" %
B!hc ! "#c" # !4:0 $ 0:8 $ 0:7" % 10&4. The fol-
lowing value is obtained for the hyperfine splitting:

!Mhf!hM!3PJ"i&M!1P1"" # '1:0$ 0:6$ 0:4 MeV:

Thus, the combined result for M!hc" is consistent with the
spin-weighted average of the %cJ states and with the (non-
relativstic) bound [18] !Mhf ( 0.

We gratefully acknowledge the effort of the CESR
staff in providing us with excellent luminosity and
running conditions. This work was supported by the
National Science Foundation and the U.S. Department of
Energy.
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TABLE II. Summary of estimated systematic uncertainties and their sums in quadrature.

Systematic Uncertainty M!hc" (MeV) B Bh % 104

Inclusive Exclusive Inclusive Exclusive

Number of  !2S" 0.1
B! !2S" ! "#c" 0.8
Background shape 0.3 0.2 0.2 0.3
!0 energy scale 0.2 0.2 )0 0.1
Signal shape 0.1 0.1 0.3 0.2
hc width 0.1 0.1 0.3 0.2
!0 efficiency )0 )0 0.1 0.3
Photon efficiency )0 )0 0.2 0.2
Binning, fitting range 0.1 0.1 0.3 0.2
Modeling of hc decays 0.1 0.3 0.3 )0
#c mass 0.1 0.2 0.1 0.1
#c width )0 )0 0.2 0.1
#c branching ratios )0 0.1
Sum in quadrature $0:4 $0:5 $0:7 $1:0
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Over the past 30 years charmonium spectroscopy has
provided valuable insight into the quark-antiquark interac-
tion of quantum chromodynamics (QCD). QCD-based po-
tential models have been quite successful in predicting
masses, widths, and dominant decays of several charmo-
nium states. The central potential in most of these calcu-
lations is assumed to be composed of a vector Coulombic
potential (!1=r) and a scalar confining potential (!r).
Under these assumptions, the spin-spin interaction in the
lowest order is finite only for L " 0 states. It leads to the
hyperfine splittings !Mhf#nS$ % M#n3S1$ &M#n1S0$ be-
tween spin-triplet and spin-singlet S-wave states of char-
monium, which have been measured as !Mhf#1S$ "
M#J= $ & M#!c$ " 115 ' 2 MeV [1], !Mhf#2S$ "
M! #2S$" & M#!0

c$ " 48 ' 5 MeV [1,2]. It also
leads to the prediction that the hyperfine splitting
!Mhf!hM#3PJ$i&M#1P1$" for P-wave states should be
zero. Higher-order corrections are expected to provide no
more than a few-MeV deviation from this result [3–5].
Lattice QCD calculations [6] predict !Mhf#1P$ " (1:5 to
(3:7 MeV, but with uncertainties at the few-MeV level.
Larger values of !Mhf#1P$ could result if the confinement
potential had a vector component or if coupled channel
effects were important. In order to discriminate between
these possibilities, it is necessary to identify the hc#1P1$
state and to measure its mass to O#1 MeV$ as the mass of
the 3PJ centroid is very well known, hM#3PJ$i "
3525:36' 0:06 MeV [7].

In this Letter we report the successful identification of hc
in the isospin-violating reaction

e(e& !  #2S$!"0hc; hc ! #!c; "0 ! ##: (1)

Two methods are used: one in which the !c decays are
reconstructed (exclusive), which has an advantage in sig-
nal purity, and the other in which the !c is measured
inclusively, which has larger signal yield. Together these
approaches provide a result of unambiguous significance,
and allow a precise determination of the mass of hc and
the branching fraction product B Bh, where B %
B! #2S$ ! "0hc" and Bh % B#hc ! #!c$. Theoretical
estimates of the product B Bh vary by nearly 2 orders
of magnitude, #0:5–40$ ) 10&4 [4,5].

The Crystal Ball Collaboration at SLAC searched for hc
using the reaction of Eq. (1) but were only able to set a 95%
confidence upper limit B Bh < 16) 10&4 in the mass
range M#hc$ " #3515–3535$ MeV [8]. The FNAL E760
Collaboration searched for hc in the reaction p "p! hc !
"0J= , J= ! e(e&, and reported a statistically signifi-
cant enhancement with M#hc$ " 3526:2' 0:15'
0:2 MeV, ##hc$ * 1:1 MeV [9]. The measurement was
repeated twice by the successor experiment E835 with
!2) and !3) larger luminosity, but no confirming signal
for hc was observed in hc ! "0J= decay [5].

A data sample consisting of 3:08) 106  #2S$ decays
was obtained with the CLEO III and CLEO-c detector

configurations [10–13] at the Cornell Electron Storage
Ring. The CLEO III detector features a solid angle cover-
age for charged and neutral particles of 93%. The charged
particle tracking system achieves a momentum resolution
of !0:6% at 1 GeV, and the calorimeter photon energy
resolution is 2.2% for E# " 1 GeV and 5% at 100 MeV.
Two particle identification systems, one based on energy
loss (dE=dx) in the drift chamber and the other a ring
imaging Cherenkov (RICH) detector, are used to distin-
guish pions from kaons.

Half of the  #2S$ data were accumulated with a newer
detector configuration, CLEO-c [13], in which the silicon
strip vertex detector was replaced with an all-stereo six-
layer wire chamber. The two detector configurations also
correspond to different accelerator lattices. Studies of
Monte Carlo simulations and the data reveal no significant
differences in the capabilities of the two detector configu-
rations; therefore the CLEO III and CLEO-c datasets are
analyzed together.

The inclusive and exclusive analyses share a com-
mon initial sample of events and numerous selection cri-
teria. Details of the analyses are provided in a companion
paper [14]. Event selection for both analyses requires at
least three electromagnetic showers and two charged
tracks, each selected with standard CLEO criteria. For
showers, E# > 30 MeV is required. Candidates for ##
decays of "0 or ! mesons satisfy the requirement that
M###$ be within 3 standard deviations ($) of the known
"0 or ! mass, respectively. These candidates are kinemati-
cally fit, constraining M###$ to the appropriate mass to
improve "0=! energy resolution. Charged tracks are re-
quired to have well-measured momenta and to satisfy
criteria based on the track fit quality. They must also be
consistent with originating from the interaction point in
three dimensions.

Both techniques identify hc as an enhancement in the
spectrum of neutral pions from the reaction  #2S$ ! "0hc
[15]. For this purpose, it is useful to remove neutral pions
originating from any other reaction. It is easy to remove
most of the "0 arising from  #2S$ ! "("&J= , with
J= ! "0 ( hadrons and "0"0J= , with J= ! any.
The recoil spectra against M#"("&$ (both analyses) and
M#"0"0$ (inclusive only) show prominent peaks for J= ;
these events are removed by appropriate selection around
M#J= $.

In the exclusive analysis, !c are reconstructed in
seven channels: K0

SK
'"+, K0

LK
'"+, K(K&"("&,

"("&"("&, K(K&"0, "("&!#! ##$, and
"("&!#! "("&"0$. The sum of the branching fractions
is #9:7' 2:7$% [7]. The decay chain in Eq. (1) as well as
these !c decays are identified from reconstructed charged
particles, "0 and ! mesons. For ! decays to "("&"0, the
three-pion invariant mass is required to be within 20 MeV
of the nominal ! mass. The K0

S candidates are selected
from pairs of oppositely charged and vertex-constrained
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Figure 1. Comparison of the measured and
predicted 13Pcog − 11P1(cc̄) mass splitting.
The horizontal lines show the 1-sigma bounds
using the CLEO hc mass measurement [2].
The theoretical predictions correspond to:
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In quark potential models the 1-gluon-exchange spin-spin interaction is described by:

Hhyp
qq̄ =

32π

9

αs

mqmq̄

#Sq · #Sq̄ δ3(#r) (1)

The δ-function is short range but will be smeared out by relativistic effects. The Godfrey-Isgur
quark model [10] smeares the δ-function with a Gaussian and predicts M(3Pcog) > M(1P1).
In contrast, McClary and Byers [11] include spin-independent relativistic corrections and find
M(3Pcog) < M(1P1). Finally, Franzini [12] includes a Lorentz vector confining potential and
finds M(3Pcog) < M(1P1) with a large splitting.

Pantaleone and Tye [13] calculated the splitting using perturbative QCD and also found a
small splitting with M(3Pcog) < M(1P1) but noted that other contributions such as relativisitic
corrections and coupled channel effects could alter this result. Lattice QCD finds M(3Pcog) >
M(1P1) but with large errors [14]. Ultimately LQCD will provide the definetive result but more
precise results are needed.

The point of these examples is that there is a wide variation in the predictions. There is a
strong need for experimental data to test these results.

3. Production of Singlet P -wave States
There are a number of ways to produce and detect the singlet P -wave states. The hc was
recently observed in the reaction ψ′ → π0hc → (γγ)(γηc) by the CLEO collaboration [2]
and a less convincing signal was seen in p̄p → hc → ηcγ by E835 at FNAL [3]. It has been
suggested that the singlet P -waves states could also be produced in the radiative cascades

n3S1

M1
→ n′1S0 + γ

E1
→ (11P1) + γγ [5] and in B-meson decay, B → hc + X [6, 7, 8, 9].

In all cases the radiative decay hc,b → ηc,b + γ results in a clean final state. To estimate the
BR requires knowing all important partial decay widths. The E1 width for the hc is given by

 Confirms the short range nature of spin-spin 
and tensor potentials.  Phenomenological models 

which closely follow pert QCD are best.  

Part of BESIII data

BESIII preliminary

CLEOc: 25M

BES confirms the CLEOc

observation, will improve the

precisions of the measurements.

!(2S) "#0 hc
 ; hc " $%c

Briere 
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✦ Basics  

✦ pNRQCD

✦ LQCD  

✦ J/ψ -> γ + ηc   M1 transition

 ηc

M1 transition was a theoretical disaster 

TABLE I: Experimental results for E1 transitions n3S1 to m3PJ . The S state widths (in keV) used

are: Γ(Ψ(2S)) = 337± 13, Γ(Υ(2S)) = 29.0± 1.6 and Γ(Υ(3S) = 20.3± 2.1 .

Transition k BR Rate |Eif |

i
E1−→ f ( MeV) % ( keV) ( GeV−1)

cc̄

23S1 13P2 127 9.33± 0.14± 0.61 31.4± 2.5 2.53± 0.10

23S1 13P1 171 9.07± 0.11± 0.54 30.6± 2.3 2.06± 0.08

23S1 13P0 261 9.22± 0.11± 0.46 31.1± 2.1 1.91± 0.06

bb̄

23S1 13P2 110.6 7.24± 0.11± 0.40 2.10± 0.17 1.61± 0.06

23S1 13P1 129.6 6.93± 0.12± 0.41 2.01± 0.17 1.60± 0.07

23S1 13P0 162.6 3.75± 0.12± 0.47 1.09± 0.15 1.45± 0.10

33S1 23P2 86.0 15.79± 0.17± 0.73 3.21± 0.37 2.90± 0.16

33S1 23P1 99.2 14.54± 0.18± 0.73 2.95± 0.34 2.90± 0.16

33S1 23P0 121.6 6.77± 0.20± 0.65 1.37± 0.20 2.52± 0.17

33S1 13P0 483 0.30± 0.04± 0.10 0.061± 0.023 0.067± 0.011

where eQ is the quark charge, k is the photon energy, the statistical factor SE
if = SE

fi is

SE
if = max (Li, Lf )
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k = 0 : Mif = 1 ni = nf ; Li = Lf

= 0 otherwise

Dudek, Edwards, Richards 
[PR D73:074507 (2007)]

  Brambilla, Jia & Vairo 
[PR D73:054005 (2006)]

 Model independent - completely accessible by perturbation theory to o(v2)

No large anomalous magnetic moment 
No scalar long range interaction 

A. Model predictions

Using the same (NR) model as used for the E1 transitions ( A nonrelativistic treatment

except for finite size corrections and κQ = 0) the M1 transition rates and overlap matrix

elementsM for c̄c and b̄b S state systems is shown in Table III

Numerous papers have considered these M1 transitions including full relativistic correc-

tions[? ? ? ? ? ? ? ].

The considerations for M1 transitions is particularly complicated. In addition to the

usual issues associated with the form of the long range potential there is the unknown

value for the anomalous magnetic moment for the quark (κQ). Furthermore, the results are

dependent explicitly on the quark mass and other details of the potential. (See Eqs. ??.)

For the models (RA) and (RB) used Eventually these uncertainties will be reduced by lattice

calculations of the J/ψ to ηc transition rate.

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

(1 + κc)[1 + o(v2)] (7)

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

[
1 + CF

αs(Mj/ψ/2)

π
+

2

3
(CF αs(pJ/ψ))2

]
(8)

B. Comparison with experiment

C. Comparison with experiment

M1 transitions have only been observed in the c̄c system. The allowed transitions in the

c̄c system below threshold are shown in Fig. 1. The transitions within the 1P system are

tiny (≈ 1 eV). Only the J/ψ → ηc and ψ ′ → ηc are observed experimentally [? ].

For the b̄b system CLEO [? ] sees no evidence for the hindered M1 transition Υ(3S) →

ηb(1S). The 90% cl upper bound on the branching ratio varies from 4−6×10−4 depending on

the mass splitting. For the expected splitting ≈ 910MeV the bound is 5.3× 10−4[? ]. This

rules out a number of older models[? ? ]. A comparision of the experiment results with a

variety of more modern models is shown in Table IV. For each model the assumptions for the

mixture of scalar and vector confinement and the value of κQ is exhibited explicitly. For the

model of Lahde[? ] the results are also shown without including the exchange term (NEX).

7

1.19± 0.33 keV

J/ψ → ηcγ

Up to order v2 the transition J/ψ → ηcγ is completely accessible by perturbation theory.

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

»

1 + CF
αs(MJ/ψ/2)

π
−

2

3
(CF αs(pJ/ψ))2

–

The normalization scale for the αs inherited from κc is the charm mass

(αs(MJ/ψ/2) ≈ 0.35 ∼ v2), and for the αs, which comes from the Coulomb potential, is

the typical momentum transfer pJ/ψ ≈ mCF αs(pJ/ψ)/2 ≈ 0.8 GeV ∼ mv.

Γ(J/ψ → ηcγ) = (1.5 ± 1.0) keV.

 Exp 
[Crystal Ball]

j0 = 1 - (kr)2/24 + ..., so in NR limit

7

half the expected theoretical result
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FIG. 1: Fits to the photon spectrum in exclusive J/ψ → γηc decays using Breit-Wigner (dotted)
and modified (solid) signal line shapes convolved with a 4.8 MeV wide resolution function. Total

background is given by the dashed line. The dot-dashed curves indicate two major background
components described in the text.

Fig. 3a. Several small nonlinear backgrounds below 560 MeV are apparent and are due
to a combination of (i) ψ(2S) → π0hc; hc → γηc; (ii) ψ(2S) → γχcJ ; χcJ → γJ/ψ; and
(iii) ψ(2S) → π0J/ψ. Based on detailed MC studies, all other backgrounds are linear, the
largest being ψ(2S) → π0Xi.

Fits to the ψ(2S) → γηc photon energy spectrum with a Breit-Wigner convolved with an
experimental resolution function (with a resolution of 5.1MeV after the kinematic fit) were
unsuccessful. For a hindered M1 transition the matrix element acquires terms proportional
to E2

γ , which, when combined with the usual E3
γ term for the allowed transitions, lead to

contributions in the radiative width proportional to E7
γ [2]. We find that if we assume a

linear background, as indicated by MC simulations, we are not able to obtain a good fit to
our Eγ spectrum for the sum of exclusive ψ(2S) → γηc modes with a pure E7

γ dependence.
We therefore use the empirical procedure described below to extract the ψ(2S) → γηc yield.

Extensive cross-checks have been performed to prove that the line shape asymmetry is
not an experimental artifact. Events selected without the aid of a kinematic fit indicate
an asymmetric line shape independently in both the photon energy and the hadronic mass.
The asymmetric line shape is not correlated with ηc decay modes that include π0, K0

S, or
η candidates. No indication of either asymmetry or peaking background has been found in
detailed MC studies, where all known decays in the charmonium and light quark systems
are simulated and unknown decays are modeled with the EvtGen generator [7]. The photon

5

CLEO measurement solves the issue

Mass splittings  

P
o
S
(
L
A
T
2
0
0
6
)
1
7
5

Update on onium masses with three flavors of dynamical quarks Steven Gottlieb

Figure 3: Splitting between the hc(1P) and spin-
averaged 1S states.

Figure 4: Hyperfine splitting of the 1S states.

Figure 5: Summary of charmonium spectrum.

The !c2(1P) has only been studied on two ensembles so far. We have new results on one fine

ensemble. In Fig. 5, we summarize the results for all the states studied. Except for the !c2(1P),

we plot results from our linear chiral extrapolation for each lattice spacing. For the ground states,

if we focus our attention on the diamonds representing our smallest lattice spacing, we find the

most serious discrepancy between our results and experiment is for the !c1. We have seen that

our linear chiral extrapolation may be the culprit here, as the two more chiral ensembles are in

good agreement with the experimental value. The S wave first excited states are not that well

determined, but are rather heavy compared to the observed values. We have seen that on the finest

lattice spacing, the high slope of the chiral extrapolation is accentuating the difference between our

calculation and observations. Furthermore, the observed states are quite close to the DD̄ threshold,

which makes these states harder to calculate on the lattice without careful attention to finite volume

effects. Thus, we are not seriously concerned about the high masses we are seeing for the 2S states.

4

 Breit-Wigner
Theory 

 long tail
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 ηc’:

Spin splitting   

Effects of light quark loops significant 

 Too small - scaling from 1S; most models.
Are we seeing threshold effects?

 Effects on spectrum 
 seen in LQCD
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Figure 13. Radial and orbital splittings in the Υ spectrum from lattice QCD in the

quenched approximation and including a realistic light quark vacuum polarisation. In

these plots the b quark mass was fixed from the Υ mass and the lattice spacing from

the splitting between the Υ′ and the Υ. Neither of these masses is predicted. (Top) The
spectrum of S, P andD levels in theΥ system obtained from coarse (filled red triangles)

and fine (open black triangles) quenched lattice calculations and from coarse (filled red

squares) and fine (open black squares) unquenched calculations. Experimental results

are shown as lines. (Bottom) Results for different splittings as a function of light u/d
quark mass. The leftmost points, at lightest u/d quark mass, are the ones included in the
top plot for the unquenched results. (Gray et al. 2003)

momentum transfer inside an Υ is larger than any of the u, d, or s masses and so we

expect these splittings simply to ‘count’ the presence of the light quarks. This lack of

variation with light quark mass is evident in Figure 13.

C. T. H. Davies et al. [HPQCD, Fermilab Lattice, MILC, 
and UKQCD Collaborations], PRL 92, 022001 (2004)  
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⇒

5

threshold region occupies our interest in this study. How-
ever, analogous effects are present in the bb̄ states near
BB̄ threshold and cb̄ states near DB threshold. A de-
tailed comparison of different heavy-quark systems could
provide valuable insight into the correct form for the cou-
pling to light-quark pairs.

The C3 formalism generalizes the cc̄ model without in-
troducing new parameters, writing the interaction Hamil-
tonian in second-quantized form as

HI = 3
8

∑8
a=1

∫

: ρa(r)V (r − r′)ρa(r′) : d3r d3r′ , (2)

where V is the charmonium potential and ρa(r) =
1
2
ψ†(r)λaψ(r) is the color current density, with ψ the

quark field operator and λa the octet of SU(3) matrices.
To generate the relevant interactions, ψ is expanded in
creation and annihilation operators (for charm, up, down,
and strange quarks), but transitions from two mesons to
three mesons and all transitions that violate the Zweig
rule are omitted. It is a good approximation to neglect all
effects of the Coulomb piece of the potential in (2). This
simple model for the coupling of charmonium to charmed-
meson decay channels gives a qualitative understanding
of the structures observed above threshold while preserv-
ing the successes of the single-channel cc̄ analysis below
threshold [58, 59].

A. Mass Shifts

In the presence of coupling to two-light-quark decay
channels, the mass ω of the quarkonium state Ψ is defined
by the eigenvalue equation

[H0 + H2 + HI ]Ψ = ωΨ. (3)

Above the flavor threshold, ω is a complex eigenvalue.
The basic coupled-channel interaction HI given by

(2) is independent of the heavy quark’s spin, but the
hyperfine splittings of D and D∗, Ds and D∗

s , induce
spin-dependent forces that affect the charmonium states.
These spin-dependent forces give rise to S-D mixing that
contributes to the electronic widths of 3D1 states and in-
duces additional spin splitting among the physical states.

The masses that result from the full coupled-channel
analysis are shown in the second column of Table II,
which revises and extends our previously published re-
sults [8]. The new version presented here includes the
3S levels and takes account of Belle’s evidence [14] for
Z(3930), interpreted as a 23P2 state (cf. §II E 3). As
in our earlier analysis, the parameters of the potential-
model sector governed by H0 must be readjusted to fit
the physical masses, ω, to the observed experimental val-
ues. The centroids of the 1D and 2P spin-triplet masses
are pegged to the observed masses of 13D1 ψ(3770) and
23P2 (Z(3930)), respectively. The assumed spin split-
tings in the single-channel potential model are shown in
the penultimate column and the induced coupled-channel
spin splittings for initially unsplit multiplets are pre-
sented in the rightmost column of Table II. The shifts

TABLE II: Charmonium spectrum, including the influence
of open-charm channels. All masses are in MeV. The penul-
timate column holds an estimate of the spin splitting due
to tensor and spin-orbit forces in a single-channel potential
model. The last column gives the spin splitting induced by
communication with open-charm states, for an initially un-
split multiplet.

State Mass Centroid
Splitting

(Potential)
Splitting
(Induced)

11S0

13S1

2 979.9a

3 096.9a 3 067.6b −90.5e

+30.2e
+2.8
−0.9

13P0

13P1

11P1

13P2

3 415.3a

3 510.5a

3 524.4f

3 556.2a

3 525.3c

−114.9e

−11.6e

+0.6e

+31.9e

+5.9
−2.0
+0.5
−0.3

21S0

23S1

3 638a

3 686.0a 3 674b −50.1e

+16.7e
+15.7
−5.2

13D1

13D2

11D2

13D3

3 769.9a

3 830.6
3 838.0
3 868.3

(3 815)d

−40
0
0

+20

−39.9
−2.7
+4.2
+19.0

23P0

23P1

21P1

23P2

3 881.4
3 920.5
3 919.0
3 931g

(3 922)d

−90
−8
0

+25

+27.9
+6.7
−5.4
−9.6

31S0

33S1

3 943h

4 040a (4 015)i
−66e

+22e
−3.1
+1.0

aObserved mass, from Review of Particle Physics, Ref. [20].
bInput to potential determination.
cObserved 13PJ centroid.
dComputed centroid.
eRequired to reproduce observed masses.
fObserved mass from CLEO [3].
gObserved mass from Belle [14].
hObserved mass from Belle [13].
iObserved 3S centroid.

induced in the low-lying 1S and 1P levels are small. For
all the other states, coupled-channel effects are noticeable
and interesting.

An important consequence of coupling the open-charm
threshold is that the ψ′ receives a downward shift through
its communication with the nearby DD̄ channel; the un-
natural parity η′

c does not couple to DD̄, and so is not
depressed in the same degree. This effect is implicitly
present in the early Cornell papers [58, 59], but the shift
of spin-singlet states was not calculated there. The first
explicit mention—and the first calculation—of the un-
equal effects on the masses of the 2S hyperfine partners
is due to Martin and Richard [61]. In the framework of
the C3 model, we found [8, 9] (cf. Table II) that the
induced shifts draw ψ′ and η′

c closer by 20.9 MeV, sub-
stantially improving the agreement between theory and
experiment. This suggests that the ψ′-η′

c splitting reflects
the influence of virtual decay channels. In the case of the
3S system, both the 31S0 η′′

c and the 33S1 ψ(4040) com-

10

⇒

 ELQ PRD 73:014014 (2006)

Strong coupling to virtual decay channels induces spin-dependent 
forces in charmonium near threshold, because  M(D*) > M(D) 

Reduces ΔM(2S) 
by 21 MeV 

Less that 1 MeV 
shift 

Spin dependent shifts small far below threshold 
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Observed by BaBar in ϒ(3S) radiative decays  

Hyperfine splitting: 

Hindered M1 Transitions: 
Relativistic corrections poorly understood. Phenomenological models for 
ϒ(3S) -> γηb and ϒ(2S) -> γηb vary greatly. 

ϒ(3S) -> γηb:

Expectations for ϒ(2S) -> γηb:
11

 ηb:

QwG Workshop@BNL  JUN/2006Hajime Muramatsu 7

Search for !(2,3S) " #$b(1S)

• Hindered M1 transition:

• But E# ~911 (604) MeV from !(3S) (!(2S)) " #$b(1S) with

M($b)~9400 MeV/c2.

• CLEO has already set ULs (90%CL) on these BR’s (PRL94,032001)
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FIG. 2: (a) Inclusive photon spectrum in the region 0.50 <
Eγ < 1.1 GeV. The component PDFs determined from the fit
are overlaid on the data points. A prominent χbJ(2P ) peak is
clearly seen. The dashed line corresponds to the non-peaking
background component. (b) Inclusive photon spectrum af-
ter subtracting the non-peaking background, with PDFs for
χbJ(2P ) peak (solid), ISR Υ (1S) (dot), ηb signal (dash) and
the sum of all three (solid). (c) Inclusive photon spectrum
after subtracting all components except the ηb signal. The
CB function shape describes the data points well.

from the fit is 147/113 = 1.3. Finally Figure 2(c) shows
the data points with all components except the ηb signal
subtracted, overlaid with the ηb signal PDF. The fitted ηb

signal yield is 19200±2000±2100 events, where the first
error is statistical and the second systematic. A total
systematic uncertainty of 11% is estimated by varying
the Breit-Wigner width in the ηb PDF to 5, 15, and 20
MeV, setting the ISR Υ (1S) component to ±1 σ of the
nominal rate, and varying the PDF parameters fixed in
the fit by ±1 σ. The largest contribution (10%) is from
the ηb width variation.

The ηb signal significance is estimated using the ratio
log(Lmax/L0), where Lmax and L0 are the likelihood val-
ues obtained from the nominal fit and from a fit with the
ηb PDF removed, respectively. Fits have been performed
where the parameters entering the systematic uncertain-
ties have been varied within their errors. Data have then
been fitted with all parameters simultaneously moved by
one standard deviation in the direction of lower signifi-
cance. This conservative approach yields a signal signif-
icance greater than 10 standard deviations.

As a cross check, we also perform a fit where the yield
of the ISR Υ (1S) component is left free, and we obtain
24800±2300 events for this component. This is consistent
with the estimate using the below-Υ (4S) data and pro-
vides an important validation of the χbJ (2P ) line shape
parameterization. The yield and peak position of the ηb

signal from this fit are unchanged.
The Eγ signal peak value from the fit is 917.4+2.1

−2.8 MeV.
We apply a photon energy calibration shift of 3.8 ± 2.0
MeV, obtained by comparing the fitted position of the
χbJ(2P ) peak to the known PDG value. After including
an additional systematic uncertainty of 1.3 MeV from
the fit variations described above, we obtain a value of
Eγ = 921.2+2.1

−2.8 ± 2.4 MeV for the ηb signal.
The ηb mass derived from the Eγ signal is M(ηb) =

9388.9+3.1
−2.3 ± 2.7 MeV/c2. Using the PDG value of

9460.3 ± 0.3 MeV/c2 for the Υ (1S) mass, we determine
the Υ (1S)-ηb mass splitting to be 71.4+2.3

−3.1±2.7 MeV/c2.
The value we measure for the splitting is larger than

most predictions based on potential models [2], but rea-
sonably in agreement with predictions from lattice calcu-
lations [13]. The mass splitting between the Υ (1S) and
the ηb(1S) is a key ingredient in many theoretical cal-
culations. The precision of our measurement will allow,
among others, a more precise determination of the lattice
spacing [13] and new precision determinations of αs [14].

We estimate the branching fraction by correcting the
signal yield with the reconstruction efficiency (ε) from
simulated signal MC events, and then dividing it by the
number of Υ (3S) events in the data sample. The branch-
ing fraction of the decay Υ (3S) → γ ηb is found to be
(4.8±0.5±1.2)×10−4, where the first uncertainty is sta-
tistical and the second systematic. The systematic uncer-
tainty of 25% comes from uncertainties in the signal yield
(11%) and ε (22%). The latter is obtained by comparing

   BaBar [PRL 101, 071801 (2008)]

pNRQCD
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 Narrow states still missing 

Charmonium -   3 - 1D2, 3D2, and 3D3 

Bottomonium - 23 -  13D1, 13D3, 13FJ, 23DJ, 13GJ, 33PJ, 
11P1, 21S0, 11D2, 21P1, 31S0, 11F3, 21D2, 11G4, 31P1

Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E.
 [Rev. Mod. Phys. 80, 1161 (2008)]

 Multipole expansion approach for EM and hadronic 
transitions works well.     

Puzzling exceptions to expectations resolved by well understood 
dynamical suppression of the leading order expansion coefficient: 
Υ(3S) -> γ+χb(1P) E1 rate; ψ(2S) -> γ+ηc, Υ(2S) -> γ+ηb(1S) and 
Υ(3S) -> γ+ηb(1S) M1 rates; Υ(3S) -> Υ(1S) +2π  E1-E1 term;     
Υ(nS) ->Υ(mS) +2π,  M1-M1 terms.

Higher order relativistic corrections needs better theory -> Lattice 
QCD.

 Direct decays provide a wealth of information     
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Why it works so well

 What about the gluon and light 
quark degrees of freedom of QCD?  

 Two thresholds: 

 Usual              decay threshold
 Excite the string - hybrids

Hybrid states will appear in the 
spectrum associated with the 
potential Πu, ...  

In the static limit this occurs at 
separation:  r ≈ 1.2 fm.           
Between 3S-4S in     ;              
just above the 5S in     .

Heavy Quark Limit
 Static Energy

SPECTROSCOPY
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Fig. 3.6: The singlet static energy (quenched and unquenched data) from Ref. [51], see also [143]

2.3.3 The QCD static spectrum and mechanism of confinement18

The spectrum of gluons in the presence of a static quark–antiquark pair has been extensively studied with

high precision using lattice simulations. Such studies involve the calculation of large sets of Wilson loops

with a variety of different spatial paths. Projections onto states of definite symmetries are done, and the

resulting energies are related to the static quark–antiquark potential and the static hybrids potentials. With

accurate results, such calculations provide an ideal testing ground for models of the QCD confinement

mechanism.

The singlet static energy

The singlet static energy is the singlet static potential V (0)
s .

In the plot3.6, we report simulation results both with and without light quark–antiquark pair cre-

ation. Such pair creation only slightly modifies the energies for separations below 1 fm, but dramatically

affects the results around 1.2 fm, at a distance which is too large with respect to the typical heavy quarko-

nium radius to be relevant for heavy quarkonium spectroscopy. At finite temperature, the so-called string

breaking occurs at a smaller distance (cf. corresponding Section in Chapter 7,Media).

One can study possible nonperturbative effects in the static potential at short distances. As it has

already been mentioned in the ”static QCD potential” subsection, the proper treatment of the renormalon

effects has made possible the agreement of perturbation theory with lattice simulations (and potential

models) [78,88–92]. Here we would like to quantify this agreement assigning errors to this comparison.

In particular, we would like to discern whether a linear potential with the usual slope could be added to

perturbation theory. In order to do so we follow here the analysis of Ref. [90, 144], where the potential

is computed within perturbation theory in the Renormalon Subtracted scheme defined in Ref. [81]. The

comparison with lattice simulations [145] in Fig. 3.7 shows that nonperturbative effects should be small

and compatible with zero, since perturbation theory is able to explain lattice data within errors. The

systematic and statistical errors of the lattice points are very small (smaller than the size of the points).

Therefore, the main sources of uncertainty of our (perturbative) evaluation come from the uncertainty in

the value of ΛMS (±0.48 r−1
0 ) obtained from the lattice [146] and from the uncertainty in higher orders

in perturbation theory. We show our results in Fig. 3.7. The inner band reflects the uncertainty in ΛMS
whereas the outer band is meant to estimate the uncertainty due to higher orders in perturbation theory.

We estimate the error due to perturbation theory by the difference between the NNLO and NNNLO

evaluation. The usual confining potential, δV = σr, goes with a slope σ = 0.21GeV2. In lattice units

18Authors: N. Brambilla, C. Morningstar, A. Pineda

91
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 Threshold Formalism For Strong Decays

 Simplifying assumptions of phenomenological models (CCCM)

14

 Above Threshold and New States   
Need to account for strong decays   

Eliminating ψ2: {

ψ1 : one particle states
ψ2 : multi particle states

-  H2 - free heavy meson pairs  - No final state or exchange interactions.                                                          
No bound states like a X(3872) molecule. 

- H0 ψ1 = zψ1  - A complete basis set quarkonium states |n>  - No hybrid states.

-  Generalized VMD  

Ω(z)
All the complexity of the strong decay        

in the matrix Ω(z):
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  Decay amplitudes   

where   Statistical factor

and  reduced decay amplitude is given by 

E. Eichten - Fermilab                  Flavor Physics and CP Violation - Lake Placid, NY - May 31, 2009

Decay Amplitudes

dV(x)/dx = 1/a2 + !/x2   ->  ignoring ! term 
similar form as vacuum pair creation (QPC) model 

Cornell Model:

Hence   

where   

    
Decay amplitudes I(p)Statistical factor

16

Details for CCCM:
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Decay Amplitudes

dV(x)/dx = 1/a2 + !/x2   ->  ignoring ! term 
similar form as vacuum pair creation (QPC) model 

Cornell Model:

Hence   

where   

    
Decay amplitudes I(p)Statistical factor

16

radial wavefunctions:
  n2s+1LJ QQbar state: RnL(r)
  Qqbar ground state:

ONLY the function Φ(t) depends on the pair 
production dynamics. 

(separation between heavy quarks: r = t√β)    
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 Contains all dependence on light quark pair 
production dynamics.

 Using HQET, Φ(t) is the same for all final states 
in a jlP multiplet.

  Apart from overall light quark mass factors 
Φ(t) is approximately SU(3) invariant. 

 One universal function, Φ(t), determines 
Ω(W) in the threshold region.

 Lattice QCD can be used to calculate Φ(t):

Il=13S(p) cc,bb

p(GeV)

e.g. for CCCM:

Sample decay amplitudes (CCCM)

16

  Φ(t)   

Il=1ϒ(4S)(p) d,s
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The circles represent the results from our mixing analy-
sis while the squares are extracted from fits to the Wilson
loops CQQ and the I = 1 BB operator Cdis

BB alone. This
resembles the situation in the quenched approximation
where no string breaking or mixing occurs. We perform
a quadratic fit in the region 14a ≤ r ≤ 16a,

∆E(r) = ∆Ec + b3(r − rc)
2. (89)

The resulting parameter values are,

rc = 15.00(8) a, (90)

∆Ec = 0.0217(9) a−1, (91)

b = 0.325(14) a−1. (92)

The position of the minimal energy gap rc = 15.00(8)a
is in perfect agreement with the value rs = 14.95(12)a
of Eq. (86), at which θ = π/4. Translated into phys-
ical units we obtain a minimal energy gap, ∆Ec ≈
51(3) MeV, and a string breaking distance,

rc = 2.496(26) r0 ≈ 1.248(13) fm. (93)

The errors quoted are purely statistical and do not con-
tain the 5 % uncertainty of r0 ≈ 0.5 fm or the deviation
of nf = 2 and m ! ms from the real QCD situation.
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C. Transition rates

We assume that the elements of our mixing matrix
only couple to the lowest two QCD eigenstates within the
appropriate static-static sector. In this limit, for each r,
we encounter a quantum mechanical two-state system.
Our two test wave functions are not QCD eigenstates
and, therefore, the off-diagonal matrix elements CQB(t)
assume non-trivial values. The transition rate, governing
string fission at r > rc and fusion at r < rc, is given by,

g =
dCQB(t)

dt

∣

∣

∣

∣

t=0

1
√

CBB(0)CQQ(0)
. (94)

While in Euclidean time all Fock states eventually de-
cay into the ground state |1〉, in Minkowski space-time,
starting from such a non-eigenstate, results in oscillations
between the QQ and BB sectors.

Obviously, our states |Q〉 and |B〉 are somewhat pol-
luted by n ≥ 3 excitations as evidenced by aQ &= 1 and
aB &= 1. So we have to “wait” for some initial relaxation
time tmin to pass until this equation becomes applica-
ble. We can easily extract g from our five parameter fits,

p(GeV)
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Observation of String Breaking in QCD

Gunnar S. Bali,1, ∗ Hartmut Neff,2, † Thomas Düssel,3, ‡ Thomas Lippert,3, § and Klaus Schilling4, ¶

(SESAM Collaboration)
1Department of Physics & Astronomy, The University of Glasgow, Glasgow G12 8QQ, Scotland

2Center for Computational Science, Boston University, 3 Cummington St, Boston MA02215, USA
3John von Neumann Institute for Computing, Forschungszentrum Jülich, D-52425 Jülich, Germany
4Fachbereich Physik, Bergische Universität Wuppertal, Gaußstraße, D-42097 Wuppertal, Germany

(Dated: May 31, 2006)

We numerically investigate the transition of the static quark-antiquark string into a static-light
meson-antimeson system. Improving noise reduction techniques, we are able to resolve the signature
of string breaking dynamics for nf = 2 lattice QCD at zero temperature. This result can be related
to properties of quarkonium systems. We also study short-distance interactions between two static-
light mesons.

PACS numbers: 12.38.Gc, 12.38.Aw, 12.39.Pn, 12.39.Jh

I. INTRODUCTION

Sea quarks are an important ingredient of strong in-
teraction dynamics. In the framework of quantum chro-
modynamics, however, quantitative calculations of their
effects on hadron phenomenology have proven to be no-
toriously difficult, unless one resorts to approximations
based on additional model assumptions. Nevertheless,
the ab initio approach of lattice gauge theory towards
the sea quark problem has shown steady progress over
the past decade: recently the η′-problem has been tackled
successfully on the lattice [1–3] where sea quarks induce
the axial anomaly in the sense of the Witten-Veneziano
mechanism [4, 5].

Another example is the strong decay of hadrons
through light quark-antiquark pair creation, for instance
the transition from a colour string configuration between
two static colour sources, QQ, into a pair of static-light
mesons, BB. This colour string breaking, which we ad-
dress in this paper, is expected to occur as soon as the
colour source-sink separation, r, exceeds a certain thresh-
old value, rc > 1 fm.

In lattice simulations this behaviour has been investi-
gated in four dimensional QCD at zero temperature T
with sea quarks [6–12] as well as in QCD3 [14]. However,
these studies lacked compelling evidence of string break-
ing1. This failure is due to problems like: (i) String
breaking investigations only make sense in a full QCD
setting with large ensemble sizes. (ii) String breaking
occurs at distances beyond 1 fm, a regime with a poor
signal-to-noise ratio. (iii) The poor overlap of the QQ

∗Electronic address: g.bali@physics.gla.ac.uk
†Electronic address: hneff@buphy.bu.edu
‡Electronic address: th.duessel@fz-juelich.de
§Electronic address: th.lippert@fz-juelich.de
¶Electronic address: schillin@theorie.physik.uni-wuppertal.

de
1 The T > 0 situation appears to be more favourable [13].

creation operator with the large-distance BB ground
state.

This last problem necessitates to resolve the signal at
huge Euclidean times t, unless one bases the investigation
on a 2× 2 correlation matrix, whose additional elements
include the insertion of light quark propagators into the
standard Wilson loop [7, 10–12]. Such quark insertions
require propagators from any source to any sink position
(“all-to-all propagators”), in order to enable the exploita-
tion of translational invariance for error reduction (self
averaging).

For QCD with nf mass-degenerate sea quark flavours
this correlation matrix takes the form,

C(t) =

(

CQQ(t) CQB(t)
CBQ(t) CBB(t)

)

= e−2mQt













√
nf

√
nf −nf +













, (1)

where the straight lines denote gauge transporters and
the wiggly lines represent light quark propagators2. We
refer to the difference between the physical eigenstates
and the QQ and BB basis as “mixing”. Such mixing
should manifest itself “explicitly”, by non-vanishing off-
diagonal matrix elements, relative to the diagonal matrix
elements, and “implicitly”. The latter refers either to
the Wilson loop CQQ(t) decaying into the mass of the
(dominantly) BB state for r > rc or to a decay of CBB(t)
towards the QQ mass for r < rc, as t → ∞. Implicit
mixing is much harder to detect than explicit mixing.

In the quenched approximation baryon and anti-
baryon numbers are separately conserved and the QQ
and BB sectors are mutually orthogonal. By definition,

2 Details of this expression will be discussed in Sec. II below.
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  Why all this?  
CLEOc [arXiv:0807.1220] 

FIG. 6: Exclusive cross sections for two-body and multi-body charm-meson final states, and total
observed charm cross section with combined statistical and systematic uncertainties.

EvtGen were varied from their nominal shapes. While a qualitative constraint of consistency
with our measured cross sections was imposed, some extreme variations are included in the
final systematic uncertainty. Both the direct effect on the fitted yield of varying a specific
mode and the indirect effect of varying other modes were computed, although the former
dominates in quadrature.

The yields for Ds final states are determined by direct counts after cutting on Mbc and
∆E. Systematic uncertainty arises in these measurements if the Monte Carlo simulation
does not provide an accurate determination of the associated efficiency. This is probed by
adjusting the selection criteria and recomputing the cross sections, again using the high-
statistics sample at 4170 MeV. The systematic uncertainties assigned based on these studies
are ±3%, ±2.5% and ±5% for D+

s D−
s , D∗+

s D−
s , and D∗+

s D∗−
s , respectively.

In converting the measured yields to cross sections we must correct for the branching
fractions of the charm-meson decay modes. For each of the non-strange charm mesons,

11

 Suppose we had no NRQCD expectations and had 
first measured the exclusive charm pair production 
contributions to Rc in the threshold region.

 How many resonances would you find?

 But in fact we know that the coupled channel 
calculations with only the usual charmonium 
resonances describes the data fairly well.

 We don’t have this analysis for other production 
modes: B decays, γγ, recoil against J/Ψ in e+e-,  
ppbar.   Proceed with caution.
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NewNew States Above Charm Threshold  

State EXP M + i Γ (MeV) JPC Decay Modes 
Observed

Production Modes 
Observed

X(3872) Belle, CDF,      
D0, BaBar 3871.2±0.5 + i(<2.3) 1++ π+π-J/ψ,  π+π-π0J/ψ, 

ΥJ/ψ B decays,  ppbar 

Belle
BaBar

3872.6+0.5-0.4±0.4 +  i(3.9+2.5-1.3+0.8-0.3)
3875.1+0.7.-0.5±0.5 + i(3.0+1.9-1.4±0.9)

D0D*0 B decays 

Z(3930) Belle 3929±5±2 + i(29±10±2) 2++ D0D0, D+D- ϒϒ

Y(3940) Belle
BaBar

3943±11±13 + i(87±22±26)
3914.3+3.8-3.4 ±1.6+ i(33+12-8 ±0.60)

JP+ ωJ/ψ B decays 

X(3940) Belle 3942+7-6±6 + i(37+26-15±8) JP+ DD* e+e- (recoil against J/ψ)

Y(4008) Belle
BaBar

4008±40+72-28 + i(226±44+87-79)
(not seen) 1-- π+π-J/ψ e+e- (ISR)

Y(4140) CDF 4143.0±2.9±1.2 + i(11.7+8.3-5.0±3.7) JP+ ϕ J/ψ ppbar

X(4160) Belle 4156+25-20±15+ i(139+111-61±21) JP+ D*D* e+e- (recoil against J/ψ)

Y(4260)
BaBar
Cleo
Belle

4259±6+2-3 + i(105±18+4-6)
4284+17-16 ±4 + i(73+39-25±5) 
4247±12+17-32 + i(108±19±10)

1-- π+π-J/ψ, π0π0J/ψ,
 K+K-J/ψ e+e- (ISR), e+e- 

Y(4350) BaBar
Belle

4324±24 + i(172±33) 
4361±9±9 + i(74±15±10) 1-- π+π-ψ(2S) e+e- (ISR)

Z+(4430) Belle   
BaBar

4433±4±1+ i(44+17-13+30-11)
(not seen)

JP π+ψ(2S) B decays 

Y(4660) Belle 4664±11±5 + i(48±15±3) 1-- π+π-ψ(2S) e+e- (ISR)
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  General Comments 
 Basic Questions:

- Is it a new state?
- What are its properties?: Mass, width, JPC, decay modes
- Charmonium state or not?
- If not what? New spectroscopy.

 Options for new states:

- Four quark states -

- Hybrids - Exciting the gluonic degrees of freedom:      

- Strong threshold effects:

19

 Molecules  

 Diquark-Antidiquark  

 Hadro-charmonium  S. Dubynski et al PLB 666,344 (2008) 

 valance gluons, string  

 strong interactions,
interplay of decay channels  
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 Z+(4430)  
Belle 

Mass and Width                                              
M(Z+) = 4433±4±1 MeV                         
Γ(Z+)  = 44           MeV                                                    

Decay Modes                             
Z+(4433) -> π+ + ψ(2S)

Updated analysis [arXiv:0905.4313]          
confirmed 6.4 sigma                                      

BaBar [arXiv:0811.0564v1]

Not seen

Tetraquark state (if confirmed) 

20

Figure 1: Diagram illustrating the production of a πψ(2S) state in B decays. The weak
subprocess b̄ → c̄cs̄ is labeled by ×.

Table I: Possible charge states for production of a πψ(2S) state in B decays.

q q′ B K Z(4430) →
u d B0 K+ π−ψ(2S)
d u B+ K0 π+ψ(2S)
u u B+ K+ π0ψ(2S)
d d B0 K0 π0ψ(2S)

The c̄q′ meson can be either D1(2420) (the narrow P-wave charmed meson decaying
to D

∗
π) or D

∗
(2010) (the vector meson state decaying to Dπ). The cq̄ meson would then

correspondingly be D∗(2010) or D1(2420). In either case, the final state D∗D
∗
π should be

visible, with a Dalitz plot showing a strong D1(2420) and/or D(2420) band. Which band
is populated can shed light on details of the decay mechanism, such as whether relative
orbital angular momentum of zero or one is favored between the c̄ and the q′ in Fig. 1.

The S-wave states of D∗(2010) + D1(2420) can have spin-parity JP = 0−, 1−, 2−. A
0− or 1− state would decay to πψ(2S) via a P-wave, while either P-wave or F-wave decay
would be allowed for 2−. The calculation of acceptance in Ref. [2] assumed a relative
S-wave between π± and ψ(2S). The rather low Q-value for the decay B → KZ(4430)
likely favors a low angular momentum # between K and Z. A low spin J(Z) is then
favored since one must have J(Z) = # in this decay. For JP (Z) = 0−, the polarization
vector of the ψ(2S) in Z → πψ(2S) must be parallel to the direction of the recoil π in the
rest frame of the ψ(2S). If the polarization of the J/ψ follows that of the ψ(2S) (a good
approximation), the leptons in J/ψ → #+#− will have a sin2 θ distribution with respect to
the recoil π momentum.

If the qq̄ pair in Fig. 1 is ss̄ rather than uū or dd̄, one will have final states such
as φD(∗)

s D(∗) or even (barely) φDs(2317)D [8]. The charm-anticharm pair could then

Possible production
 mechanism

Isospin multiplet

3

DALITZ PLOT DISTRIBUTION

We sum the Dalitz distributions for B̄0 → K−π+ψ′

and B+ → K0
Sπ+ψ′ candidates. Due to the mass differ-

ence between K− and K0
S the corresponding Dalitz plots

have slightly different boundaries. We find that this has a
negligible effect on the results of the Dalitz analysis. The
Dalitz plot for the ∆E signal region is shown in Fig. 1.
Here vertical bands corresponding to the K∗(892) and
the K∗(1430) are evident. The horizontal cluster of en-
tries in the vicinity of M2(π+ψ′) ∼ 20 GeV2/c4 consti-
tutes the Z(4430)+ signal reported in Ref. [2].
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FIG. 1: The B → Kπ+ψ′ Dalitz plot for the ∆E signal
region. The solid (dashed) lines delimit the five vertical
(three horizontal) slices that are used to present the fit re-
sults in subsequent figures. The coordinates of the vertical
lines are M2(Kπ+) = (0.796)2 GeV2/c4, (0.996)2 GeV2/c4,
(1.332)2 GeV2/c4 and (1.532)2 GeV2/c4; the coordinates of
the horizontal lines are M2(π+ψ′) = 19.0 GeV2/c4 and
20.5 GeV2/c4.

In the following, we illustrate the results of different
fits using projected histograms of the slices of the Dalitz
plot indicated by the vertical solid lines and horizontal
dashed lines shown in Fig. 1. The three horizontal slices
correspond to M(π+ψ′) regions below, around and above
the Z(4430)+ mass region. The five vertical slices distin-
guish the K∗(892) and M(Kπ+) # 1.4GeV/c2 regions
and bands above, below and in between them. The sum
of the latter three projections corresponds to the K∗ veto
used in Ref. [2].

FORMALISM OF THE DALITZ ANALYSIS

The decay B → Kπ+ψ′ with the ψ′ reconstructed in
the #+#− decay mode is described by four variables (as-
suming the width of the ψ′ to be negligible). These are
taken to be M(π+ψ′), M(Kπ+), the ψ′ helicity angle
(θ) and the angle between the ψ′ production and decay
planes (φ). In this analysis we integrate over the angular
variables θ and φ. The MC indicates that the reconstruc-
tion efficiency is almost uniform over the full φ angular
range and integration over this angle makes the contribu-
tions from interference between the different ψ′ helicity
states negligibly small. This allows the ψ′ to be treated
as a stable particle in the Dalitz analysis.

In the ψ′ → π+π−J/ψ channel, the ψ′ is likewise
treated as stable. The π+π− system in this decay is
predominantly in an S-wave [9]; in this limit, the ψ′ and
J/ψ helicity states are the same, and we again find negli-
gible interference contributions after integration over de-
cay angles. Thus, our approach is the same as in the
Dalitz analysis of the B̄0 → K−π+χc1 decays in Ref. [3].

The amplitude for the three-body decay B → Kπ+ψ′

is represented as a sum over different quasi-two-body
modes; resonances are described by relativistic Breit-
Wigner functions with angular dependence. As the de-
fault fit model, we include all known low-lying Kπ+ res-
onances [the κ or K∗(800), and the K∗(892), K∗(1410),
K∗

0 (1430), K∗
2 (1430), and K∗(1680)] and a single exotic

π+ψ′ resonance. In addition to the physics model, the
fit function includes a background term derived from the
∆E sidebands and is modulated by the MC-determined
experimental efficiency. The MC sample is generated
with the correct proportion of charged and neutral kaons
and ψ′ decay modes. The Dalitz plots for the ∆E side-
band and the MC sample are smoothed. The expression
for the amplitudes, signal component of the fit function,
and other details of the fitting procedure are the same as
used in the analysis described in Ref. [3].

FIT RESULTS

The eight projected Dalitz plot slices with fit results
for the default model superimposed are shown in Fig. 2.
The Z(4430)+ signal is most clearly seen in the third ver-
tical slice. The sum of the 1st, 3rd and 5th vertical slices
(i.e. a Dalitz plot projection with the K∗ veto applied)
is shown in Fig. 3. The π+ψ′ resonance parameters de-
termined from the fit are M = (4443+15

−12)MeV/c2 and
Γ = (107+86

−43)MeV. The central values agree well with
the parameters reported in Ref. [2], while the errors are
somewhat larger. The statistical significance, calculated
from the change in 2 logL when the Z(4430)+ is included
in the fit (taking the added degrees of freedom into ac-
count) is 6.4 σ. The fit fractions and significances for all
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 X(3872)  

Mass 
At threshold within errors:                        
M(X) = 3871.51±0.22 MeV  (+CDF)                
M(D0) + M(D*0) = 3871.81±0.36 MeV  (CLEO)                 

Decay Modes 
X(3872) -> π+π- + J/ψ  (Γ0) (ρ like)         
(Belle, CDF, D0, BaBar)

Γ(X(3872)->‘ ω‘+J/ψ)/Γ0 = 1.0±0.4±0.3       
⇒ Isospin violating large  (Belle)

Γ(X(3872)->ϒ+J/ψ)/Γ0 = 0.14±0.05          
⇒ C=+1   (Belle, BaBar)

Γ(X(3872)->ϒ+ψ’)/Γ(X(3872)->ϒ+J/ψ)        
= 3.4±1.4        (BaBar)                                
Compare 23P1 (bb) ratio = 2.5±0.5

JPC = 1++ Strongly favored (Belle, CDF)

21
28/7/2006 R.Mussa , ICHEP 2006, Moscow

X(3872) –  X(3872) –  ππ++  ππ− − mass distributionmass distribution

Consistent with large J/ψ ρ contribution 
(Isospin =1)

 )2X(3872) Mass  ( MeV/c

3866 3867 3868 3869 3870 3871 3872 3873

*)
o

)+m(D
o

m(D
2 0.36 MeV/c!3871.81 

new average
2 0.22 MeV/c!3871.51 

old average
2 0.39 MeV/c!3871.20 

CDF new (preliminary)
2 0.19 MeV/c! 0.16 !3871.61 

CDF old
2 0.40 MeV/c! 0.70 !3871.30 

D0
2 3.00 MeV/c! 3.10 !3871.80 

)
0

BaBar (B
2 0.20 MeV/c! 1.20 !3868.60 

)
+

BaBar (B
2 0.10 MeV/c! 0.60 !3871.30 

Belle
2 0.50 MeV/c! 0.60 !3872.00 

X(3872) Mass Measurements

FIG. 16: An overview of the measured X(3872) masses from the experiments observing the X(3872). Shown are the measure-
ment from Belle [1], BABAR (from both B+ and B0 decays) [17], DØ [21], and the first CDF measurement [4]. The result
from this analysis is shown as the last single measurement entry. Additionally shown is the change in the world average mass
due to the new measurement. The current value for the D0D0∗ threshold is shown as the last entry. Shown are the statistical
and combined errors on each measurement.
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FIG. 17: The limit on the mass difference between two possible X-states, combining the masses from the B-factories in theB+

decay channel and the new CDF measurement.

The quantum numbers JPC = 1++ agree with the prediction of various multiquark models. The model of Maiani
et al. is however disfavored, since there is no evidence for two separate states. The proposed mass difference of
(8± 3)MeV/c2 is beyond the obtained upper limits for the mass difference. This either means that there simply is no
prominent second neutral state decaying into J/ψπ+π− or that the two possible states are so close in mass that they
cannot be resolved by experiment. While multiquark hypotheses remain an interesting field, no model with verifiable
predictions has so far turned out to be correct.

In summary we present a new measurement of the X(3872) mass using the decay to J/ψπ+π−. The measured value
mX(3872) = 3871.61 ± 0.16 (stat) ± 0.19 (syst) MeV/c2 is the most precise measurement to date and consistent with
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FIG. 3: sPlot of the number of extracted signal events ver-
sus mX for (a) B±

→ X(3872)K±, (b) B0
→ X(3872)K0

S ,
(c) B±

→ X(3872)K∗±, and (d) B0
→ X(3872)K∗0 , where

X(3872) → ψ(2S)γ. The solid curve is the fit to the data.
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†† Also with Università di Sassari, Sassari, Italy
[1] S.K. Choi et al., Belle Collaboration, Phys. Rev. Lett.

91, 262001 (2003).
[2] D. Acosta et al., CDF Collaboration, Phys. Rev. Lett. 93,

072001 (2004); V.M. Abazov et al., DØ Collaboration,
Phys. Rev. Lett. 93, 162002 (2004); B. Aubert et al.,
BABAR Collaboration, Phys. Rev. D71, 071103 (2005).

[3] B. Aubert et al., BABAR Collaboration, Phys. Rev. D74,
071101(R) (2006).

[4] S. Godfrey and S. Olsen, arXiv:0801.3867 (2008).
[5] T. Barnes and S. Godfrey, Phys. Rev. D69, 054008

(2004).
[6] N.A. Tornqvist, Phys. Lett. B590, 209 (2004);

E.S. Swanson, Phys. Lett. B598, 197 (2004);
M.B. Voloshin, Phys. Lett. B579, 316 (2004); E. Braaten
and M. Kusunoki, Phys. Rev. D71, 074005 (2005).

[7] E.S. Swanson, Phys. Rept. 429, 243 (2006).
[8] B. Aubert et al., BABAR Collaboration, Nucl. Instrum.

Meth. A479, 1 (2002).
[9] C. Amsler et al., Particle Data Group, Phys. Lett. B667,

1 (2008).
[10] A. Drescher et al., Nucl. Instrum. Meth. A237, 464

(1985).
[11] R. Sinkus and T. Voss, Nucl. Instrum. Meth. A391, 360

(1997).
[12] G.C. Fox and S. Wolfram, Nucl. Phys. B149, 413 (1979).
[13] M. Pivk and F.R. Le Diberder, Nucl. Instrum. Meth.

A555, 356 (2005).
[14] J.E. Gaiser, SLAC-R-255, Appendix F (1982).
[15] H. Albrecht et al., ARGUS Collaboration, Phys. Lett.

B185, 218 (1987); Phys. Lett. B241, 278 (1990).
[16] The upper limit (UL) is calculated from

R UL

0
G(x)/

R +∞

0
G(x) = 0.9, where G(x) is a Gaus-

sian with mean equal to the central value of the
branching fraction measurement and standard deviation
equal to the total uncertainty.

[17] M. Suzuki, Phys. Rev. D66, 037503 (2002); P. Colan-
gelo, F. De Fazio and T. N. Pham, Phys. Lett. B542, 71
(2002).

BaBar [arXiv:0809.0042v2]  X->ϒ+ψ’

B0 -> X+K0SB± -> X+K±

CDF [note 9454]



E. Eichten - Fermilab                  Flavor Physics and CP Violation - Lake Placid, NY - May 31, 2009

Decay Modes (above threshold) 
Γ(X(3875)->D0D*0+D*0D0)/Γ0 = 12.2±3.1       

22

G. Cibinetto 9Quarkonium spectroscopy and search for new states at BaBar

Search for !(*)D(*) resonances

BELLE observed of: B -> X(3872)K± , X(3872)->D0!0!0

M = 3875.4-2.0
+1.2±0.7MeV /c2

"m(B0/B+) = 0.2±1.6 MeV/c2

PRL 97, 162002(2006)

BaBar studied 8 channels:

The mass is in good agreement with

Belle’s result in the same final state,
but 2.5# higher than the world average.

347fb-1

If its same state as the X(3872) ?
 
Γ(X(3872)->ϒ+ψ’) ≈ (5.7±1.6)x10-2Γ(X(3875)->D0D*0+D*0D0) 
≈ 170±50 keV 

Same as the expected rate for the 
charmonium 23P1 ->ϒ+ψ’ transition !!

parameters g, Ef and fρ instead of the X(3872) mass and width; here, we fix g = 0.3 and
fρ = 0.007 using their best fit to Belle data [9], while Ef is free. The fit (Fig. 4) gives 65±12
signal events with a significance of 8.8σ; the yield is larger than in the Breit-Wigner case
because the Flatté distribution has much longer tails. We obtain Ef = −14.9 ± 2.0 MeV,
which is close to the value −11 MeV found in Ref. [20].
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FIG. 4: Distribution of MD∗D for Mbc > 5.27GeV, for D∗0 → D0γ (left) and D∗0 → D0π0 (right).
The points with error bars are data, the dotted curve is the Flatté distribution, the dashed curve
is the background, the dash-dotted curve is the sum of the background and the B → D∗DK

component, the dot-dot-dashed curve is the contribution from D0–D̄0 reflections, and the solid
curve is the total fitting function.

SUMMARY

In summary, we find a near-threshold enhancement in the D∗0D̄0 invariant mass spectrum
at 3872.6 +0.5

−0.4 ± 0.4 MeV/c2 in B → D∗0D̄0K decays. The significance of this enhancement
is 8.8σ. The observed D∗0D̄0 mass and width are consistent with the current world-average
values for the X(3872) [5]; the mass is 2.6σ lower than the value obtained by BaBar [10]. The
obtained branching fraction and width are compatible with the values previously published
by Belle in Ref. [9] for non-resonant D0D̄0π0 decays; the mass is 1σ lower, while only 30% of
the data sample is in common. An alternative fitting method, using the Flatté distribution,
gives results similar to the ones obtained with a traditional Breit-Wigner function.

For the Y (3940) state, we set an upper limit on the B(B → Y (3940)K) × B(Y (3940) →
D∗0D0) branching fraction which suggests that the X(3940) and the Y (3940) are different
states.
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Belle:
    M = 3872.6     ± 0.4 Mev/c2  
    Γ = 3.9           MeV          

BaBar:
    M = 3875.1     ± 0.7 Mev/c2  
    Γ = 3.0      ± 0.9 MeV          
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What is the X? 
Key feature X(3872) extremely close to 
threshold.

Options -Tetraquark state or Hybrid state highly 
improbable to be this near threshold. 

D0D*0 molecule  seemed the most likely 
possibility.  

Need to measure the line shape of the X in 
various production modes and decay channels to 
establish it’s true mass.                             
Braaten and Lu [PR D 76:094028 (2007)]

CLEO precise D0 mass measurement [PRL 98, 092002 (2007)]

 1864.847 ± 0.150 ± 0.095 MeV
CDF precise X mass measurement [CDF note 9454]

 3871.61. ± 0.16 ± 0.19 MeV
⇒ M(X) - M(D0) - M(D0*) = -0.3 ± 0.4  MeV 

M–(mD0+ mD*0) = +4.3 ± 0.7       MeV
+0.7
-1.7

DD* “Binding Energy?”:

-12 -8 -4 0 4 8 12
E (MeV)

d
!

/d
 E

-12 -8 -4 0 4 8 12
E (MeV)

d
!

/d
 E

FIG. 5: The line shapes in the D∗D̄ threshold region for X(3872) produced by a B → K transition
and decaying into J/ψ π+π−. The line shapes are different for X produced by a B+ → K+

transition (upper panel) and a B0 → K0 transition (lower panel). The line shapes are shown for
γ1 = ±∞ and three values of γ: +34 MeV (solid lines), 0 (dotted lines), and −34 MeV (dashed

lines).

25

B0 -> K0 + X

Dependence of dΓ/dE on inverse scattering length γ
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The binding of the “molecule” must come from short distance. 
The long range pion exchange force is weak.

The coupling between the 23P1 state and the DD* final states is      
S-wave and strong.  The 3P1 states have no coupling to DD final 
state.  

24

Revisiting the 23P1 charmonium (χ’c1) interpretation

D

D*

23P1 23P1

Ω2P(E)

pion-exchange potential model by Tornqvist [47], who actually predicted a DD̄∗ bound state

(deuson) with a mass close to the observed X(3872). After the discovery of the X(3872),

Swanson [26] considered a potential model that includes both a one-pion-exchange potential

and a quark-exchange potential and found a weakly bound state in the S-wave JPC = 1++

channel. These authors worked in the isospin limit and used isospin-averaged pion masses

and hyperfine splittings and obtained long-range Yukawa-like potentials [47]. Note that

the effective mass term in the propagator in Eq. (5) has the opposite sign from what one

typically obtains from meson exchange. This leads to a π0-exchange potential in position

space which is oscillatory rather than Yukawa-like, as pointed out by Suzuki [2].

A central point of this paper is that the effect of π0 exchange can be dealt with using

perturbation theory. Naive dimensional analysis of the relative size of two-pion and one-pion

exchange graphs yields the ratio

g2MDD∗µ

4πf 2
π

≈
1

20
−

1

10
, (6)

where MDD∗ is the reduced mass of the D and D∗ and we have set g = 0.5−0.7 [48, 49, 50].

This is in contrast with two-nucleon systems where a similar estimate yields [51, 52]

g2
AMNmπ

8πf 2
π

≈
1

2
, (7)

where gA = 1.25 is the nucleon axial coupling and MN is the nucleon mass. A perturbative

treatment of pions fails in the 3S1 channel where iteration of the spin-tensor force yields large

corrections at next-to-next-leading order (NNLO) [53, 54]. This is in part due to the large

expansion parameter in Eq. (7) and in part due to large numerical coefficients appearing in

the NNLO calculation. The amplitude in Eq. (5) also gives rise to a spin-tensor force and one

may worry that the perturbative treatment of pions will fail. However, even if large NNLO

coefficients like those found in Ref. [53, 54] appear in similar diagrams for the X(3872), the

expansion parameter in Eq. (6) is small enough that one can reasonably expect perturbation

theory to work.

In this paper, we derive an effective field theory of the D0D̄∗0 and D∗0D̄0 interacting

with neutral pions near the D0D̄∗0 threshold. This theory is very similar in structure to

the KSW theory of NN interactions in Ref. [51, 52] where a leading-order (LO) contact

interaction is summed to all orders in perturbation theory to produce a bound state at LO
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NN system

DD* system

FIG. 1: One-pion exchange diagram for D∗0D̄0 → D0D̄∗0 scattering. The single and double lines

represent the spin-0 and spin-1 D mesons, respectively. The dashed line represents the π0.

energy implies that the molecule has universal properties that are determined by the binding

energy [39, 40, 41, 42, 43, 44]. The small binding energy can be further exploited through

factorization formulae for production and decay rates of the X(3872) [45, 46]. Voloshin cal-

culated the decays X → D0D̄0π0 [39] and X → D0D̄0γ [40] using the universal wavefunction

of the molecule.

The main purpose of this paper is to consider the effect of π0 exchange on the properties

of the X(3872). Consider the one-pion exchange contribution to D∗0D̄0 → D0D̄∗0 scattering

depicted in Fig. 1. This leads to an amplitude

g2

2f 2
π

#ε ∗ · #q#ε · #q
#q 2 − µ2

, (5)

where g is the D-meson axial (transition) coupling, fπ is the pion decay constant, #ε and #ε ∗

are the polarization vectors of the incoming and outgoing D∗ mesons, respectively, and #q

is the momentum transfer. The scale µ appearing in the propagator denominator is given

by µ2 = ∆2 − m2
π, where ∆ is the D∗-D hyperfine splitting and mπ is the neutral pion

mass. The hyperfine splitting, ∆, appears in the pion propagator because the exchanged

pion carries energy q0 # ∆ as well as momentum #q. Note that µ is anomalously small,

µ ≈ 45 MeV, because of the nearness of ∆ = 142 MeV and mπ = 135 MeV. This suggests

that pions generate anomalously long-range effects and should be included as explicit degrees

of freedom in the description of the molecule, if the binding energy in Eq. (4) is not much

smaller than its upper limit.

The pion interactions in the D and D∗ system were quantitatively analyzed using a one-

4

FIG. 1: One-pion exchange diagram for D∗0D̄0 → D0D̄∗0 scattering. The single and double lines

represent the spin-0 and spin-1 D mesons, respectively. The dashed line represents the π0.

energy implies that the molecule has universal properties that are determined by the binding

energy [39, 40, 41, 42, 43, 44]. The small binding energy can be further exploited through

factorization formulae for production and decay rates of the X(3872) [45, 46]. Voloshin cal-

culated the decays X → D0D̄0π0 [39] and X → D0D̄0γ [40] using the universal wavefunction

of the molecule.

The main purpose of this paper is to consider the effect of π0 exchange on the properties

of the X(3872). Consider the one-pion exchange contribution to D∗0D̄0 → D0D̄∗0 scattering

depicted in Fig. 1. This leads to an amplitude

g2

2f 2
π

#ε ∗ · #q#ε · #q
#q 2 − µ2

, (5)

where g is the D-meson axial (transition) coupling, fπ is the pion decay constant, #ε and #ε ∗

are the polarization vectors of the incoming and outgoing D∗ mesons, respectively, and #q

is the momentum transfer. The scale µ appearing in the propagator denominator is given

by µ2 = ∆2 − m2
π, where ∆ is the D∗-D hyperfine splitting and mπ is the neutral pion

mass. The hyperfine splitting, ∆, appears in the pion propagator because the exchanged

pion carries energy q0 # ∆ as well as momentum #q. Note that µ is anomalously small,

µ ≈ 45 MeV, because of the nearness of ∆ = 142 MeV and mπ = 135 MeV. This suggests

that pions generate anomalously long-range effects and should be included as explicit degrees

of freedom in the description of the molecule, if the binding energy in Eq. (4) is not much

smaller than its upper limit.

The pion interactions in the D and D∗ system were quantitatively analyzed using a one-

4
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The photon transitions ratio to ψ’ over J/ψ is naturally satisfied.

What about the miracle of nearness to threshold?  Dynamical Focusing !

42 MeV

4 MeV

More than 10:1 dynamically focusing⇒

Physical pole at E = [M0(23P1) + real Ω(E)].   
Hence real Ω(E) shifts the 23P1  pole position.

 The large and rapid energy dependence 
near DD* threshold
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Assuming no D0D*0 binding other than its coupling to charmonium 3P1 states

 Γ(non DD*) = 0.8 MeV 

 σ(B→X K)/fa2 

 lineshape

Produces the same behaviour as expected for “molecule” interpretation.  
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General conditions require a nearby QQ state with appropriate 
JPC for which:                                                                
(a) Strong decay into two very narrow hadrons;                 
(b) S-wave threshold;                                                  
(c) |MS - M(threshold)| < ΓS.    

Remaining issue is the induced isospin breaking (from D+ - D0 
mass difference) is about 6%.  This implies a large implied 
decay partial rate to omega ω J/ψ (if not phase space 
suppressed).  We also see this in the ϒ(5S) -> ππ J/ψ  decays.  
Are the mechanisms related?

Comments:                                                              
(a) compare D0*D0/D+D*- channels just above D+D-* threshold.                                                              
(b) look for ππ 13P1 decay.                                           
(c) unlikely to see an BB* molecule. (the P states are too far 
away).
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 C=+1 states in the Y(3940) and Y(4160) 
mass regions. 

new structure observed by Belle:
- Produced in γγ (JPC=0++,2++)
- Observed in the decay mode ω+J/ψ                                                                                                                                   
- Near the Z(3930) previously observed by 

Belle in the γγ channel via the  DD decay 
mode. [23P2 (cc) state]

Y(4140) discovery at CDF                         
- Mass = 4143 ± 2.9 ± 1.2 MeV
- Width = 11.7      ± 3.7 MeV
- Produced in B decays
- Observed in the decay mode                      
ϕ+J/ψ

- Near the Y(4160) previously observed     
by Belle in e+e- (recoil against J/ψ).

7.7!

cut

""""!" #$ %

M: 3914 ±±±± 3 ±±±± 2 MeV, 

####: 23 ±±±± 10 +2
-8 MeV, 

Nres = 55 ±±±± 14 +2
-14 events
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FIG. 2: (a) The Dalitz plot of m2(φK+) versus m2(J/ψφ)
in the B+ mass window. The boundary shows the kine-
matic allowed region. (b) The mass difference, ∆M , between
µ+µ−K+K− and µ+µ−, in the B+ mass window. The dash-
dotted curve is the background contribution and the red solid
curve is the total unbinned fit.

function with the rms fixed to 1.7 MeV/c2 obtained from
MC, and use three–body phase space [17] to describe
the background shape. An unbinned likelihood fit to the
∆M distribution, as shown in Fig. 2(b), returns a yield of
14±5 events, a ∆M of 1046.3±2.9 MeV/c2, and a width
of 11.7+8.3

−5.0 MeV/c2. We also fit the ∆M distribution to
a single Gaussian with rms given by the mass resolution
(1.7 MeV/c2), plus phase space background, to test the
hypothesis that the structure has zero width. The sta-
tistical significance for a non-zero width determined by
the log-likelihood ratio between these two fits is 3.4σ,
indicating a strong decay for this structure.

We use the log-likelihood ratio of −2ln(L0/Lmax) to
determine the significance of the structure at the J/ψφ
threshold, where L0 and Lmax are the likelihood val-
ues for the null hypothesis fit and signal hypothesis fit.
The

√

−2ln(L0/Lmax) value is 5.3 for a pure three–body
phase space background shape assumption. We use MC
simulations to estimate the probability that background
fluctuations alone would give rise to signals as significant
as that seen in the data. Since we do not have a priori
expectations for the mass and width of the structure, we
must consider a wide range of possible masses and widths.
We generate ∆M spectra based on the background dis-
tribution alone, and search for the most significant fluc-
tuation in each spectrum in the mass range of 1.02 to
1.56 GeV/c2, with widths in the range of 1.7 (resolution)
to 120 MeV/c2 (ten times of the observed width). From
these spectra we obtain the distribution for the quantity
−2ln(L0/Lmax) in pure background samples, and com-
pare this with the signal in the data. We performed a
total of 3.1 million simulations and found 29 trials with
a −2ln(L0/Lmax) value greater than or equal to the value
obtained in the data. The resulting p-value is 9.3×10−6,
corresponding to a significance of 4.3σ. Thus, the signifi-
cance is decreased from a simple estimate of 5.3σ to 4.3σ

by taking into account the absence of a prior prediction
for the mass and width [24].

In the analysis described above, we assumed that the
backgrounds to the BW signal from both B+ → J/ψφK+

decays and combinatorial events in the B+ mass window
are described by three-body phase space. As a cross-
check, we investigate the dependence of the BW signal
on the modeling of the combinatorial events. For those
events with ∆M < 1.56 GeV/c2, we estimate 15±1 com-
binatorial background and 58 ± 8 B+ events in the B+

mass window. We model the B+ events using three-body
phase space as above, but use a flat spectrum to describe
the combinatorial events; this increases the average back-
ground level at small ∆M . We fit the data again to the
modified background distribution and the S-wave BW
signal. This fit gives values for ∆M , width, and yield
of 1046.6 ± 2.4 GeV/c2, 10.8 ± 5.7 MeV/c2, and 13 ± 5
events. The

√

−2ln(L0/Lmax) value with this modeling
of background is 4.8. We performed a total of 1.1 million
simulations and found 99 trials with a −2ln(L0/Lmax)
value greater than or equal to the value we obtained in
the data. The p-value determined by this MC simulation
is 9.0 × 10−5, about 3.8σ significance.

We use the results obtained from the fit with a three–
body phase space background shape as our central values.
The mass of this structure is 4143.0 ± 2.9 MeV/c2 after
including the world-average J/ψ mass. To study the sys-
tematic uncertainties of the mass and width, we repeat
the fit to the ∆M distribution while varying the back-
ground shapes as described above, and separately switch-
ing to a non–relativistic BW for signal. The largest de-
viation from the nominal values are 1.2 MeV/c2 for ∆M
and 3.7 MeV/c2 for the width. Therefore we assign a sys-
tematic uncertainty of 1.2 MeV/c2 to the mass and 3.7
MeV/c2 to the width.

There is a small cluster of events approximately one
pion mass higher than the first structure, located around
1.18 GeV/c2 in Fig. 2(b). However, the statistical sig-
nificance of this cluster is less than 3σ. To investigate
possible reflections, we examine the Dalitz plot and pro-
jections into φK+ and J/ψK+ spectrum. We find no
evidence for any other structure in the φK+ and J/ψK+

spectrum; the only structure [i.e. K2(1770)] that has
been claimed in the φK+ spectrum by previous experi-
ments is too broad to alter our analysis [23].

In summary, the world’s largest sample of B+ →
J/ψφK+ decays (75 events) enables us to search for
structure in the J/ψφ mass spectrum, and we find ev-
idence for a narrow structure near the J/ψφ thresh-
old with a significance in excess of 3.8σ. Assuming
an S-wave relativistic BW, the mass and width of this
structure, including systematic uncertainties, are mea-
sured to be 4143.0 ± 2.9(stat) ± 1.2(syst) MeV/c2 and
11.7+8.3

−5.0(stat)± 3.7(syst) MeV/c2, respectively. It is well
above the threshold for open charm decays, so a cc̄ char-
monium meson with this mass would be expected to de-
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reconstruction probability decreases because its l.f. mo-
mentum is too small, or because the decay opening angle is
so large that the pion does not intersect enough detector
planes. Figure 3 shows the corrected mass distributions.
Below !4 GeV=c2 we correct interval-by-interval, while
for higher mass we use a linear fit to the J= ! mass
dependence. The B0 data are corrected for K0

L and K0
S !

!0!0 decays.
We associate the near-threshold enhancement in

Fig. 3(a) with Y production [2], and obtain the mass, width,
and decay rate from "2 fits. The fit function consists of a
relativistic S-wave BW describing the Y and a Gaussian
nonresonant contribution. The corrected B" and B0 distri-
butions are fitted simultaneously, with mass, width, and
Gaussian parameters as common free parameters. The fit
describes the data well ["2=NDF # 45=44 (NDF #
number of degrees of freedom)], as shown in Fig. 3. In
Fig. 3(a), the acceptance-corrected number of events with
J= ! mass less than 3:98 GeV=c2 is 2140$ 290%stat&,
while for the Gaussian it is 420$ 90%stat&. Our average
efficiency of !5% implies that a background fluctuation of
!19 standard deviations would be required to describe the
near-threshold enhancement. This occurrence has negli-
gible probability, and so we have instead a clear observa-
tion of the Y%3940&. The simultaneous fit yields a Y signal
of 1980"396

'379%stat& events (i.e., magnitude 5.2 standard de-
viations) for B" and 527"534

'454%stat& for B0.
Since the acceptance-correction procedure may depend

on the input MC Y%3940& line shape, we combine the first
11 mass intervals for data and MC and make an overall
efficiency correction. The results differ by 1.9%, and we

incorporate this as a systematic error associated with the
MC line shape. Other systematic errors are estimated by
repeating the entire process, separately varying by $1#
the signal peak and width, and the ARGUS parameter, for
the mES fits. The largest systematic uncertainty contribu-
tions to the B" branching fraction are 5–6% due to the
uncertainties in the secondary branching fractions, tracking
efficiency, and particle identification. For B0, the largest
contribution is 10% due to mES mass variation; secondary
branching fractions, particle identification, tracking, and
KS reconstruction efficiency contribute also. For both
modes, there are uncertainties associated with the number
of B !B events produced, and with MC sample size. The
product branching fraction for B" ! YK", Y ! J= ! is
(4:9"1:0

'0:9%stat& $ 0:5%syst&) * 10'5, and that for B0 ! YK0,
Y ! J= ! is (1:3"1:3

'1:1%stat& $ 0:2%syst&) * 10'5, with
upper limit (95% C.L.) 3:9* 10'5 for the latter. The
corresponding branching fractions for B! J= !K are
(3:5$0:2%stat&$0:4%syst&)*10'4, and (3:1$0:6%stat& $
0:3%syst&)*10'4, respectively.

We define RY and RNR as the ratios between the num-
ber of B0 and B" events (after all corrections) for the Y
signal and for the nonresonant contribution, respec-
tively. Simultaneous fits to Figs. 3(a) and 3(b) yield
the values RY # 0:27"0:28

'0:23%stat&"0:04
'0:01%syst& and RNR #

0:97"0:23
'0:22%stat&"0:03

'0:02%syst&; the upper limit (95% C.L.) on
RY is 0.75. Although the uncertainty is large, the central
value of RY is smaller than expected from isospin conser-
vation. In comparison, R is 0:865$ 0:044 for B! J= K
[17] and 0:81$ 0:05%stat& $ 0:01%syst& for B!  %2S&K
[14].

The Y mass and width measurements are subject to
additional systematic effects. When MC-generated signal
events are fitted using the input line shape with mass and
width as free parameters, the fitted value of the mass is
1:6 MeV=c2 lower than the input value of 3:915 GeV=c2.
This results from the limited 3! phase space near J= !
threshold, and so we increase the fitted Y mass value by
1:6 MeV=c2, and assign this as a systematic uncertainty.
Also, we have used an S-wave BW line shape to describe
the Y. We repeat the fit using a P-wave line shape. The
fitted mass value decreases by 1 MeV=c2, and the width
increases by 5 MeV. We assign these as systematic un-
certainties due to the choice of orbital angular mo-
mentum. Finally, a fit to the uncorrected distributions
(Fig. 2) yields a mass value 1:4 MeV=c2 larger, and a
width 4 MeV larger, than obtained for the corrected dis-
tributions. The mass dependence of the acceptance de-
pends on the MC line shape and so systematic
uncertainties of 0:7 MeV=c2 and 2 MeV, respectively, are
associated with the MC line shape choice. These contri-
butions dominate all other sources of systematic un-
certainty, and the final mass and width values are
(3914:6"3:8

'3:4%stat& $ 2:0%syst&) MeV=c2 and (34"12
'8 %stat& $

5%syst&) MeV, respectively.
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FIG. 3 (color online). The corrected J= ! mass distribution
for (a) B" and (b) B0 decay. Each solid (dashed) curve represents
the total fit function (the nonresonant contribution).

PRL 101, 082001 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 AUGUST 2008

082001-6

Plus the previously observed states:

           Belle         BaBar
Mass =  3943 ± 11;  3914.6             MeV
Width =  83  ± 22;   39                MeV

Y(3940)
- Belle discovery in B decays     

confirmed by BaBar.

- Decay mode ω+J/ψ                                                                                                                                   

 X(3940)                          
- Mass = 3942         ± 6  MeV
- Width =  37      ± 8 MeV
- Produced in e+e- (recoil against J/ψ)
- Observed in the decay mode DD*
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JPC QQ H H       H H* H* H*

0++ 3P0 1 : 0 0 : 0 1/3 : 8/3

1++ 3P1 0 : 0 4/3 : 2/3 0 : 2

2++ 3P2 0 : 2/5 0 : 6/5 4/3 : 16/15

S : D wave thresholds for P states.

State D D       D D* D* D*

X(3930) Γ(DD) ≈
 37 MeV

Γ(DD*)
not seen not allowed

X(3940) Γ(DD) 
 not seen

Γ(DD*) ≈
 29 MeV not allowed

Y(4160) Γ(DD)/Γ(D*D*)   
< 0.09

Γ(DD*)/Γ(D*D*)  
< 0.22

Γ(D*D*) ≈
 140 MeV

  Disentangling these states  
  In the 3940 region the Z(3930) is the 

23P2 charmonium state. The remaining 23P0 
and 23P1 are not clearly identified yet. In 
the 4160 region, may have the 33P0 or 31S0 

states.  Identifying the JP of the observed 
states will be very useful.  

  The ηc is produced copiously in B decays. 
Should observe the 31S0 state. 

  Using the observed production of narrow 
charmonium states, we expect large 
production of JPC = 0++, 0-- states recoiling 
against J/ψ in e+e- and JPC = 0-+, 1--, 1++ in 
B decays X+K.

  There is an observed pairing of nearby 
states. One is seen in the decay mode light 
hadrons + J/ψ and the other in charm 
meson pair decays.  Is this like the X(3872) 
case? If true both states must have the 
same JPC.
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 Y(4260) and the 1-- states beyond 

Y(4260) 

-  Decays
• Y(4260) -> π+π- + J/ψ                            

(BaBar, CLEO, Belle)

• Y(4260) -> π0π0 + J/ψ (CLEO)

• Y(4260) -> K+K- + J/ψ (CLEO) 

- Not a charmonium state

• Small ΔR - 43S1 state at 4.26 would have 
ΔR≈2.5

• 13D1 state ψ(4160)
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Figure 4: J/ψπ+π− invariant mass spectrum in the range 3.8−5.0 GeV/c2 and (inset) over
a wider range that includes the ψ(2S) state.

least five charged tracks in the event for background suppression, we report the product of
the branching fraction to states with more than two tracks and the production cross section.
The results are 17.6±2.8+1.5

−2.1 fb, 10.3±2.5+1.4
−1.8 fb and 16.4±3.7+2.4

−3.0 fb for ηc, χc0 and ηc(2S),
respectively. These values are an order of magnitude higher than those predicted by non-
relativistic QCD [13]. However, recent works incorporating charm quark dynamics [14] seem
to narrow down the discrepancy.

5 Observation of Y (4260)

ISR events produced in the Υ (4S) energy region at the B factories act as a probe of inter-
esting physics occurring at a lower center-of-mass energy. Motivated by this, BABAR has
investigated the e+e− → J/ψπ+π−γISR process across the charmonium mass range, using a
data sample of 233 fb−1 integrated luminosity [15]. These events are characterized by two
pions, two leptons (electron or muon) making a J/ψ candidate and a very small recoil mass
against the J/ψπ+π− system. Figure 4 shows the J/ψπ+π− invariant mass spectrum for
the selected candidates. An enhancement of events near 4.26 GeV/c2 is clearly observed
in addition to the expected ψ(2S) peak. No other structures are evident in the spectrum
including the X(3872). Using a maximum likelihood fit, we obtain a signal yield of 125± 23
with a statistical significance of 8σ (the signal is referred to as Y (4260)). The mass and
width of the particle are found to be 4259 ± 8+2

−6 MeV/c2 and 88 ± 23+6
−4 MeV, respectively.

We also calculate a value of Γ(Y (4260) → e+e−) · B(Y → J/ψπ+π−) = 5.5 ± 1.0+0.8
−0.7 eV.

Although all these results are from a single resonance fit, we cannot exclude or establish a
multi-resonance hypothesis at the current level of statistics. More data are needed to reveal
its exact nature.

5

Mass = 4264 ±    MeV;  Width = 83 ±    MeV

Seen by BaBar in ISR production 
 confirmed by CLEO and Belle ⇒ JPC= 1--

consistent with I = 0

FIG. 13 Evidence for Y (4260) from a direct scan by CLEO (Coan et al., 2006a).

observed width implies that Γ(Y → J/ψπ+π−) > 7.7±2.1 MeV. This is much larger than the

typical charmonium transition widths of, for example, Γ(ψ(3770) → J/ψπ+π−) ∼ 80 keV.

And the Y is seen in this mode while the conventional states ψ(4040), ψ(4160), and ψ(4415)

are not.

One predicted consequence of the hybrid hypothesis is that the dominant hybrid char-

monium open-charm decay modes are expected to be a meson pair with an S-wave (D, D∗,

Ds, D∗
s) and a P -wave (DJ , DsJ) in the final state (Close and Page, 2005). The dominant

decay mode is expected to be DD̄1 + c.c.. (Subsequently we shall omit “+c.c.” in cases

where it is to be understood.) Evidence for a large DD̄1 signal would be strong evidence

for the hybrid interpretation. A complication is that DD̄1 threshold is 4287 MeV/c2 if we

consider the lightest D1 to be the narrow state noted in Yao et al. (2006) at 2422 MeV/c2.

The possibility also exists that the Y (4260) could be a DD̄1 bound state. It would decay to

DπD̄∗, where the D and π are not in a D∗. Note that the dip in Re+e− occurs just below

DD̄1 threshold, which may be the first S-wave meson pair accessible in cc̄ fragmentation

(Close and Page, 2005; Rosner, 2006a). In addition to the hybrid decay modes given above,

55
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 X(4008)

 Y(4350)  

 Y(4660)

FIG. 12 Y (4260) signal in ISR from the Υ(4S) by BaBar (Aubert et al., 2005b), CLEO (He et al.,

2006), and Belle (Yuan et al., 2007). The fit parameters are given in Table XI.

the rate, corresponding to constructive and destructive interference. Both solutions arrive

at the same fit function. The two solutions differ markedly. The lower-lying state is not

associated with any presently known charmonium state.

The invariant mass distribution m(π+π−) looks quite different for events at ∼ 4260 MeV

than above and below; the distribution is shifted towards higher values, not consistent with

phase space (Yuan et al., 2007).

A variety of ratios between channels have been measured now (Aubert et al., 2006d; Coan

et al., 2006a; Gowdy, 2006; Heltsley, 2006; Ye, 2006), which should help narrow down the

possible explanations of Y (4260). They are listed in Table XII. The preliminary upper limit

for the ratio of DD̄ to π+π−J/ψ of 7.6 may not seem particularly tight at first glance, but

is to be compared, for example, with the same ratio for the ψ(3770), where it is about 500.

53

Mass = 4008±40     MeV/c2

Width = 226±44     MeV
Seen by Belle in π+π- + J/ψ final state
Not confirmed by BaBar [arXiv:0808.1543v2] 

 JPC= 1--

Mass = 4664±11±5 MeV/c2

Width = 48±15±3  MeV
Seen by Belle in π+π- + ψ(2S) final state

 JPC= 1--

Mass = 4361±9±9 MeV/c2

Width = 74±15±10  MeV
Seen byBaBar, Belle in π+π- + ψ(2S) final state

 JPC= 1--

0

5

10

15

4 4.5 5 5.5
M(!

+
!

-
"(2S)) (GeV/c

2
)

E
n
tr

ie
s
/2

5
 M

e
V

/c
2

FIG. 2: The π+π−ψ(2S) invariant mass distribution for events that pass the ψ(2S) selection. The

open histogram is the data while the shaded histogram is the normalized ψ(2S) sidebands. The
curves show the best fit with two coherent resonances together with a background term and the

contribution from each component. The interference between the two resonances is not shown.
The two dashed curves at each peak show the two solutions (see text).
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FIG. 3: (a) The M2
rec and (b) polar angle distributions of the π+π−ψ(2S) system in the e+e− CM

frame for the π+π−ψ(2S) events with mπ+π−ψ(2S) ∈ [4.0, 5.5] GeV/c2. The points with error bars

are data, and histograms are from MC simulation.

mπ+π−ψ(2S) from 3% at 4.3 GeV/c2 to 5% at 4.7 GeV/c2. The effects of mass resolution,
which is determined from MC simulation to be 3 MeV/c2-6 MeV/c2 over the full mass range,
are small compared with the widths of the observed structures, and therefore are neglected.

Figure 2 shows the fit results with two solutions with equally good fit quality. In these two
solutions, the masses and widths of the resonant structures are the same, but their partial
widths to e+e− and the relative phase between the two resonant structures are different (see

6
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What are the Y(4260), Y(4350) and 
Y(4660)? 

Various options - see 

One attractive possibility - hybrid states  

• Lattice calculations put states in this region

• The Y(4660) state could be the first radial 
excitation of the charm quarks from the ground 
state Y(4260) (analog of ψ’ to J/ψ). This would 
naturally explain its preference for decays to     
ππ+ψ’.  

• Similarly, the Y(4360) would the radial excitation 
of the charm quarks from a ground state X(4008).                             

• Heavy quark spin symmetry: 1-- -> 0-+, 1-+, 2-+ 
states nearby (for Πu potential)

• How many states would be narrow?
4008

4664

4264
4361

Heavy (ccg and bbg) 1−+ states

0 0.5 1 1.5 2
M- M

S
  GeV

M -  M
S
 mass splitting

(M
S
 is spin averaged mass)

Bottom

Charm

UKQCD

CP-PACS

Juge et al.

MILC

MILC

CP-PACS

1
-+

1
-+

Light 1
-+

Y(3940)

Y(4260)

Lattice approach to threshold states – p.25/41

McNeile ICHEP 2006

Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E.
 [Rev. Mod. Phys. 80, 1161 (2008)]
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Summary and Outlook

 The wealth of precision data has solidified our confidence in 
the NRQCD approach  

The velocity expansion for the spectrum and the multipole 
expansions for both electromagnetic and hadronic transitions       
hold up well.

Relativistic corrections: Significant relativistic for the cc system.  
Reduced for the bb system.  Generally consistent with velocity 
scaling expectations. Here phenomenological models inadequate.  
Need lattice QCD and pNRQCD.                          

Quarkonium resonances have been used as factories:
- ϒ(4S), ϒ(5S) - B±, B0, Bs± studies
- ψ(3772) - D±, D0 studies
- ψ(4160) - Ds± studies 
- J/ψ, ψ’, ϒ, ϒ’’,...  - direct decays
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The situation above threshold is not yet clear:  
Need JP determination for many of the new states.

New states and possibly a new spectroscopy: X(3872),                  
X(4008), Y(4140), Y(4260), Y(4350), Y(4660), Z+(4430), ...
- X(3872) large 23P1 component.  Molecular interpretation less attractive.  

Strong decay dynamics plays an important role. Look for decay mode ππχc1

- The states in the 3940 and 4160 regions also seem paired.  A signal of   
decay dynamics in the JPC = 2++, 0++ (23PJ), and/or the 0-+ (31S0) channels?  
Any relation to unexpectedly large hadronic transition rates:                 
Υ(5S) -> Υ(nS) + 2π (n=1,2,3) ?

- The Y(4260) and related 1-- new states. Hybrid states?

- [If confirmed] Z+(4430) smoking gun for four quark states. Not I=0.         
Look for isospin partners. 

Future prospects
NRQCD and HQET allows scaling from c to b systems. This will eventually 
provide critical tests of our understanding of new charmonium states.

Lattice calculations will provide insight into theoretical issues.

Answers in many cases will require the next generation of heavy flavor 
experiments - BES III, LHCb and Super-B factories. 
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• Charm Meson Pair Thresholds                       

L=0

L=1

Narrow Thresholds 

wide   D*D(0+),D(*)D’(1+),...    S-wave

⎫
⎬P-wave

⎭
⎫⎬D-wave⎭

⎫⎬D-wave⎭

⎫⎬S-wave⎭

3

TABLE I: Low-lying (S-wave) mesons containing one heavy quark. Experimental masses and widths are from the PDG (2008)
[20]. For B∗−, B̄∗0 only the average mass is determined; however, the mass difference is expected to be small. For widths not
determined experimentally the theoretical expected values [21] are used.

cq̄ [jP
l = 1

2

−
] bq̄ [jP

l = 1
2

−
]

Meson Mass (MeV/c2) Width (eV) Meson Mass (MeV/c2) Width (eV)

D0 1864.84± 0.17 (1.60± 0.01)× 10−3 B− 5279.15± 0.31 (4.02± 0.03)× 10−4

D+ 1869.62± 0.20 (6.33± 0.04)× 10−4 B̄0 5279.53± 0.33 (4.30± 0.03)× 10−4

D+
s 1968.49± 0.34 (1.32± 0.02)× 10−3 B̄0

s 5366.3± 0.6 (4.48± 0.08)× 10−4

D∗0

D∗+
2006.97± 0.19
2010.27± 0.17

77× 103 [21]
(96± 4± 22)× 103

B∗−

B̄∗0

o
5325.1± 0.5

n 780 [21]
240 [21]

D∗+
s 2112.3± 0.5 440 [21] B̄∗0

s 5412.8± 1.3 150 [21]

TABLE II: Low-lying (P-wave) mesons containing one heavy quark.

cq̄ [jP
l = 1

2

+
] bq̄ [jP

l = 1
2

+
]

Meson (JP) Mass (MeV/c2) Width (MeV) Meson (JP) Mass (MeV/c2) Width (MeV)
D∗0(0+) 2352± 50 261± 50 B∗−(0+) 5730 (a) 270 (a)
D∗+(0+) 2403± 38 283± 42 B̄∗0(0+) 5730 (a) 270(a)
D∗+

s (0+) 2317.8± 0.6 0.023 [21] B̄∗0
s (0+) 5716 0.080 [21]

D0(1+) 2427± 35 384 +130
−105 B−(1+) 5740 (a) 270 (a)

D+(1+) 2427 (a) 384 (a) B̄0(1+) 5740 (a) 270 (a)
D+

s (1+) 2459.6± 0.6 0.038 [21] B̄0
s (1+) 5763 0.118 [21]

cq̄ [jP
l = 3

2

+
] bq̄ [jP

l = 3
2

+
]

Meson (JP) Mass (MeV/c2) Width (MeV) Meson (JP) Mass (MeV/c2) Width (MeV)
D0(1+) 2422.3± 1.3 20.4± 1.7 B−(1+) 5725.3 15 (a)

D+(1+) 2423.4± 3.1 25± 6 B̄0(1+) 5725.3 +2.1
−2.7 [22] 15 (a)

D+
s (1+) 2535.35± 0.6 0.29 (a) B̄0

s (1+) 5829.4± 0.7 0.002 (a)
D∗0(2+) 2461.1± 1.6 42± 4 B∗−(2+) 5740.2 22.7

D∗+(2+) 2460.1 +2.6
−3.5 37± 6 B̄∗0(2+) 5740.2 +1.9

−2.0 [22] 22.7 + 5.0
−10.7 [22]

D∗+
s (2+) 2572.6± 0.9 20± 5 B̄∗0

s (2+) 5839.7± 0.6 1.1(a)

III. HEAVY QUARK THRESHOLDS

IV. CCC MODEL

The Green’s function G is formally given by:

[G−1]ij = (Mij − Eδij) + iΩ(E)ij (13)

where Ω includes all the effects of coupled channels and
M is the mass matrix in the cc̄ sector. Expanding the
mass term in powers of m−1

Q :

Mij = δijMi + m−2
Q Xij (14)

The off-diagonal SD mixing terms in the cc̄ sector are
included in X . We retain these terms, as they are im-
portant in calculating the leading contributions of L = 2
states to Rc. This mixing is only significant between
states nearby in mass. The calculation of SD mixing ma-
trix is straightforward[? ].

HSD =
4αs

m2
Qr3

sisj [r̂ir̂j − 1
3
δij ] (15)

Using the interaction Hamiltonian in Eq. 15 the mixing
for the low-lying S and D states is shown in Table ??.

The electronic width for a n3D1 state is given by [? ]

Γ(n3D1 → e+e−) =
∑

m

ΓSDr−2[σiσj(rirj − 1
3
δij ] (16)

V. THE ψ(3770) REGION

In the region of the ψ(3770) resonance only the D+D−

and D0D̄0 charm meson channels are open. The produc-
tion of charm mesons is only significant near the reso-

TABLE III: Mixing between 3S1 and 3D1 charmonium states
from short distance relativistic corrections. All mixing matrix
elements are given in MeV.

S State
D State 1S 2S 3S 4S

1D 119.99 −105.95 −11.80 −6.26
2D 111.15 9.52 −92.56 −15.07

3

TABLE I: Low-lying (S-wave) mesons containing one heavy quark. Experimental masses and widths are from the PDG (2008)
[20]. For B∗−, B̄∗0 only the average mass is determined; however, the mass difference is expected to be small. For widths not
determined experimentally the theoretical expected values [21] are used.
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III. HEAVY QUARK THRESHOLDS

IV. CCC MODEL

The Green’s function G is formally given by:

[G−1]ij = (Mij − Eδij) + iΩ(E)ij (13)

where Ω includes all the effects of coupled channels and
M is the mass matrix in the cc̄ sector. Expanding the
mass term in powers of m−1

Q :

Mij = δijMi + m−2
Q Xij (14)

The off-diagonal SD mixing terms in the cc̄ sector are
included in X . We retain these terms, as they are im-
portant in calculating the leading contributions of L = 2
states to Rc. This mixing is only significant between
states nearby in mass. The calculation of SD mixing ma-
trix is straightforward[? ].

HSD =
4αs

m2
Qr3

sisj [r̂ir̂j − 1
3
δij ] (15)

Using the interaction Hamiltonian in Eq. 15 the mixing
for the low-lying S and D states is shown in Table ??.

The electronic width for a n3D1 state is given by [? ]

Γ(n3D1 → e+e−) =
∑

m

ΓSDr−2[σiσj(rirj − 1
3
δij ] (16)

V. THE ψ(3770) REGION

In the region of the ψ(3770) resonance only the D+D−

and D0D̄0 charm meson channels are open. The produc-
tion of charm mesons is only significant near the reso-

TABLE III: Mixing between 3S1 and 3D1 charmonium states
from short distance relativistic corrections. All mixing matrix
elements are given in MeV.

S State
D State 1S 2S 3S 4S

1D 119.99 −105.95 −11.80 −6.26
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FIG. 4: The “Υ(5S)” yields as functions of M(π+π−) and cos θHel for (a,c) Υ(1S)π+π− and (b,d)

Υ(2S)π+π− transitions. The shaded (open) histogram are from MC simulations using the model
of Ref. [1] (phase-space model).

TABLE I: Signal yield (Ns), significance (Σ), reconstruction efficiency, and observed cross-section
(σ) for e+e− → Υ(nS)π+π− and Υ(1S)K+K− at

√
s ∼ 10.87 GeV. Assuming the Υ(5S) to be

the sole source of the observed events, the branching fractions (B) and the partial widths (Γ) for
Υ(5S) → Υ(nS)π+π− and Υ(1S)K+K− are also given. The first uncertainty is statistical, and
the second is systematic.

Process Ns Σ Eff.(%) σ(pb) B(%) Γ(MeV)

Υ(1S)π+π− 325+20
−19 20σ 37.4 1.61 ± 0.10 ± 0.12 0.53 ± 0.03 ± 0.05 0.59 ± 0.04 ± 0.09

Υ(2S)π+π− 186 ± 15 14σ 18.9 2.35 ± 0.19 ± 0.32 0.78 ± 0.06 ± 0.11 0.85 ± 0.07 ± 0.16

Υ(3S)π+π− 10.5+4.0
−3.3 3.2σ 1.5 1.44+0.55

−0.45 ± 0.19 0.48+0.18
−0.15 ± 0.07 0.52+0.20

−0.17 ± 0.10

Υ(1S)K+K− 20.2+5.2
−4.5 4.9σ 20.3 0.185+0.048

−0.041 ± 0.028 0.061+0.016
−0.014 ± 0.010 0.067+0.017

−0.015 ± 0.013

distributions give rise to 4.4% and 6.8% error for Υ(1S)π+π− and Υ(2S)π+π− MC efficien-
cies, respectively. For the other two modes, the model of Ref. [1] is assumed. The difference
between this model and the phase-space model is included as a systematic uncertainty for this
assumption. A relative large uncertainty of 13.6% arises for the “Υ(5S)” → Υ(1S)K+K−

channel, while the corresponding error for “Υ(5S)” → Υ(3S)π+π− is small (3.2%) due to
limited phase-space. The uncertainties from PDF parameterization are obtained either by
replacing the signal PDF with a sum of three Gaussians, or by a second order polynomial
for the background. The difference between the fits with alternative PDFs and the nominal
results are included as systematic uncertainties. The selection criteria for rejecting radiative
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FIG. 4: The “Υ(5S)” yields as functions of M(π+π−) and cos θHel for (a,c) Υ(1S)π+π− and (b,d)

Υ(2S)π+π− transitions. The shaded (open) histogram are from MC simulations using the model
of Ref. [1] (phase-space model).

TABLE I: Signal yield (Ns), significance (Σ), reconstruction efficiency, and observed cross-section
(σ) for e+e− → Υ(nS)π+π− and Υ(1S)K+K− at

√
s ∼ 10.87 GeV. Assuming the Υ(5S) to be

the sole source of the observed events, the branching fractions (B) and the partial widths (Γ) for
Υ(5S) → Υ(nS)π+π− and Υ(1S)K+K− are also given. The first uncertainty is statistical, and
the second is systematic.

Process Ns Σ Eff.(%) σ(pb) B(%) Γ(MeV)

Υ(1S)π+π− 325+20
−19 20σ 37.4 1.61 ± 0.10 ± 0.12 0.53 ± 0.03 ± 0.05 0.59 ± 0.04 ± 0.09

Υ(2S)π+π− 186 ± 15 14σ 18.9 2.35 ± 0.19 ± 0.32 0.78 ± 0.06 ± 0.11 0.85 ± 0.07 ± 0.16

Υ(3S)π+π− 10.5+4.0
−3.3 3.2σ 1.5 1.44+0.55

−0.45 ± 0.19 0.48+0.18
−0.15 ± 0.07 0.52+0.20

−0.17 ± 0.10

Υ(1S)K+K− 20.2+5.2
−4.5 4.9σ 20.3 0.185+0.048

−0.041 ± 0.028 0.061+0.016
−0.014 ± 0.010 0.067+0.017

−0.015 ± 0.013

distributions give rise to 4.4% and 6.8% error for Υ(1S)π+π− and Υ(2S)π+π− MC efficien-
cies, respectively. For the other two modes, the model of Ref. [1] is assumed. The difference
between this model and the phase-space model is included as a systematic uncertainty for this
assumption. A relative large uncertainty of 13.6% arises for the “Υ(5S)” → Υ(1S)K+K−

channel, while the corresponding error for “Υ(5S)” → Υ(3S)π+π− is small (3.2%) due to
limited phase-space. The uncertainties from PDF parameterization are obtained either by
replacing the signal PDF with a sum of three Gaussians, or by a second order polynomial
for the background. The difference between the fits with alternative PDFs and the nominal
results are included as systematic uncertainties. The selection criteria for rejecting radiative

8

New Belle Measurements - [hep-ex/0710.2577]
Υ(5S) -> π+π-  + Υ(nS)  (n=1,2,3)

Large partial rates.            
Continuum e+e--> ππΥ(nS) 
background not subtracted.      

M(ππ) and angular distribution.  
Compare to Υ(4S).
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4

Figure 3. The production cross sections for

D(∗)D(∗) (upper), D(∗)
s D(∗)

s (upper middle) and
multi-body (lower middle) production. The lower
plot shows the total charm cross section deter-
mined by the alternate methods described in the
text. The two-body and total production cross
sections are compared to a model [14].

luminosity to give the cross sections shown in
the two upper plots in Figure 3. Two addi-
tional components describing multi-body produc-
tion D∗D(∗)π are required to describe the low mo-
mentum distribution at

√
s > 4.06 GeV. This is

the first observation of multi-body production in
the charm threshold region.

Given the relative simplicity of the D(∗)+
s D(∗)−

s

production and the limited statistics an alter-
native technique is used to determine the cross
sections. The separation of the different mech-
anisms in the beam-energy difference (∆E =
EDs

− Ebeam) and the beam-constrained mass
(Mbc =

√

E2
beam

− |PDs
|2) plane is used. The

background is subtracted using ∆E and Mbc side-
bands. The resulting cross sections are shown in
the upper middle plot in Figure 3.

The dominant sources of systematic uncer-
tainty are the selection efficiency, yield determi-
nation and the normalisation. Details of the un-
certainty on the selection efficiency can be found
in Ref. [12]. The signal functions for the deter-
mination of D0 and D+ production mechanisms
depend on the modelling of initial state radiation
and the helicity amplitudes for D∗D∗; variations
of these models over a broad range of assumptions
leads to the systematic uncertainty. Variations in
the Mbc and ∆E selection criteria are used to esti-
mate the uncertainty related to signal extraction
in the Ds modes. The uncertainty on the nor-
malisation arises from that on the measured lumi-
nosity and the branching fractions of the modes
reconstructed [13]. The total systematic uncer-
tainties are between 3.4% and 6.8% for two-body
production mechanisms; the multi-body produc-
tion mechanisms D∗Dπ and D∗D

∗

π have system-
atic uncertainties of 12% and 25% uncertainties,
respectively.

The results are compared to an updated calcu-
lation of Eichten et al. [14]. There is reasonable
qualitative agreement for most two-body produc-
tion mechanisms apart from D∗D∗ production in
the

√
s range 4.05 to 4.20 GeV.

The results at 4.26 GeV have the potential to
study the nature of the Y (4260). Hybrid char-
monium [15] and tetraquark [16] interpretations
suggest enhancements of some production mech-
anisms; no significant enhancements are observed
disfavouring these models.

The sum of the exclusive cross sections should
equal the total charm cross section. This has
been tested with measurements using two in-
clusive techniques. The sum of inclusive cross-
sections for single D0, D+ and Ds production di-
vided by two is found to be in agreement with
the total exclusive cross sections. In addition,
the total hadronic cross section is determined in
a manner similar to that described in Section 3.
The light-quark production cross section is sub-
tracted using measurements below cc̄ threshold
extrapolated with 1/s dependence. The total
charm cross section from this method is found to
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FIG. 3 E1 dipole transition matrix elements for the charmonium decays 23S1 → 13PJ . The

horizontal bands indicate the experimental results. The circles designate nonrelativistic predictions

and the triangles relativistic predictions. Within these subsets the results are given in chronological

order of the publication date. The labels refer to C-Cornell Model (13), QR-Quigg Rosner, cc̄

ρ = 2 and bb̄ potentials (21), BT-Buchmüller Tye (89), GRR-Gupta Radford Repko (90), MB-

McClary Byers (43), MR-Moxhay Rosner (42), GOS-Grotch Owen Sebastian (34), GI-Godfrey

Isgur, calculated using the wavefunctions of Ref. (35), L-Lahde, DYN column (38), EFG-Ebert

Faustov Galkin (37).

23

 C QR2 BT GRR KR F MB MR GOS GI L EFG

|<
!

2b
'|r

|"
''>

|  
(G

e
V

-1
)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

 C QR2 BT GRR KR F MB MR GOS GI L EFG

|<
!

1b
'|r

|"
''>

|  
(G

e
V

-1
)

2.4

2.6

2.8

3.0

 C QR2 BT GRR KR F MB MR GOS GI L EFG
|<
!

0b
'|r

|"
''>

|  
(G

e
V

-1
)

2.1

2.2

2.3

2.4

2.5

2.6

2.7

FIG. 16 E1 dipole transition matrix elements for the bottomonium decays 33S1 → 23PJ . The

labels are the same as in Fig. 15.
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FIG. 15 E1 dipole transition matrix elements for the bottomonium decays 23S1 → 13PJ . The

labels are the same as in Fig. 3 with the addition of two sets of predictions: KR-Kwong Rosner

(2), F-Fulcher (226).
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23S1->13PJ (cc) 

J=2 

J=1 

J=0 

33S1->23PJ (bb) 23S1->13PJ (bb) 

J=2 J=2 

J=1 J=1 

J=0 J=0 

EifS states -> P states

Generally good agreement with NR MPE  

Relativistic corrections 10%-20% effects in cc 
system.

Need better theoretical guidance. 

Table 2: Experimental results for E1 transitions n3S1 to m3PJ . Total widths:
Γ(Ψ(2S)) = 337 ± 13, Γ(Υ(2S)) = 32.0 ± 2.6 and Γ(Υ(3S)) = 20.3 ± 1.8 (in keV) .

Transition k BR Rate |Eif |

i
E1
−→ f (MeV) % (keV) (GeV−1)

cc̄
23S1 13P2 127 9.33 ± 0.14 ± 0.61 31.4 ± 2.5 2.53 ± 0.10
23S1 13P1 171 9.07 ± 0.11 ± 0.54 30.6 ± 2.3 2.06 ± 0.08
23S1 13P0 261 9.22 ± 0.11 ± 0.46 31.1 ± 2.1 1.91 ± 0.06

bb̄
23S1 13P2 110.6 7.24 ± 0.11 ± 0.40 2.32 ± 0.23 1.69 ± 0.08
23S1 13P1 129.6 6.93 ± 0.12 ± 0.41 2.21 ± 0.23 1.68 ± 0.08
23S1 13P0 162.6 3.75 ± 0.12 ± 0.47 1.20 ± 0.18 1.52 ± 0.11
33S1 23P2 86.0 15.79 ± 0.17 ± 0.73 3.21 ± 0.37 2.90 ± 0.15
33S1 23P1 99.2 14.54 ± 0.18 ± 0.73 2.95 ± 0.34 2.90 ± 0.15
33S1 23P0 121.6 6.77 ± 0.20 ± 0.65 1.37 ± 0.18 2.52 ± 0.16
33S1 13P0 483 0.30 ± 0.04 ± 0.10 0.061 ± 0.023 0.067 ± 0.012

Table 3: Selected properties of quarkonium systems. Cornell potential model used
for calculations.

cc̄
State < |r| > (fm) < v2 >
J/ψ 0.32 0.26
χc(1P ) 0.57 0.24
ψ(2S) 0.70 0.29
ψ(3770) 0.78 0.28

bb̄
State < |r| > (fm) < v2 >
Υ(1S) 0.19 0.091
χb(1P ) 0.35 0.072
Υ(2S) 0.44 0.086
Υ(1D) 0.50 0.080
χb(2P ) 0.56 0.089
Υ(3S) 0.63 0.100
Υ(4S) 0.80 0.116

2
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Radial Wavefunctions – bb̄
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1 Rates

Table 1: Cancellations in Eif by node regions.

bb̄ initial state node
Transition < 1 1 to 2 2 to 3 total
2S → 1P 0.07 −1.68 −1.61
3S → 2P 0.04 −0.12 −2.43 −2.51
3S → 1P 0.04 −0.63 0.65 0.06

1

33S1 -> 13PJ transition dynamically suppressed. Rate 
very sensitive to relativistic corrections.  

nP -> mS transitions. Generally good agreement with 
NR predictions. Again better theoretical  control for 
relativistic corrections needed

TABLE XV Predicted (2) and measured (12) branching ratios for χbJ(2P ) = 23PJ radiative E1

decays.

Final Predicted B Measured B

Level state (%) (2) (%) (12)

23P0 γ + 1S 0.96 0.9 ± 0.6

γ + 2S 1.27 4.6 ± 2.1

23P1 γ + 1S 11.8 8.5 ± 1.3

γ + 2S 20.2 21 ± 4

23P2 γ + 1S 5.3 7.1 ± 1.0

γ + 2S 18.9 16.2 ± 2.4

knowledge of the χbJ(2P ) branching ratios, as summarized in Table XV.

The dipole matrix elements for Υ(2S) → γχbJ(1P ) and Υ(3S) → γχbJ(2P ) are shown

in Figs. 15 and 16, along with predictions of various models. The dipole matrix element

predictions are in generally good agreement with the observed values.

As already pointed out, the most notable exceptions are the matrix elements

〈33S1|r|13PJ〉. In the NR limit this overlap is less than 5% of any other S − P overlap,

and its suppression occurs for a broad range of potential shapes (227). This dynamical

accident makes these transition rates very sensitive to the details of wave functions and

relativistic corrections which are not known to this level of precision. This sensitivity is

shown most clearly looking at the signs of the matrix elements as well as their magnitudes.

The average experimental value for this matrix element is 〈33S1|r|13PJ〉 = 0.050 ± 0.006

GeV−1 (228). Taking the predictions of Ref. (35) for comparison, the average over J values

gives 0.052 GeV−1 which is in good agreement with the observed value. However, more

detailed scrutiny gives 0.097, 0.045, and –0.015 GeV−1 for J = 2, 1, and 0 matrix elements

respectively. Not only is there a large variation in the magnitudes but the sign also changes,

highlighting how sensitive the results for this particular transition are to details of the model

due to delicate cancellations in the integral.

The branching ratios can also be used to measure the ratios of various E1 matrix elements

which can then be compared to potential model predictions. CLEO (228) obtained the
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FIG. 4 E1 dipole transition matrix elements for the charmonium decays 13PJ → 13S1. Labels are

as in Fig. 3.

ratios a2 for these decays are

a2(χc1) = Eγ1
(1 + κc)/(4mc) , (26)

a2(χc2) = (3/
√

5)Eγ2
(1 + κc)/(4mc) , (27)

25

13PJ ->13S1 (cc) 
J=2 

J=1 

J=0 

Exp 
GI Model 

42
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ψ(3770)-> 13PJ transitions:                                               
Can study relativistic effects including 
coupling to decay channels.  

ψ’(2S) -> 13PJ -> J/ψ transitions:            
Can study size of higher multipole terms 
M2 and E3. 

TABLE V: M2 and E3 multipole amplitudes for radiative transitions involving χc states. The

values of X and Y are model dependent and are defined in the text. Note X = 0 if no S-D mixing.

χcJ → J/ψ + γ

J theory E835 PDG

2 a2 ≈ −
√

5
3

k
4mc

(1 + κc) −0.093+0.039
−0.041 ± 0.006 −0.140± 0.006

2 a3 ≈ 0 0.020+0.055
−0.044 ± 0.009 0.011+0.041

−0.033

1 a2 ≈ − k
4mc

(1 + κc) 0.002± 0.032± 0.004 −0.002+0.008
−0.017

J ψ ′ → χcJ + γ theory

2 a2 ≈ −
√

3
2
√

10
k

mc
[(1 + κc)(1 +

√
2

5 X)− i1
5X]/[1− 1

5
√

2
X]

2 a3 ≈ −12
√

2
175

k
mc

X[1 + 3
8Y ]/[1− 1

5
√

2
X]

1 a2 ≈ − k
4mc

[(1 + κc)(1 + 2
√

2
5 X) + i 3

10X]/[1 + 1√
2
X]

12

TABLE V: Our measurements of the photon transitions widths (statistical and systematic errors)

compared to theoretical predictions. The J =0 measurement comes from this analysis. The J =2
upper limit comes from Ref.[5]. The J = 1 measurement comes from the combination of this
analysis and of the result in Ref.[5].

Γ(ψ(3770) → γχcJ) in keV
J = 2 J = 1 J = 0

Our results < 21 70 ± 17 172 ± 30

Rosner (non-relativistic) [7] 24 ± 4 73 ± 9 523 ± 12
Ding-Qin-Chao [6]

non-relativistic 3.6 95 312

relativistic 3.0 72 199
Eichten-Lane-Quigg [8]

non-relativistic 3.2 183 254
with coupled-channels corrections 3.9 59 225
Barnes-Godfrey-Swanson [9]

non-relativistic 4.9 125 403
relativistic 3.3 77 213

predictions.
The theoretical predictions are based on potential model calculations [13] of the electric

dipole matrix element <13PJ |r|13D1 >:

ΓJ =
4

3
e2

QαE3
γCJ <13PJ |r|13D1 >2,

where eQ is the c quark charge and α is the fine structure constant. The spin factors CJ

are equal to 2/9, 1/6 and 1/90 for J = 0, 1 and 2, respectively [15]. The phase-space
factor (E3

γ) also favors the J = 0 transition. Together, the spin and phase-space factors
predict enhancement of the J = 0 width by a factor of ∼ 3.2 and ∼ 85 over J = 1 and
J = 2, respectively. In the non-relativistic limit, the matrix element is independent of J .
The measured ratios of the widths, Γ0/Γ1 = 2.5 ± 0.6 and Γ0/Γ2 > 8 (90% C.L.), are
consistent with these crude predictions, therefore, providing further evidence that ψ(3770)
is predominantly a 13D1 state. A small admixture of 23S1 wave, necessary to explain the
observed Γee(ψ(3770)), is expected to increase Γ0 and Γ2 while making Γ1 smaller [6, 7]. The
large experimental and theoretical uncertainties in ΓJ make testing of the mixing hypothesis
via radiative transitions difficult.

As evident from Table V, the naive non-relativistic calculations tend to overestimate
absolute values of the transition rates. Relativistic [6, 9] or coupled-channel [8] corrections
are necessary for quantitative agreement with the data. The latter is not surprising since
non-relativistic calculations also overestimate ψ(2S) → γχcJ transition rates [16].

We gratefully acknowledge the effort of the CESR staff in providing us with excellent
luminosity and running conditions. This work was supported by the A.P. Sloan Foundation,
the National Science Foundation, the U.S. Department of Energy, and the Natural Sciences
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Table 4: Two pion transitions observed in the cc̄ system.

Transition m(max)
ππ Branching Fraction Partial Width 1

i → f + X (MeV) (%) (keV)
ψ(2S) → J/ψ π+π− 589 33.54 ± 0.14 ± 1.10 113.0 ± 8.4

π0π0 16.52 ± 0.14 ± 0.58 55.7 ± 4.1
ψ(3770) → J/ψ π+π− 676 (1.89 ± 0.20 ± 0.20) × 10−1 43.5 ± 11.5

π0π0 (0.80 ± 0.25 ± 0.16) × 10−1 18.4 ± 9.8

Table 5: Two pion transitions observed in the bb̄ system.

Transition m(max)
ππ Branching Fraction Partial Width 2

i → f + X (MeV) (%) (keV)
Υ(2S) → Υ(1S) π+π− 563 18.8 ± 0.6 6.0 ± 0.5

π0π0 9.0 ± 0.8 2.6 ± 0.2
Υ(3S) → Υ(1S) π+π− 895 4.48 ± 0.21 0.77 ± 0.06

π0π0 2.06 ± 0.28 0.36 ± 0.06
Υ(3S) → Υ(2S) π+π− 332 2.8 ± 0.6 0.48 ± 0.12

π0π0 2.00 ± 0.32 0.35 ± 0.07
Υ(4S) → Υ(1S) π+π− 1120 (0.90 ± 0.15) × 10−2 1.8 ± 0.4
Υ(4S) → Υ(2S) π+π− 557 (0.83 ± 0.16) × 10−2 1.7 ± 0.5
χb2(2P ) → χb2(1P ) π+π− 356 (6.0 ± 2.1) × 10−1 0.83 ± 0.32
χb1(2P ) → χb1(1P ) π+π− 363 (8.6 ± 3.1) × 10−1 0.83 ± 0.32

1Total widths: Γ(ψ(2S)) = 337 ± 13 keV and Γ(ψ(3770)) = 23.0 ± 2.7 MeV
2Total widths: Γ(Υ(2S)) = 28.62 ± 1.30 keV, Γ(Υ(3S)) = 17.28 ± 0.61 keV, Γ(Υ(4S)) = 110 ±

13 MeV, Γ(χb1(2P )) = 96 ± 16 keV and Γ(χb2(2P )) = 138 ± 19 keV.

4

=> |C1| = 8.87x10-3 

=> |C2|/|C1| = 1.52  +0.35-0.45  
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π0π0 9.0 ± 0.8 2.6 ± 0.2
Υ(3S) → Υ(1S) π+π− 895 4.48 ± 0.21 0.77 ± 0.06

π0π0 2.06 ± 0.28 0.36 ± 0.06
Υ(3S) → Υ(2S) π+π− 332 2.8 ± 0.6 0.48 ± 0.12

π0π0 2.00 ± 0.32 0.35 ± 0.07
Υ(4S) → Υ(1S) π+π− 1120 (0.90 ± 0.15) × 10−2 1.8 ± 0.4
Υ(4S) → Υ(2S) π+π− 557 (0.83 ± 0.16) × 10−2 1.7 ± 0.5
χb2(2P ) → χb2(1P ) π+π− 356 (6.0 ± 2.1) × 10−1 0.83 ± 0.32
χb1(2P ) → χb1(1P ) π+π− 363 (8.6 ± 3.1) × 10−1 0.83 ± 0.32

1Total widths: Γ(ψ(2S)) = 337 ± 13 keV and Γ(ψ(3770)) = 23.0 ± 2.7 MeV
2Total widths: Γ(Υ(2S)) = 28.62 ± 1.30 keV, Γ(Υ(3S)) = 17.28 ± 0.61 keV, Γ(Υ(4S)) = 110 ±

13 MeV, Γ(χb1(2P )) = 96 ± 16 keV and Γ(χb2(2P )) = 138 ± 19 keV.

4

 Rescaled Kuang &Yan model

} 9.4  
} 1.4  

} 0.6  

0.6
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 Model generally in good agreement with experiment
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Predicted  for 
ϒ(3S)->ϒ(1S)

Kuang &Yan (1981)  

Like the E1 case ?
 Δn =2 overlap suppressed.

∑

nl

|Ψnl >< Ψnl|
Ei − Enl

∼ 1

Ei − ETH
string

+ · · ·

Below lowest intermediate state threshold

 

Hence transition rates fairly insensitive to 
intermediate states details

Note the large variations in 
phase space and overlaps 
for the various ϒ states.

Table 10: Transitions expectations.

Transition G | < i|r2|f > | G< i|r2|f >
2

(GeV7) (GeV−2) ×102

ψ(2S) → J/ψ 3.56 × 10−2 3.36 40.2
Υ(2S) → Υ(1S) 2.87 × 10−2 1.19 4.06
Υ(3S) → Υ(1S) 1.09 2.37 × 10−1 0.61
Υ(3S) → Υ(2S) 9.09 × 10−5 3.70 0.12
Υ(4S) → Υ(1S) 5.58 9.74 × 10−2 0.48
Υ(4S) → Υ(2S) 2.61 × 10−2 4.64 × 10−1 0.56

Table 11: Transitions expectations.

Transition |F|(full)
(GeV−2)

ψ(2S) → J/ψ 3.82
Υ(2S) → Υ(1S) 1.37
Υ(3S) → Υ(1S) 1.33 × 10−1

Υ(3S) → Υ(2S) 3.70
Υ(4S) → Υ(1S) −1.17 × 10−2

Υ(4S) → Υ(2S) −2.71 × 10−1

F(full) =
∑

n

< i|r|X(n) >< X(n)|r|f >
Ei − EX(0)

Ei − EX(n)

7
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If leading <E1-E1> suppressed, can the <M1-M1> significant?   
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<E1 M1>; <M1 M1>, <E1 M2> higher order 

O(v) O(v2)
CiCf = −1 + 1

symmetry 
  breaking: 
  π; η, ω  

chiral effective theory:  

CHAPTER 4

For instance, the amplitude for the decay (4.149) is given by:

M(3S1→3S1 + ππ) =
4i
√

MSMS′

f2
π

ε′ · ε∗ (ASS′p1 · p2 + BSS′v · p1v · p2) (4.158)

where ε and ε′ are the polarisation vectors of quarkonium states; p1, p2 are the momenta of the two pions.

It is well known that the use of chiral symmetry arguments leads to a general amplitude for the process

in question, which contains a third independent term given by:

CSS′
4i
√

MSMS′

f2
π

(
ε′ · p1ε

∗ · p2 + ε′ · p2ε
∗ · p1

)
. (4.159)

In the nonrelativistic limit in QCDME, Yan [230] finds CSS′ = 0. It is interesting to note that, within
the present formalism, this result is an immediate consequence of the chiral and heavy quark spin sym-

metries. However, these symmetries are not exact and corrections to the symmetry limit are expected.

In the chiral Lagrangian (CL) approach, the π0 − η − η′ mixings can be derived, which should
be taken into account in predicting single pseudoscalar meson transitions of heavy quarkonia (cf. Sec-

tion 7.2). Let us define

m̂ ≡




mu 0 0
0 md 0
0 0 ms



 . (4.160)

The Lagrangian that gives mass to the pseudoscalar octet (massless in the chiral limit) and causes π0 − η
mixing is

Lm = λ0〈m̂(Σ + Σ†)〉, (4.161)

and that giving rise to the mixing of η′ with π0 and η is

Lηη′ =
ifπ

4
λ̃〈m̂(Σ − Σ†)〉η′, (4.162)

where λ̂ is a parameter with the dimension of a mass. At first order in the mixing angles the physical
states π̃0, η̃, and η̃′ determined from the above Lagrangians are:

π̃0 = π0 + εη + ε′η′, η̃ = η − επ0 + θη′, η̃′ = η′ − θη − ε′π0, (4.163)

in which the mixing angles are

ε =
(md − mu)

√
3

4(ms −
mu + md

2
)
, ε′ =

λ̃(md − mu)√
2(m2

η′ − m2
π0)

, θ =

√
2

3

λ̃

(
ms −

mu + md

2

)

m2
η′ − m2

η
. (4.164)

7.2 Predictions for hadronic transitions in the single-channel approach

In this section, we give the predictions for HTs in the single-channel approach. In this approach, the

amplitude of HT is diagrammatically shown in Fig. 4.13 in which there are two complicated vertices:

namely, the MGE vertex of the heavy quarks and the vertex of hadronization (H) describing the conver-

sion of the emitted gluons into light hadrons. In the following, we shall treat them separately.

Let us first consider the HT processes n3
i S1→n3

fS1 + π + π. To lowest order, these are double
electric-dipole transitions (E1E1). The transition amplitude can be obtained from the S matrix element
(4.143). After some algebra, we obtain [230, 231, 237]

ME1E1 = i
g2
E

6

∑

KLK′L′

〈Φfh|x · E|KL〉
〈

KL

∣∣∣∣
1

Ei − H(0)
QCD − iD0

∣∣∣∣K
′L′

〉
〈K ′L′|x · E|Φi〉, (4.165)

238
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It is well known that the use of chiral symmetry arguments leads to a general amplitude for the process
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the present formalism, this result is an immediate consequence of the chiral and heavy quark spin sym-

metries. However, these symmetries are not exact and corrections to the symmetry limit are expected.

In the chiral Lagrangian (CL) approach, the π0 − η − η′ mixings can be derived, which should
be taken into account in predicting single pseudoscalar meson transitions of heavy quarkonia (cf. Sec-

tion 7.2). Let us define
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The Lagrangian that gives mass to the pseudoscalar octet (massless in the chiral limit) and causes π0 − η
mixing is

Lm = λ0〈m̂(Σ + Σ†)〉, (4.161)

and that giving rise to the mixing of η′ with π0 and η is

Lηη′ =
ifπ

4
λ̃〈m̂(Σ − Σ†)〉η′, (4.162)

where λ̂ is a parameter with the dimension of a mass. At first order in the mixing angles the physical
states π̃0, η̃, and η̃′ determined from the above Lagrangians are:

π̃0 = π0 + εη + ε′η′, η̃ = η − επ0 + θη′, η̃′ = η′ − θη − ε′π0, (4.163)

in which the mixing angles are
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7.2 Predictions for hadronic transitions in the single-channel approach

In this section, we give the predictions for HTs in the single-channel approach. In this approach, the

amplitude of HT is diagrammatically shown in Fig. 4.13 in which there are two complicated vertices:

namely, the MGE vertex of the heavy quarks and the vertex of hadronization (H) describing the conver-

sion of the emitted gluons into light hadrons. In the following, we shall treat them separately.

Let us first consider the HT processes n3
i S1→n3

fS1 + π + π. To lowest order, these are double
electric-dipole transitions (E1E1). The transition amplitude can be obtained from the S matrix element
(4.143). After some algebra, we obtain [230, 231, 237]
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Table 6: Single light hadron transitions observed in the cc̄ system. Total widths as
in Table 1.

Transition Branching Fraction 3 Partial Width
i → f + X (%) (keV)

ψ(2S) → J/ψ η 3.25 ± 0.06 ± 0.11 11.0 ± 0.84
π0 0.13 ± 0.01 ± 0.01 0.44 ± 0.06

ψ(2S) → hc(1P ) π0 (1.0 ± 0.2 ± 0.18) × 10−1 0.34 ± 0.10
ψ(3770) → J/ψ η (0.87 ± 0.33 ± 0.22) × 10−1 20 ± 11

Table 7: Single light hadron transitions observed in the bb̄ system.

Transition Branching Fraction Partial Width 4

i → f + X (%) (keV)
Υ(2S) → Υ(1S) η (2.5 ± 0.7 ± 0.5) × 10−2 (7.2 ± 2.3) × 10−3

χb1(2P ) → Υ(1S) ω 1.63 ± 0.33 ± 0.16 1.56 ± 0.59
χb2(2P ) → Υ(1S) ω 1.10 ± 0.30 ± 0.11 1.52 ± 0.64

3Using NRQCD and measured 13PJ decay rates to guess Br(hc → ηc+γ) = 0.4 and Γ(hc(1P )) =
87 keV.

4Total widths: Γ(Υ(2S)) = 28.62 ± 1.30 keV, Γ(Υ(3S)) = 17.28 ± 0.61 keV, Γ(Υ(4S)) = 110 ±
13 MeV, Γ(χb1(2P )) = 96 ± 16 keV and Γ(χb2(2P )) = 138 ± 19 keV.
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ΨQQ̄(!r) =
unl(r)

r
Ylm(θ,φ)

The leading Born-Oppenheimer approximation

In the leading Born-Oppenheimer approximation, one replaces the covariant Lapla-

cian DDD2 by an ordinary Laplacian !!!
2
, which neglects retardation effects. The spin in-

teractions of the heavy quarks are also neglected, and one solves the radial Schrödinger

equation:

−
1

2µ

d2u(r)

dr2
+

{

〈LLL2
QQ̄

〉

2µr2
+VQQ̄(r)

}

u(r) = E u(r), (2)

where u(r) is the radial wavefunction of the quark-antiquark pair. The total angular
momentum is given by

JJJ = LLL+SSS, SSS= sssQ+ sssQ̄, LLL= LLLQQ̄+ JJJg, (3)

where sssQ is the spin of the heavy quark, sssQ̄ is the spin of the heavy antiquark, JJJg is the

total spin of the gluon field, and LLLQQ̄ is the orbital angular momentum of the quark-

antiquark pair. In the LBO, both L and S are good quantum numbers. The expectation

value in the centrifugal term is given by

〈LLL2
QQ̄

〉 = 〈LLL2〉−2〈LLL · JJJg〉+ 〈JJJ2g〉. (4)

The first term yields L(L+1). The second term is evaluated by expressing the vectors in
terms of components in the body-fixed frame. Let Lr denote the component of LLL along

the molecular axis, and L" and L# be components perpendicular to the molecular axis.

Writing L± = L" ± iL# and similarly for JJJg, one obtains

〈LLL · JJJg〉 = 〈LrJgr〉+
1
2
〈L+Jg− +L−Jg+〉. (5)

Since Jg± raises or lowers the value of $, this term mixes different gluonic stationary
states, and thus, must be neglected in the leading Born-Oppenheimer approximation. In

the meson rest frame, the component of LLLQQ̄ along the molecular axis vanishes, and

hence, 〈LrJgr〉 = 〈J2gr〉 = $2. In summary, the expectation value in the centrifugal term
is given in the adiabatic approximation by

〈LLL2
QQ̄

〉 = L(L+1)−2$2+ 〈JJJ2g〉. (6)

We assume 〈JJJ2g〉 is saturated by the minimum number of allowed gluons. Hence, 〈JJJ
2
g〉= 0

for the %+
g level and 〈JJJ

2
g〉= 2 for the&u and %

−
u levels.Wigner rotations are used as usual

to construct |LSJM;'(〉 states, where ' = JJJg · r̂rr and $ = |' |, then JPC eigenstates are
finally obtained from

|LSJM;'(〉+ )|LSJM;−'(〉, (7)

where ) = 1 for %+ levels, ) = −1 for %− levels, and ) = ±1 for $ ≥ 1 levels. Hence,
the JPC eigenstates satisfy

P= )(−1)L+$+1, C = ()(−1)L+S+$. (8)
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< J2
g >= 0, 2, 6, ...

naively 0, 1, 2, ... valence gluons
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FIGURE 2. One possible interpretation of the spectrum in Fig. 1. (a) For small quark-antiquark sepa-

rations, the strong chromoelectric field of the QQ̄ pair repels the physical vacuum (dual Meissner effect)

creating a bubble. The low-lying stationary states are explained by the gluonic modes inside the bubble,

since the bubble surface excitations are likely to be higher lying. (b) For large quark-antiquark separations,

the bubble stretches into a thin tube of flux, and the low-lying states are explained by the collective motion

of the tube since the internal gluonic excitations are much higher lying.

antiquark pair in SU(2) gauge theory also hint at flux tube formation[6].
The spectrum shown in Fig. 1 provides unequivocal evidence that the gluon field can

be well approximated by an effective string theory for large separations r. However,

string formation does not appear to set in until the quark and the antiquark are sepa-

rated by about 2 fm. For small separations, the level orderings and degeneracies are not

consistent with the expectations from an effective string description. More importantly,

the gaps differ appreciably from N"/r with N = 1,2,3, . . .. Such deviations cannot be
considered mere corrections, making the applicability of an effective string description
problematical. Between 0.5 to 2 fm, a dramatic level rearrangement occurs. For separa-

tions above 2 fm, the levels agree without exception with the ordering and degeneracies

expected from an effective string theory. The gaps agree well with N"/r, but a fine struc-
ture remains. The N"/r gaps are a robust prediction of any effective string theory since
they are a feature of the Goldstone modes associated with the spontaneous breaking of

transverse translational symmetry. However, the details of the underlying string theory

are encoded in the fine structure. This first glimpse of such a fine structure offers the

exciting possibility of ultimately understanding the nature of the QCD string in future

higher precision simulations.

Fig. 2 illustrates one possible interpretation of the results shown in Fig. 1. At small

quark-antiquark separations, the strong chromoelectric field of the QQ̄ pair repels the
physical vacuum in a dual Meissner effect, creating a bubble surrounding the QQ̄. The

low-lying stationary states are explained by the gluonic modes inside the bubble, since

the bubble surface excitations are likely to be higher lying. For large quark-antiquark

separations, the bubble stretches into a thin tube of flux, and the low-lying states are

explained by the collective motion of the tube since the internal gluonic excitations,

being typically of order 1 GeV, are now much higher lying.
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Short distance: gluelumps  
Perturbative QCD,  pNRQCD 
singlet:  -4/3 αs /r
octet : 2/3 αs /r      

Large distance:   String 
σ r + πN/r     
Nambu-Gato string behavour

The leading Born-Oppenheimer approximation

In the leading Born-Oppenheimer approximation, one replaces the covariant Lapla-

cian DDD2 by an ordinary Laplacian !!!
2
, which neglects retardation effects. The spin in-

teractions of the heavy quarks are also neglected, and one solves the radial Schrödinger

equation:

−
1

2µ

d2u(r)

dr2
+

{

〈LLL2
QQ̄

〉

2µr2
+VQQ̄(r)

}

u(r) = E u(r), (2)

where u(r) is the radial wavefunction of the quark-antiquark pair. The total angular
momentum is given by

JJJ = LLL+SSS, SSS= sssQ+ sssQ̄, LLL= LLLQQ̄+ JJJg, (3)

where sssQ is the spin of the heavy quark, sssQ̄ is the spin of the heavy antiquark, JJJg is the

total spin of the gluon field, and LLLQQ̄ is the orbital angular momentum of the quark-

antiquark pair. In the LBO, both L and S are good quantum numbers. The expectation

value in the centrifugal term is given by

〈LLL2
QQ̄

〉 = 〈LLL2〉−2〈LLL · JJJg〉+ 〈JJJ2g〉. (4)

The first term yields L(L+1). The second term is evaluated by expressing the vectors in
terms of components in the body-fixed frame. Let Lr denote the component of LLL along

the molecular axis, and L" and L# be components perpendicular to the molecular axis.

Writing L± = L" ± iL# and similarly for JJJg, one obtains

〈LLL · JJJg〉 = 〈LrJgr〉+
1
2
〈L+Jg− +L−Jg+〉. (5)

Since Jg± raises or lowers the value of $, this term mixes different gluonic stationary
states, and thus, must be neglected in the leading Born-Oppenheimer approximation. In

the meson rest frame, the component of LLLQQ̄ along the molecular axis vanishes, and

hence, 〈LrJgr〉 = 〈J2gr〉 = $2. In summary, the expectation value in the centrifugal term
is given in the adiabatic approximation by

〈LLL2
QQ̄

〉 = L(L+1)−2$2+ 〈JJJ2g〉. (6)

We assume 〈JJJ2g〉 is saturated by the minimum number of allowed gluons. Hence, 〈JJJ
2
g〉= 0

for the %+
g level and 〈JJJ

2
g〉= 2 for the&u and %

−
u levels.Wigner rotations are used as usual

to construct |LSJM;'(〉 states, where ' = JJJg · r̂rr and $ = |' |, then JPC eigenstates are
finally obtained from

|LSJM;'(〉+ )|LSJM;−'(〉, (7)

where ) = 1 for %+ levels, ) = −1 for %− levels, and ) = ±1 for $ ≥ 1 levels. Hence,
the JPC eigenstates satisfy

P= )(−1)L+$+1, C = ()(−1)L+S+$. (8)
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Λ = 0, 1, 2, ... denoted Σ, Π, Δ, ...

η= ±1 (symmetry under combined charge conjugation and spatial inversion) 
denoted g(+1) or u(-1).   
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withε=+1 for Σ+ and ε=-1 for Σ-

both signs for Λ>0.   
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TABLE I: Operators to create excited gluon states for small
qq̄ separation R are listed. E and B denote the electric and
magnetic operators, respectively. The covariant derivative D

is defined in the adjoint representation [10].

gluon state J operator
Σ+ ′

g 1 R · E, R · (D ×B)
Πg 1 R × E, R × (D× B)
Σ−

u 1 R · B, R · (D× E)
Πu 1 R × B, R × (D× E)
Σ−

g 2 (R · D)(R · B)
Π′

g 2 R × ((R · D)B + D(R · B))
∆g 2 (R × D)i(R × B)j + (R × D)j(R × B)i

Σ+
u 2 (R · D)(R · E)

Π′

u 2 R × ((R · D)E + D(R · E))
∆u 2 (R × D)i(R × E)j + (R × D)j(R × E)i

predicted short–distance degeneracies. Only the states
∆u and Σ+′

g show considerable soft breaking of the ap-
proximate symmetry at the shortest R values.
Crossover region. For 0.5 fm < R < 2 fm, a dramatic
crossover of the energy levels toward a string-like spec-
trum as R increases is observed. For example, the states
Σ−

u with N = 3 and Σ−

g with N = 4 break violently away
from their respective short-distance O(3) degeneracies to
approach the ordering expected from bosonic string the-
ory near R ∼ 2 fm.

An interesting feature of the crossover region is the suc-
cessful parametrization of the Σ+

g ground state energy by
the empirical function E0(R) = a + σR− c π

12R
, with the

fitted constant c close to unity, once R exceeds 0.5 fm.
The Casimir energy of a thin flux line was calculated in
Refs. [11, 12], yielding c = 1, and this approximate agree-
ment is often interpreted as evidence for string formation.
While the spectrum, including the qualitative ordering
of the energy levels, differs from the naive bosonic string
gaps for R < 1 fm, a high precision calculation shows
the rapid approach of ceff(R) to the asymptotic Casimir
value in the same R range [13]. Although there is no in-
consistency between the two different findings, a deeper
understanding of this puzzling situation is warranted.

We will return to this issue in a high precision study of
the 3-dimensional Z(2) gauge model in a future publica-
tion [14]. This accurate study of ceff(R) and the excita-
tion spectrum of the Z(2) flux line for a wide range of R
values between 0.3 fm and 10 fm will clearly demonstrate
the early onset of c ≈ 1 without a well-developed string
spectrum. For now, Fig. 3 shows the lowest excitations in
Z(2) for R = 0.7 fm, revealing a bag-like disorder profile
surrounding the static qq̄ pair in the vacuum [14]. The
two lowest energy levels are substantially dislocated from
exact π/R string gaps and all other excitations form a
continuous spectrum above the glueball threshold. Since
the submission of this work, a new study of Z(2) at fi-
nite temperature has appeared [15], reporting very early
onset of string behavior in support of Ref. [13].
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FIG. 2: Short-distance degeneracies and crossover in the
spectrum. The solid curves are only shown for visualization.
The dashed line marks a lower bound for the onset of mixing
effects with glueball states which requires careful interpreta-
tion.

String limit. For R > 2 fm, the energy levels exhibit,
without exception, the ordering and approximate degen-
eracies of string-like excitations. The levels nearly re-
produce the asymptotic π/R gaps, but an intriguing fine
structure remains.

It has been anticipated that the interactions of mass-
less excitations on long flux lines are described by a lo-
cal derivative expansion of a massless vector field ξ with
two transverse components in four–dimensional space-
time [11, 12]. Symmetries of the effective QCD string
Lagrangian require a derivative expansion of the form

Leff = a∂µξ·∂µξ+b(∂µξ·∂µξ)2+c(∂µξ·∂νξ)(∂µξ·∂νξ)+...,
(1)

where the dots represent further terms with four or more
derivatives in world sheet coordinates. The coefficient a
has the dimension of a mass squared and can be identified
with the string tension σ. The other coefficients must be
determined from the underlying microscopic theory. Ex-
amples with calculable coefficients include the D=3 Z(2)

K.J. Juge, J. Kuti and C. Morningstar [PRL 90, 161601 (2003)] 
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TABLE III: The upper limits on the observed cross section σup
ψ(3770)→f and the branching fraction Bup

ψ(3770)→f for ψ(3770) → f

are set at 90% C.L.. The σψ(3770)→f in the second column is calculated with Eq. (6), where the first error is the statistical, the
second is the independent systematic, and the third is the common systematic error. Here, the upper t denotes that we treat
the upper limit on the observed cross section for e+e− → f at 3.773 GeV as σup

ψ(3770)→f , the upper n denotes that we neglect
the contribution from the continuum production, and the upper z denotes that we treat the central value of σψ(3770)→f as zero
if it is less than zero.

Decay Mode σψ(3770)→f σup
ψ(3770)→f Bup

ψ(3770)→f

[pb] [pb] [×10−3]

φπ0 < 3.5tn < 3.5 < 0.5

φη < 12.6tn < 12.6 < 1.9

2(π+π−) 7.4 ± 15.0 ± 2.8 ± 0.8 < 32.5 < 4.8

K+K−π+π− −19.6 ± 19.6 ± 3.3 ± 2.1z < 32.7 < 4.8

φπ+π− < 11.1tn < 11.1 < 1.6

2(K+K−) −2.7 ± 7.1 ± 0.5 ± 0.3z < 11.6 < 1.7

φK+K− −0.5 ± 10.0 ± 0.9 ± 0.1z < 16.5 < 2.4

pp̄π+π− −6.2 ± 6.6 ± 0.6 ± 0.7z < 11.0 < 1.6

pp̄K+K− 1.4 ± 3.5 ± 0.1 ± 0.2 < 7.2 < 1.1

φpp̄ < 5.8tn < 5.8 < 0.9

3(π+π−) 16.9 ± 26.7 ± 5.5 ± 2.4 < 61.7 < 9.1

2(π+π−)η 72.7 ± 55.0 ± 7.3 ± 8.2 < 164.7 < 24.3

2(π+π−)π0 −35.4 ± 24.6 ± 6.6 ± 4.0z < 42.3 < 6.2

K+K−π+π−π0 −36.9 ± 43.8 ± 12.8 ± 4.2z < 75.2 < 11.1

2(K+K−)π0 18.1 ± 7.7 ± 0.7 ± 2.0n < 31.2 < 4.6

pp̄π0 1.5 ± 3.9 ± 0.5 ± 0.1 < 7.9 < 1.2

pp̄π+π−π0 26.0 ± 13.9 ± 2.6 ± 3.2 < 49.7 < 7.3

3(π+π−)π0 −12.7 ± 55.9 ± 8.7 ± 1.8z < 92.8 < 13.7

[21] G. J. Felman and R. D. Cousins, Phys. Rev. D 57 (1998)
3873.

[22] BES Collaboration, M. Ablikim et al., Nucl. Instrum.
Methods A 552 (2005) 344.

[23] E. A. Kuraev and V. S. Fadin, Yad. Fiz. 41 (1985) 733.
[24] E. Barberio, Z. Was, Comput. Phys. Commun. 79 (1994)

291.
[25] BES Collaboration, M. Ablikim et al., Phys. Rev. D 72

(2005) 012002.
[26] BES Collaboration, M. Ablikim et al., Phys. Rev. D 73

(2005) 052004.
[27] G. Rong (For BES Collaboration), Int. J. Mod. Phys. A

21 (2006) 5416.
[28] BES Collaboration, M. Ablikim et al., hep-ex/0612056.

Table VI: Radiative decays ψ′′ → γχcJ : energies, predicted and measured partial
widths. Theoretical predictions of Ref. [8] are (a) without and (b) with coupled-
channel effects; nonrelativistic (c) and relativistic (d) predictions of Ref. [11]; (e)
shows predictions of Ref. [134].

Mode Eγ (MeV) Predicted (keV) CLEO (keV)
[55] (a) (b) (c) (d) (e) [136]

γχc2 208.8 3.2 3.9 4.9 3.3 24±4 < 21
γχc1 251.4 183 59 125 77 73 ± 9 70 ± 17
γχc0 339.5 254 225 403 213 523 ± 12 172 ± 30

4.8 ψ(4040) and ψ(4160)

The ψ(4040) and ψ(4160) resonances appear as elevations in the measurement of
R = σ(hadrons)/σ(µ+µ−). They are commonly identified with the 3S and 2D states
of charmonium (Fig. 1). Their parameters have undergone some refinement as a
result of a recent analysis in Ref. [145]. The error on the mass of ψ(4040) has shrunk
considerably, with M = (4040±10) MeV/c2 in 2004 (Ref. [146]) replaced with (4039±
1) MeV/c2 in 2006 (Ref. [55]). The width is now quoted as (80±10) MeV/c2, up from
(52 ± 10) MeV/c2. Similarly, the mass and width of the ψ(4160) are now quoted as
(4153±3) MeV/c2 and (108±8) MeV/c2, replacing (4159±20) MeV/c2 and (78±20)
MeV/c2. Data taken at the ψ(4040) and the ψ(4160) can be useful to search for the
2P states through radiative decays ψ(4160) → γχ′

c0,1,2. Identifying the transition
photon in the inclusive photon spectrum requires excellent background suppression
and is therefore a challenge. The E1 branching fractions listed in [147] are, calculated
for χ′

cJ masses chosen to be2 3929/3940/3940 MeV for J = 2/1/0:
ψ(4040) → γχ′

c2,1,0: 0.7/0.3/0.1× 10−3,
ψ(4160) → γχ′

c2,1,0: 0.1/1.3/1.7× 10−3.
The J = 0 and J = 1 states can be distinguished since the decays χc0 → DD̄

and χc1 → DD̄∗ are possible but not the reverse. χ′
c2 can decay to either, where the

relative rate depends on the amount of phase space, which in turn depends on the
mass. Exclusive decays to charmonium have not been observed, though CLEO has
set upper limits on a number of final states involving charmonium [148].

4.9 New Charmonium-like States

Many new charmonium states above DD̄ threshold have recently been observed.
While some of these states appear to be consistent with conventional cc̄ states, others
do not. Here we give a brief survey of the new states and their possible interpretations.
Reviews may be found in Refs. [149–151]. In all cases, the picture is not entirely clear.
This situation could be remedied by a coherent search of the decay pattern to DD̄(∗),
search for production in two-photon fusion and ISR, the study of radiative decays of

2 The motivation for this choice will become apparent in Section 4.9.
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ψ′′ → π+π−J/ψ 0.34± 0.14± 0.09 BES
0.189± 0.020± 0.020 CLEO

ψ′′ → π0π0J/ψ 0.080± 0.025± 0.016 CLEO
ψ′′ → η0J/ψ 0.087± 0.033± 0.022 CLEO

Good agreement with theory expectations 
including relativistic effects 

Theory expectation for π+π-J/ψ: 0.1-0.7%

No evidence for direct decays 
to light hadrons seen yet.  

No evidence of unexpected rates for  
non DD decays

Puzzle of missing decays

σψ(3770) = 6.38± 0.08 +0.41
−0.30 nb

σψ(3770) − σψ(3770)→DD̄ = −0.01± 0.08 +0.41
−0.30nb

σψ(3770) = 7.25± 0.27± 0.34 nb

CLEO

BES
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 Non DD decays of the ψ(3770)


