## Quarkonium and the New States

#### Estia Eichten

### Plan of Talk

- Narrow States Below Threshold
  - O Spin singlets
  - Why it works so well
- Above Threshold and New States
  - O Z<sup>+</sup>(4430)
  - X(3872)
  - O States in the 3940 and 4160 mass regions
  - Y(4260) et. al.
- Summary and Outlook



### Narrow States Below Threshold



E. Eichten – Fermilab

Flavor Physics and CP Violation – Lake Placid, NY – May 31, 2009

- Below threshold for heavy flavor meson pair production
  - Narrow states allow precise experimental probes of the subtle nature of QCD.
  - Lattice QCD supports and will supplant potential models
  - A variety of lattice approaches



S. Gottlieb et al., PoS LAT2006 Figure 5: Summary of charmonium spectrum.



### QCD Static Energy

- Lattice calculation of the QCD static energy between QQ versus R.
- Agrees with potential models.
- Masses of low-lying states directly calculable by LQCD.
- Excitation of gluonic degrees of freedom (string) also calculable.



# Lattice QCD calculation of the spin-dependent relativistic corrections.

Heavy quark potential

To  $O(1/m^2)$ 

$$V(r) = V^{(0)}(r) + \left(\frac{1}{m_1} + \frac{1}{m_1}\right)V^{(1)}(r) + O\left(\frac{1}{m^2}\right)$$

$$+\frac{1}{m_1m_2}\left(\frac{(\vec{s_1}\,\vec{r})\,(\vec{s_2}\,\vec{r})}{r^2} - \frac{\vec{s_1}\,\vec{s_2}}{3}\right)\,V^{(3)}(r) + \frac{\vec{s_1}\,\vec{s_2}}{3m_1m_2}\,V^{(4)}(r) \qquad \text{Short range}$$

 $+\left(\frac{\vec{s}_1\,\vec{l}_1}{2m_1^2} - \frac{\vec{s}_2\,\vec{l}_2}{2m_2^2}\right)\left(\frac{V^{(0)}(r)'}{r} + 2\frac{V^{(1)}(r)'}{r}\right) + \left(\frac{\vec{s}_2\,\vec{l}_1}{2m_1m_2} - \frac{\vec{s}_1\,\vec{l}_2}{2m_1m_2}\right)\frac{V^{(2)}(r)'}{r}$ 

Fine and hyper-fine splitting



Y. Koma, M. Koma and H. Wittig [Nucl. Phys. B769:79 (2007)]

E. Eichten – Fermilab

Flavor Physics and CP Violation – Lake Placid, NY – May 31, 2009

### Spin Singlet States

### h<sub>c</sub>

# Observation CLEOc, NEW - BESIII

 $M(h_c) = 3524.4 \pm 0.6 \pm 0.4$  $\mathcal{B}(\psi(2S) \to \pi^0 h_c) \times \mathcal{B}(h_c \to \gamma \eta_c) = (4.0 \pm 0.8 \pm 0.7) \times 10^{-4}$ 

#### Partial widths and decay modes:

$$\begin{split} \Gamma(h_c \to \gamma \eta_c) &= (\frac{k_{h_c}^{\gamma}}{k_{\chi_{c1}}^{\gamma}})^3 \Gamma(\chi_{c1} \to \gamma J/\psi) \approx 340 keV \\ \Gamma(h_c \to \text{light hadrons}) \end{split}$$

#### • Spin -dependent forces:

 $\Delta M_{\rm hf}(\langle M(^{3}P_{J})\rangle - M(^{1}P_{1})) = +1.0 \pm 0.6 \pm 0.4 {\rm MeV}.$ 

Confirms the short range nature of spin-spin and tensor potentials. Phenomenological models which closely follow pert QCD are best.







S. Godfrey [hep-ph/0501083]

### **Ο** η<sub>c</sub>

- M1 transition was a theoretical disaster
  - + Basics

$$\Gamma(i \xrightarrow{\mathrm{M1}} f + \gamma) = \frac{4\alpha e_Q^2}{3m_Q^2} (2J_f + 1)k^3 [\mathcal{M}_{if}]^2$$

+ pNRQCD

$$\mathcal{M}_{if} = \int r^2 dr \, R_{n_i L_i}(r) j_0(\frac{rk}{2}) R_{n_f L_f}(r)$$

$$j_0 = 1 - (kr)^2 / 24 + \dots, \text{ so in NR limit}$$

$$k = 0: \quad \mathcal{M}_{if} = 1 \quad n_i = n_f; L_i = L_f$$

$$= 0$$
 otherwise

Model independent – completely accessible by perturbation theory to  $o(v^2)$ 

$$\Gamma(J/\psi \to \eta_c \gamma) = \frac{16}{3} \alpha e_c^2 \frac{k_{\gamma}^3}{M_{J/\psi}^2} \left[ 1 + C_F \frac{\alpha_s(M_{j/\psi}/2)}{\pi} + \frac{2}{3} (C_F \alpha_s(p_{J/\psi}))^2 \right]$$

Brambilla, Jia & Vairo [PR D73:054005 (2006)]

No large anomalous magnetic moment No scalar long range interaction

$$\Gamma(J/\psi \rightarrow \eta_c \gamma) = (1.5 \pm 1.0) \text{ keV}.$$

• LQCD  $\Gamma(J/\psi \to \eta_c \gamma) = (2.0 \pm 0.1 \pm 0.4) \text{ keV}$ 

Dudek, Edwards, Richards [PR D73:074507 (2007)]

+  $J/\psi \rightarrow \gamma + \eta_c$  M1 transition

 $1.19 \pm 0.33 \text{ keV}$  [Crystal Ball]

#### half the expected theoretical result

E. Eichten – Fermilab



E. Eichten – Fermilab

Flavor Physics and CP Violation – Lake Placid, NY – May 31, 2009

**Π** η<sub>c</sub>':



- Strong coupling to virtual decay channels induces spin-dependent forces in charmonium near threshold, because M(D\*) > M(D)
- Spin dependent shifts small far below threshold

|                                                | State                                                            | Mass                                                                | Centroid     | Splitting<br>(Potential)                                 | Splitting<br>(Induced)           |
|------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|--------------|----------------------------------------------------------|----------------------------------|
|                                                | $\begin{array}{c}1^{1}S_{0}\\1^{3}S_{1}\end{array}$              | $2979.9^a\ 3096.9^a$                                                | $3067.6^{b}$ | $-90.5^{e} + 30.2^{e}$                                   | $+2.8 \\ -0.9$                   |
| Less that 1 MeV<br>shift ⇒<br>Reduces ∆M(2S) ⇒ | $1^{3}P_{0}$<br>$1^{3}P_{1}$<br>$1^{1}P_{1}$<br>$1^{3}P_{2}$     | $egin{array}{c} 3415.3^a\ 3510.5^a\ 3524.4^f\ 3556.2^a \end{array}$ | $3525.3^{c}$ | $-114.9^{e}$<br>$-11.6^{e}$<br>$+0.6^{e}$<br>$+31.9^{e}$ | $+5.9 \\ -2.0 \\ +0.5 \\ -0.3$   |
| by 21 MeV                                      | $\begin{array}{c}2^1\mathrm{S}_0\\2^3\mathrm{S}_1\end{array}$    | ${3638}^a \ {3686.0}^a$                                             | $3674^{b}$   | $-50.1^{e} + 16.7^{e}$                                   | $+15.7 \\ -5.2$                  |
| ELQ PRD 73:014014 (2006)                       | $1^{3}D_{1}$<br>$1^{3}D_{2}$<br>$1^{1}D_{2}$<br>$1^{3}D_{3}$     | $3769.9^a\ 3830.6\ 3838.0\ 3868.3$                                  | $(3815)^d$   | $-40 \\ 0 \\ 0 \\ +20$                                   | $-39.9 \\ -2.7 \\ +4.2 \\ +19.0$ |
|                                                | $2^{3}P_{0}$<br>$2^{3}P_{1}$<br>$2^{1}P_{1}$<br>$2^{3}P_{2}$     | $3 881.4 \\ 3 920.5 \\ 3 919.0 \\ 3 931^g$                          | $(3922)^d$   | $-90 \\ -8 \\ 0 \\ +25$                                  | $+27.9 \\ +6.7 \\ -5.4 \\ -9.6$  |
|                                                | $\begin{array}{c} 3^1\mathrm{S}_0\\ 3^3\mathrm{S}_1 \end{array}$ | ${3943}^h \ 4040^a$                                                 | $(4015)^i$   | $-66^{e} + 22^{e}$                                       | -3.1 + 1.0                       |

Flavor Physics and CP Violation - Lake Placid, NY - May 31, 2009

- -

#### $\eta_b$ :

#### BaBar [PRL 101, 071801 (2008)]

Observed by BaBar in  $\Upsilon(3S)$  radiative decays 0

$$E_{\gamma} = 921.2 \ ^{+2.1}_{-2.8} \pm 2.4$$
  
 $M(\eta_b) = 9388.9 \ ^{+3.1}_{-2.3} \pm 2.7$  MeV

Hyperfine splitting:  $M(\Upsilon(1S)) - M(\eta_b) = 71.4 {}^{+2.3}_{-3.1} \pm 2.7$  MeV 0

Naive : 
$$\frac{\alpha_s(m_b^2)}{\alpha_s(m_c^2)} \frac{4\Gamma_{e^+e^-}(\Upsilon)}{\Gamma_{e^+e^-}(J/\Psi)} [M(J/\Psi) - M(\eta_c)] \approx 68 \text{ (MeV)}$$
QCD NNL : 
$$39 \pm 11 \stackrel{+ 9}{_{- 8}} \text{ (MeV)} \text{ [PRL 92 242001 (2004)]}$$
LQCD : 
$$61 \pm 14 \text{ (MeV)} \text{ [PR D72 : 094507 (2005)]}$$

#### Hindered M1 Transitions: $e_{Q}^{2} |\langle nL|n'L \rangle|^{2} E_{\gamma}^{3}$ 0

Relativistic corrections poorly understood. Phenomenological models for 0  $\Upsilon(3S) \rightarrow \gamma \eta_b$  and  $\Upsilon(2S) \rightarrow \gamma \eta_b$  vary greatly. pNRQCD



Y(3S) -> γη<sub>b</sub>:  $Br(\Upsilon(3S) \to \gamma \eta_b) = (4.8 \pm 0.5 \pm 1.2) \times 10^{-4}$ 0

Expectations for  $\Upsilon(2S) \rightarrow \gamma \eta_b$ : CLEO < 0.09 keV (90%c.l.) at  $E_{\gamma} = 615$  MeV 0

E. Eichten – Fermilab

Flavor Physics and CP Violation - Lake Placid, NY - May 31, 2009



#### Narrow states still missing

- O Charmonium  $3 {}^{1}D_{2}$ ,  ${}^{3}D_{2}$ , and  ${}^{3}D_{3}$
- Bottomonium 23 1<sup>3</sup>D<sub>1</sub>, 1<sup>3</sup>D<sub>3</sub>, 1<sup>3</sup>F<sub>J</sub>, 2<sup>3</sup>D<sub>J</sub>, 1<sup>3</sup>G<sub>J</sub>, 3<sup>3</sup>P<sub>J</sub>, 1<sup>1</sup>P<sub>1</sub>, 2<sup>1</sup>S<sub>0</sub>, 1<sup>1</sup>D<sub>2</sub>, 2<sup>1</sup>P<sub>1</sub>, 3<sup>1</sup>S<sub>0</sub>, 1<sup>1</sup>F<sub>3</sub>, 2<sup>1</sup>D<sub>2</sub>, 1<sup>1</sup>G<sub>4</sub>, 3<sup>1</sup>P<sub>1</sub>
- Multipole expansion approach for EM and hadronic transitions works well.
  - Puzzling exceptions to expectations resolved by well understood dynamical suppression of the leading order expansion coefficient:  $\Upsilon(3S) \rightarrow \gamma + \chi_b(1P)$  E1 rate;  $\Psi(2S) \rightarrow \gamma + \eta_c$ ,  $\Upsilon(2S) \rightarrow \gamma + \eta_b(1S)$  and  $\Upsilon(3S) \rightarrow \gamma + \eta_b(1S)$  M1 rates;  $\Upsilon(3S) \rightarrow \Upsilon(1S) + 2\pi$  E1-E1 term;  $\Upsilon(nS) \rightarrow \Upsilon(mS) + 2\pi$ , M1-M1 terms.
  - Higher order relativistic corrections needs better theory -> Lattice QCD.
  - Direct decays provide a wealth of information

Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E. [Rev. Mod. Phys. 80, 1161 (2008)]

E. Eichten – Fermilab

### Why it works so well

What about the gluon and light quark degrees of freedom of QCD?

Two thresholds:

- **O** Usual  $(Q\bar{q}) + (q\bar{Q})$  decay threshold
- Excite the string hybrids
- Hybrid states will appear in the spectrum associated with the potential Π<sub>u</sub>, ...
- In the static limit this occurs at separation: r ≈ 1.2 fm. Between 3S-4S in (cc̄); just above the 5S in(bb̄).



### Above Threshold and New States

#### Need to account for strong decays

• Threshold Formalism For Strong Decays

 $\psi_1$ : one particle states  $\psi_2$ : multi particle states

 $\begin{pmatrix} \mathcal{H}_0 & \mathcal{H}_I^{\dagger} \\ \mathcal{H}_I & \mathcal{H}_2 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = z \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$ 

Eliminating  $\Psi_2$ :

$$\left(\mathcal{H}_0 + \mathcal{H}_I^{\dagger} \frac{1}{z - \mathcal{H}_2} \mathcal{H}_I\right) \psi_1 = z \psi_1$$

 $\Omega(z)$ 

All the complexity of the strong decay in the matrix  $\Omega(z)$ :

• Simplifying assumptions of phenomenological models (CCCM)

-  $\mathcal{H}_2$  - free heavy meson pairs - No final state or exchange interactions. No bound states like a X(3872) molecule.

-  $\mathcal{H}_0 \psi_1 = z \psi_1$  - A complete basis set quarkonium states  $|n\rangle$  - No hybrid states.

$$< n|\mathcal{G}(z)|m> = < n|\frac{1}{z - \mathcal{H}_0 - \Omega(z)}|m>$$

- Generalized VMD

$$R_Q \sim \frac{1}{s} \sum_{nm} \lim_{r \to 0} \psi_n^*(r) \operatorname{Im} \mathcal{G}_{nm}(W + i\epsilon) \psi_m(r)$$

E. Eichten – Fermilab

Flavor Physics and CP Violation – Lake Placid, NY – May 31, 2009

values.

The most striking features of these integrals are the rapid dropoff for large momentum P and the existence of nodes as discussed in Sec. IIIA. They are therefore sizeable only for the low-energy region  $(P^2/2M \leq 0.5 \text{ GeV})$ , and have significant oscillations in this range. These features are crucial in understanding the behavior of  $\Delta R$ , as well as the exclusive charmed-meson channels discussed in the second paper of this series. The integrals  $I_{nL}^{l}$  depend on  $m_{c}$ ,  $m_{q}$ , a, and Pthrough the combinations  $\beta$  and  $\mu_c P \beta^{-1/2}$  in a complicated manner. Comparison of the am-ONLY the function  $\overline{P}(\overline{F})$  and  $D\overline{D}$  production in Fig. 3 give some production between heavy quarks:  $r = t_{\beta}$ mass for fixed a and  $m_c$ . We now turn to the coupling matrix  $\Omega_{nm}$ . Com-

paring (3.23) and (3.32), we see that the absorptive radial Wavefunctions: part of  $\Omega_{nm}$  is proportional to

n<sup>2s+1</sup>L<sub>J</sub> QQbar state: R<sub>nL</sub>(r) Qqbar ground state:

$$\frac{1}{2J+1} \sum_{M\lambda_1\lambda_2} \int d\hat{p} A *_{12} (\vec{P}\lambda_1\lambda_2; nLJM) \times (A_{12}(\vec{P}\lambda_1\lambda_2; mL'JM)) \sim \exp(-x^2(3.39)) = \frac{1}{2a^2} (\frac{4\mu a}{3\sqrt{(\pi)}})^{2/3}$$

By virtue of (3.34)-(3.38), this can be reduced to a quadratic form in the  $I_{nL}^{l}(P)$ . The complete

it ve

cP•ÿ

3.34)

quan-

sup-

on,

ts H<sub>I</sub>

h de<u>-</u> here- $=\hat{x};$ be

s we

d

en-

e

Gaus-

### Ο Φ(†)

• Contains all dependence on light quark pair production dynamics.

e.g. for CCCM:  $\Phi(t) = te^{-t^2} + (\pi/2)^{1/2}(t^2 - 1)e^{-t^2/2} \operatorname{erf}(t/\sqrt{2})$ 

O Using HQET,  $\Phi(t)$  is the same for all final states in a  $j_l{}^{\text{P}}$  multiplet.

• Apart from overall light quark mass factors  $\Phi(t)$  is approximately SU(3) invariant.

• One universal function,  $\Phi(t)$ , determines  $\Omega(W)$  in the threshold region.

• Lattice QCD can be used to calculate  $\Phi(t)$ :



Sample decay amplitudes (CCCM)



G.S. Bali, H. Neff, T. Dussel, T. Lippert and K. Schilling [SESAM Collaboration],Phys. Rev. D 71, 114513 (2005) [arXiv:hep-lat/0505012].

E. Eichten – Fermilab

Why all this?

• Suppose we had no NRQCD expectations and had first measured the exclusive charm pair production contributions to Rc in the threshold region.

• How many resonances would you find?

• But in fact we know that the coupled channel calculations with only the usual charmonium resonances describes the data fairly well.

• We don't have this analysis for other production modes: B decays,  $\gamma\gamma$ , recoil against  $J/\Psi$  in  $e^+e^-$ , ppbar. Proceed with caution.

#### CLEOc [arXiv:0807.1220]



### New States Above Charm Threshold

| N | ew |
|---|----|
|   |    |

| State                 | EXP                      | M + i Γ (MeV)                                                                                                                                  | J <sup>PC</sup>  | Decay Modes<br>Observed                                | Production Modes<br>Observed |
|-----------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------|------------------------------|
| X(3872)               | Belle, CDF,<br>DO, BaBar | 3871.2±0.5 + i(<2.3)                                                                                                                           | 1++              | π⁺π⁻J/Ψ, π⁺π⁻π⁰J/Ψ,<br>ƳJ/Ψ                            | B decays, ppbar              |
|                       | Belle<br>BaBar           | $\frac{3872.6^{+0.5}_{-0.4}\pm0.4 + i(3.9^{+2.5}_{-1.3}^{+0.8}_{-0.3})}{3875.1^{+0.7}_{-0.5}\pm0.5 + i(3.0^{+1.9}_{-1.4}\pm0.9)}$              |                  | D <sup>0</sup> D*0                                     | B decays                     |
| Z(3930)               | Belle                    | 3929±5±2 + i(29±10±2)                                                                                                                          | 2++              | D <sup>0</sup> D <sup>0</sup> , D+D-                   | ŶŶ                           |
| Y(3940)               | Belle<br>BaBar           | $3943\pm11\pm13 + i(87\pm22\pm26)$<br>$3914.3^{+3.8}_{-3.4}\pm1.6+ i(33^{+12}_{-8}\pm0.60)$                                                    | J <sup>P+</sup>  | ωJ/ψ                                                   | B decays                     |
| X(3940)               | Belle                    | 3942 <sup>+7</sup> -6±6 + i(37 <sup>+26</sup> -15±8)                                                                                           | J <sup>₽+</sup>  | DD*                                                    | e⁺e⁻ (recoil against J/ψ)    |
| Y(4008)               | Belle<br>BaBar           | 4008±40 <sup>+72</sup> -28 + i(226±44 <sup>+87</sup> -79)<br>(not seen)                                                                        | 1                | π⁺π⁻J/Ψ                                                | e⁺e⁻ (ISR)                   |
| Y(4140)               | CDF                      | 4143.0±2.9±1.2 + i(11.7 <sup>+8.3</sup> -5.0±3.7)                                                                                              | J <sup>₽</sup> + | φ J/ψ                                                  | ppbar                        |
| X(4160)               | Belle                    | 4156 <sup>+25</sup> -20±15+ i(139 <sup>+111</sup> -61±21)                                                                                      | J <sup>₽+</sup>  | D*D*                                                   | e⁺e⁻ (recoil against J/ψ)    |
| Y(4260)               | BaBar<br>Cleo<br>Belle   | $4259\pm6^{+2}_{-3} + i(105\pm18^{+4}_{-6})$<br>$4284^{+17}_{-16} \pm 4 + i(73^{+39}_{-25}\pm5)$<br>$4247\pm12^{+17}_{-32} + i(108\pm19\pm10)$ | 1                | π⁺π⁻J/ψ, π <sup>ο</sup> π <sup>ο</sup> J/ψ,<br>Κ⁺Κ⁻J/ψ | e⁺e⁻ (ISR), e⁺e⁻             |
| Y(4350)               | BaBar<br>Belle           | 4324±24 + i(172±33)<br>4361±9±9 + i(74±15±10)                                                                                                  | 1                | π⁺π⁻ψ(2S)                                              | e⁺e⁻ (ISR)                   |
| Z <sup>+</sup> (4430) | Belle<br>BaBar           | 4433±4±1+ i(44 <sup>+17</sup> -13 <sup>+30</sup> -11)<br>(not seen)                                                                            | ٦°               | π <sup>+</sup> ψ(2S)                                   | B decays                     |
| Y(4660)               | Belle                    | 4664±11±5 + i(48±15±3)                                                                                                                         | 1                | π⁺π⁻ψ(2S)                                              | e⁺e⁻ (ISR)                   |

#### General Comments

- O Basic Questions:
  - Is it a new state?
  - What are its properties?: Mass, width, J<sup>PC</sup>, decay modes
  - Charmonium state or not?
  - If not what? New spectroscopy.

| O Options for new states:                                     |             | N.A. Tor | N.A. Tornqvist PLB 590, 209 (2004)                |  |  |
|---------------------------------------------------------------|-------------|----------|---------------------------------------------------|--|--|
|                                                               |             | E Braate | E Braaten and T Kusunoki PRD 69 074005 (2004)     |  |  |
|                                                               |             |          | ng PRC $69, 055202 (2004)$                        |  |  |
| – Four quark states –                                         |             |          | E.S. Swanson PLB 598,197 (2004)                   |  |  |
|                                                               |             |          | loshin PLB 579, 316 (2004)                        |  |  |
| $(Qar{q})(qar{Q})$                                            | Molecules   |          | and P. Page PLB 578,119 (2004)<br>arXiv:07084167] |  |  |
| $(\mathcal{C}\mathcal{G}\mathcal{G})(\mathcal{G}\mathcal{C})$ |             |          |                                                   |  |  |
| $(\bigcirc)(\neg\overline{\bigcirc})$                         |             |          | L. Maiani et.al. PRD 71,014028 (2005)             |  |  |
| (Qq)(ar q Q) Diquark–Antid                                    |             | alquark  | T-W Chiu and T.H. Hsieh PRD 73, 111503 (2006)     |  |  |
|                                                               |             |          | D. Ebert et.al. PLB 634, 214 (2006)               |  |  |
| $(Q\bar{Q})(\bar{q}q)$                                        | Hadro-charm | nonium   | S. Dubynski et al PLB 666,344 (2008)              |  |  |
|                                                               |             |          |                                                   |  |  |

- Hybrids - Exciting the gluonic degrees of freedom:

| valance alwans string  | F. E. Close and P.R. Page PLB 628, 215 (2005) |
|------------------------|-----------------------------------------------|
| valance gluons, string | E. Kou and O. Pene PLB 631, 164 (2005)        |
|                        | S.L. Zhu PLB 625, 212 (2005)                  |

- Strong threshold effects:

| strong interactions,        | Y. S. Kalashnikova PR D72, 034010 (2005)  |
|-----------------------------|-------------------------------------------|
| interplay of decay channels | E.van Beveren G. Rupp [arXiv:0811.1755v1] |

E. Eichten – Fermilab

Flavor Physics and CP Violation - Lake Placid, NY - May 31, 2009

### **Z**<sup>+</sup>(4430)

#### O Belle

- Mass and Width
   M(Z<sup>+</sup>) = 4433±4±1 MeV
   Γ(Z<sup>+</sup>) = 44<sup>+17 + 30</sup><sub>-13 11</sub> MeV
- Decay Modes
   Z<sup>+</sup>(4433) -> π<sup>+</sup> + ψ(2S)
- Updated analysis [arXiv:0905.4313] confirmed 6.4 sigma
- O BaBar [arXiv:0811.0564v1]
  - Not seen
- Tetraquark state (if confirmed)





Flavor Physics and CP Violation – Lake Placid, NY – May 31, 2009

23

### **X(3872)**

### O Mass

 At threshold within errors: M(X) = 3871.51±0.22 MeV (+CDF) M(D<sup>0</sup>) + M(D<sup>\*0</sup>) = 3871.81±0.36 MeV (CLEO)

#### O Decay Modes

- X(3872) -> π<sup>+</sup>π<sup>-</sup> + J/ψ (Γ₀) (ρ like)
   (Belle, CDF, DO, BaBar)
- Γ(X(3872)->` ω`+J/ψ)/Γ₀ = 1.0±0.4±0.3<sup>+2.3</sup>
   -3.0

   Isospin violating large (Belle)
- $\Gamma(X(3872) \rightarrow \Upsilon + J/\psi)/\Gamma_0 = 0.14 \pm 0.05$  $\Rightarrow C=+1$  (Belle, BaBar)
- Γ(X(3872)->Υ+ψ')/Γ(X(3872)->Υ+J/ψ)
   = 3.4±1.4<sup>+1.2</sup><sub>-2.0</sub> (BaBar)
   Compare 2<sup>3</sup>P<sub>1</sub> (bb) ratio = 2.5±0.5
- J<sup>PC</sup> = 1<sup>++</sup> Strongly favored (Belle, CDF)

#### CDF [note 9454]



### Decay Modes (above threshold)

O Γ(X(3875)->D<sup>0</sup>D\*0+D' B+→D0D\*0K+ + D\*0D3K0+ B<sup>0</sup>→D0D\*0K0 + D\*0D0K0 BaBar: M = 3875.1 +0.7 → 0.7 Mev/c<sup>2</sup> Γ = 3.0 +1.9 ± 0.9 MeV

Belle:  

$$M = 3872.6^{+0.5}_{-0.4} \pm 0.4 \text{ Mev/c}^2$$
  
 $\Gamma = 3.9^{+2.5}_{-1.3} -0.3 \text{ MeV}$ 

If its same state as the X(3872)?

$$\begin{split} &\Gamma(X(3872)->\Upsilon+\psi')\approx(5.7\pm1.6)\times10^{-2}\Gamma(X(3875)->D^0D^{*0}+D^{*0}D^0)\\ &\approx 170\pm50\ \text{keV} \end{split}$$

Same as the expected rate for the charmonium  $2^{3}P_{1} \rightarrow \Upsilon + \psi'$  transition !!



FIG. 4: Distribution of  $M_{D^*D}$  for  $M_{\rm bc} > 5.27 \,{\rm GeV}$ , for  $D^{*0} \to D^0 \gamma$  (left) and  $D^{*0} \to D^0 \pi^0$  (right). The points with error bars are data, the dotted curve is the Flatté distribution, the dashed curve is the background, the dash-dotted curve is the sum of the background and the  $B \to D^*DK$  component, the dot-dot-dashed curve is the contribution from  $D^0 - \bar{D}^0$  reflections, and the solid curve is the total fitting function.

• What is the X?

 Key feature X(3872) extremely close to threshold.

CLEO precise D<sup>0</sup> mass measurement [PR 1864.847 ± 0.150 ± 0.095 M CDF precise X mass measurement [ct 3871.61. ± 0.16 ± 0.19 MeV

 $\Rightarrow M(X) - M(D^0) - M(D^{0*}) = -0.3 \pm$ 

DD\* "Binding Energy?":

$$M-(m_{D0}+m_{D^{*}0}) = +4.3 \pm 0.7^{+0.7}_{-1.7}$$

- Options -Tetraquark state or Hybrid state highly improbable to be this near threshold.
- D<sup>0</sup>D\*<sup>0</sup> molecule seemed the most likely possibility.
- Need to measure the line shape of the X in various production modes and decay channels to establish it's true mass.
   Braaten and Lu [PR D 76:094028 (2007)]

Dependence of d $\Gamma$ /dE on inverse scattering length  $\gamma$ 



- Revisiting the  $2^{3}P_{1}$  charmonium ( $\chi'_{c1}$ ) interpretation
  - The binding of the "molecule" must come from short distance. The long range pion exchange force is weak.



 The coupling between the 2<sup>3</sup>P<sub>1</sub> state and the DD\* final states is S-wave and strong. The <sup>3</sup>P<sub>1</sub> states have no coupling to DD final state.



- The photon transitions ratio to  $\psi'$  over  $J/\psi$  is naturally satisfied.
- What about the miracle of nearness to threshold? Dynamical Focusing !



Flavor Physics and CP Violation – Lake Placid, NY – May 31, 2009

#### Assuming no $D^0D^{*0}$ binding other than its coupling to charmonium ${}^3P_1$ states



lineshape

Produces the same behaviour as expected for "molecule" interpretation.

E. Eichten – Fermilab

Flavor Physics and CP Violation – Lake Placid, NY – May 31, 2009

- General conditions require a nearby QQ state with appropriate J<sup>PC</sup> for which:
  - (a) Strong decay into two very narrow hadrons;
  - (b) S-wave threshold;
  - (c)  $|M_s M(\text{threshold})| < \Gamma_s$ .
- Remaining issue is the induced isospin breaking (from D<sup>+</sup> D<sup>0</sup> mass difference) is about 6%. This implies a large implied decay partial rate to omega ω J/ψ (if not phase space suppressed). We also see this in the Y(5S) -> ππ J/ψ decays. Are the mechanisms related?
- Comments:

(a) compare  $D^{0*}D^{0}/D^{+}D^{*-}$  channels just above  $D^{+}D^{-*}$  threshold. (b) look for  $\pi\pi 1^{3}P_{1}$  decay. S. Dubynskiy, M. B. Voloshin PR D77, 014013 (2008) (c) unlikely to see an BB\* molecule. (the P states are too far away).

### C=+1 states in the Y(3940) and Y(4160) mass regions.

#### Two new states seen:

- new structure observed by Belle: Ο
  - Produced in  $\gamma\gamma$  (J<sup>PC</sup>=0<sup>++</sup>,2<sup>++</sup>)
  - Observed in the decay mode  $\omega$ +J/ $\psi$
  - Near the Z(3930) previously observed by Belle in the  $\gamma\gamma$  channel via the DD decay mode.  $[2^{3}P_{2}(cc) state]$
- Y(4140) discovery at CDF
  - Mass =  $4143 \pm 2.9 \pm 1.2$  MeV
  - Width =  $11.7 + 8.3 \pm 3.7$  MeV
  - Produced in B decays
  - Observed in the decay mode  $\phi + J/\psi$
  - Near the Y(4160) previously observed by Belle in  $e^+e^-$  (recoil against  $J/\psi$ ).



(GeV<sup>2</sup>/c

#### Plus the previously observed states:

O Y(3940)

 Belle discovery in B decays confirmed by BaBar.

BelleBaBarMass = 3943 ± 11; 3914.6  $^{+12}_{-8} \pm 5.0$ MeVWidth = 83 ± 22; 39  $^{+3.8}_{-3.4} \pm 2.0$ MeV

- Decay mode  $\omega$ +J/ $\psi$
- O X(3940)
  - Mass =  $3942_{-6}^{+7} \pm 6$  MeV
  - Width =  $37 + 26 \pm 8$  MeV
  - Produced in  $e^+e^-$  (recoil against  $J/\psi$ )
  - Observed in the decay mode DD\*



#### Disentangling these states

• In the 3940 region the Z(3930) is the  $2^{3}P_{2}$  charmonium state. The remaining  $2^{3}P_{0}$  and  $2^{3}P^{1}$  are not clearly identified yet. In the 4160 region, may have the  $3^{3}P_{0}$  or  $3^{1}S_{0}$  states. Identifying the J<sup>P</sup> of the observed states will be very useful.

 ${\ensuremath{ O}}$  The  $\eta_c$  is produced copiously in B decays. Should observe the  $3^1S_0$  state.

O Using the observed production of narrow charmonium states, we expect large production of  $J^{PC} = 0^{++}$ ,  $0^{--}$  states recoiling against  $J/\psi$  in e+e- and  $J^{PC} = 0^{-+}$ ,  $1^{--}$ ,  $1^{++}$  in B decays X+K.

O There is an observed pairing of nearby states. One is seen in the decay mode light hadrons +  $J/\psi$  and the other in charm meson pair decays. Is this like the X(3872) case? If true both states must have the same  $J^{PC}$ .

S : D wave thresholds for P states.

| JPC | QQ                          | нн      | н н*      | H* H*       |
|-----|-----------------------------|---------|-----------|-------------|
| 0++ | <sup>3</sup> P <sub>0</sub> | 1 : O   | 0:0       | 1/3 : 8/3   |
| 1++ | <sup>3</sup> P <sub>1</sub> | 0:0     | 4/3 : 2/3 | 0:2         |
| 2++ | <sup>3</sup> P <sub>2</sub> | 0 : 2/5 | 0:6/5     | 4/3 : 16/15 |

| State   | DD                      | D D*                     | D* D*                |
|---------|-------------------------|--------------------------|----------------------|
| X(3930) | Γ(DD) ≈<br>37 MeV       | Γ(DD*)<br>not seen       | not allowed          |
| X(3940) | Г(DD)<br>not seen       | Γ(DD*) ≈<br>29 MeV       | not allowed          |
| Y(4160) | Γ(DD)/Γ(D*D*)<br>< 0.09 | Γ(DD*)/Γ(D*D*)<br>< 0.22 | Γ(D*D*) ≈<br>140 MeV |

### □ Y(4260) and the 1<sup>--</sup> states beyond

O Y(4260)

Seen by BaBar in ISR production confirmed by CLEO and Belle  $\Rightarrow J^{PC}=1^{--}$ Mass = 4264 ±  $\frac{10}{12}$  MeV; Width = 83 ±  $\frac{20}{17}$  MeV

- Decays
  - Y(4260) -> π<sup>+</sup>π<sup>-</sup> + J/ψ
     (BaBar, CLEO, Belle)
  - Y(4260) -> π<sup>0</sup>π<sup>0</sup> + J/ψ (CLEO)
  - Y(4260) -> K<sup>+</sup>K<sup>-</sup> + J/ψ (CLEO)

consistent with I = O

- Not a charmonium state
  - Small ΔR 4<sup>3</sup>S<sub>1</sub> state at 4.26 would have ΔR≈2.5
  - 1<sup>3</sup>D<sub>1</sub> state ψ(4160)



### O X(4008)

Mass =  $4008\pm40 +72 -28 \text{ MeV/c}^2$ Width =  $226\pm44 +87 -79 \text{ MeV}$   $J^{PC}=1^{--}$ Seen by Belle in  $\pi^+\pi^- + J/\psi$  final state Not confirmed by BaBar [arXiv:0808.1543v2]

### <mark>O</mark> Y(4350)

Mass =  $4361\pm9\pm9$  MeV/c<sup>2</sup> Width =  $74\pm15\pm10$  MeV Seen byBaBar, Belle in  $\pi^{+}\pi^{-} + \psi(2S)$  final state

**O** Y(4660)

Mass =  $4664\pm11\pm5$  MeV/c<sup>2</sup>  $J^{PC}=1^{--}$ Width =  $48\pm15\pm3$  MeV Seen by Belle in  $\pi^{+}\pi^{-} + \psi(2S)$  final state





X. L. Wang, et al. PRL 99:142002 (2007)

Π

# O What are the Y(4260), Y(4350) and Y(4660)?



### Summary and Outlook

- The wealth of precision data has solidified our confidence in the NRQCD approach
  - The velocity expansion for the spectrum and the multipole expansions for both electromagnetic and hadronic transitions hold up well.
  - Relativistic corrections: Significant relativistic for the cc system. Reduced for the bb system. Generally consistent with velocity scaling expectations. Here phenomenological models inadequate. Need lattice QCD and pNRQCD.
  - Quarkonium resonances have been used as factories:
    - $\Upsilon(4S)$ ,  $\Upsilon(5S) B^{\pm}$ ,  $B^0$ ,  $B_s^{\pm}$  studies
    - $\psi(3772) D^{\pm}$ ,  $D^0$  studies
    - $\psi(4160) D_s^{\pm}$  studies
    - $J/\psi$ ,  $\psi'$ ,  $\Upsilon$ ,  $\Upsilon''$ ,... direct decays

- The situation above threshold is not yet clear:
  - Need  $J^{P}$  determination for many of the new states.
  - New states and possibly a new spectroscopy: X(3872), X(4008), Y(4140), Y(4260), Y(4350), Y(4660), Z<sup>+</sup>(4430), ...
    - X(3872) large  $2^{3}P_{1}$  component. Molecular interpretation less attractive. Strong decay dynamics plays an important role. Look for decay mode  $\pi\pi\chi_{c1}$
    - The states in the 3940 and 4160 regions also seem paired. A signal of decay dynamics in the J<sup>PC</sup> = 2<sup>++</sup>, 0<sup>++</sup> (2<sup>3</sup>P<sub>J</sub>), and/or the 0<sup>-+</sup> (3<sup>1</sup>S<sub>0</sub>) channels? Any relation to unexpectedly large hadronic transition rates:
       Y(5S) -> Y(nS) + 2π (n=1,2,3) ?
    - The Y(4260) and related 1<sup>--</sup> new states. Hybrid states?
    - [If confirmed] Z<sup>+</sup>(4430) smoking gun for four quark states. Not I=0.
       Look for isospin partners.

#### O Future prospects

- NRQCD and HQET allows scaling from c to b systems. This will eventually provide critical tests of our understanding of new charmonium states.
- Lattice calculations will provide insight into theoretical issues.
- Answers in many cases will require the next generation of heavy flavor experiments BES III, LHCb and Super-B factories.

### Extra Slides

• Charm Meson Pair Thresholds

| L=0                                                                                                   | $c\bar{q} \; [j_l^P = \frac{1}{2}^-]$                                                                                                             |                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Narrow T                                                                                                            | hresholds                                                                                                  |        |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------|
| $egin{array}{cccc} D^0 & 186 \ D^+ & 186 \ D_s^+ & 196 \ D^{*0} & 20 \ D^{*+} & 20 \end{array}$       | $\ddot{6}9.62 \pm 0.20$ (6.3)<br>$\ddot{6}8.49 \pm 0.34$ (1.3)<br>$06.97 \pm 0.19$ 77<br>$10.27 \pm 0.17$ (96)                                    | dth (eV)<br>$50 \pm 0.01) \times 10^{-3}$<br>$33 \pm 0.04) \times 10^{-4}$<br>$32 \pm 0.02) \times 10^{-3}$<br>$1 \times 10^3$ [21]<br>$5 \pm 4 \pm 22) \times 10^3$<br>$5 \pm 10^3$ [21] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $D\bar{D}$ $\bar{D}^* + D^*\bar{D}$ $D_s\bar{D}_s$ $D^*\bar{D}^*$ $\bar{D}^*_s + \bar{D}_sD^*_s$ $D^*_s\bar{D}^*_s$ | 3729.7(+9.56)<br>3,871.8(+8.08)<br>3,937.0<br>4,013.9(+6.6)<br>4,080.8<br>4,224.6                          | P-wave |
| L=1<br>Meson $(J^{F})$<br>$D^{*0}(0^{+})$<br>$D^{*+}(0^{+})$<br>$D^{*+}_{s}(0^{+})$<br>$D^{0}(1^{+})$ | $c\bar{q} \ [j_l^P = \frac{1}{2}^+]$<br>) Mass (MeV/ $c^2$ )<br>$2352 \pm 50$<br>$2403 \pm 38$<br>$2317.8 \pm 0.6$<br>$2407 \pm 25$               | Width (MeV)<br>$261 \pm 50$<br>$283 \pm 42$<br>0.023 [21]                                                                                                                                 | $D\bar{D}(2^+) - D^*\bar{D}(1^+) - D^*\bar{D}(1^+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | + $D(1^+)\bar{D}$<br>+ $D(2^+)\bar{D}$<br>+ $D(1^+)\bar{D}^*$<br>+ $D(2^+)\bar{D}^*$<br>$D_s(1^+)\bar{D}_s$         | $\begin{array}{c} 4,287.1(+5.9) \\ 4,325.9(+3.8) \\ 4,429.3(+4.4) \\ 4,468.1(+2.3) \\ 4,428.1 \end{array}$ | D-wave |
| $D^{+}(1^{+})$<br>$D^{+}_{s}(1^{+})$                                                                  | 2427 ± 35<br>2427 (a)<br>2459.6 ± 0.6<br>$c\bar{q} [j_l^P = \frac{3}{2}^+]$                                                                       | $384 \ ^{+130}_{-105}$<br>384 (a)<br>0.038 [21]                                                                                                                                           | $D_s^* \bar{D}_s(0^+) + D_s^* \bar{D}_s(1^+) + D_s \bar{D}_s(1^+) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $D_s(0^+)\bar{D}_s^*$<br>$D_s(1^+)\bar{D}_s^*$                                                                      | $\begin{array}{c} 4,430.1 \\ 4,571.9 \\ 4,540.9 \end{array}$                                               | S-wave |
| $D^{0}(1^{+})$<br>$D^{+}(1^{+})$<br>$D^{+}_{s}(1^{+})$                                                | $\begin{array}{c} Cq \ [J_l \ - \frac{1}{2} \ ]\\ \text{Mass} \ (\text{MeV}/c^2)\\ 2422.3 \pm 1.3\\ 2423.4 \pm 3.1\\ 2535.35 \pm 0.6 \end{array}$ |                                                                                                                                                                                           | $D_s D_s (1^-) + D_s \bar{D}_s (2^+) + D_s^* \bar{D}_s (1^+) + D_s^* \bar{D}_s (2^+) + D_s^* \bar{D}_s ($ | $D_s(2^+)\bar{D}_s$ $D_s(1^+)\bar{D}_s^*$                                                                           | 4, 540.9<br>4, 541.1<br>4, 647.7<br>4, 684.9                                                               | D-wave |
| $D^{*0}(2^+)$<br>$D^{*+}(2^+)$<br>$D^{*+}_s(2^+)$                                                     | $\begin{array}{c} 2461.1 \pm 1.6 \\ 2460.1 \begin{array}{c} ^{+2.6} \\ ^{-3.5} \\ 2572.6 \pm 0.9 \end{array}$                                     | $42 \pm 4$<br>$37 \pm 6$<br>$20 \pm 5$                                                                                                                                                    | wide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D*D(0+),                                                                                                            | ,D <sup>(*)</sup> D'(1+),                                                                                  | S-wave |

### New Belle Measurements - [hep-ex/0710.2577] $\Upsilon(5S) \rightarrow \pi^{+}\pi^{-} + \Upsilon(nS) (n=1,2,3)$

| Process                  | $N_s$                | Σ           | Eff.(%) | $\sigma({ m pb})$                 | $\mathcal{B}(\%)$                 | $\Gamma({ m MeV})$                |
|--------------------------|----------------------|-------------|---------|-----------------------------------|-----------------------------------|-----------------------------------|
| $\Upsilon(1S)\pi^+\pi^-$ | $325^{+20}_{-19}$    | $20\sigma$  | 37.4    | $1.61 \pm 0.10 \pm 0.12$          | $0.53 \pm 0.03 \pm 0.05$          | $0.59 \pm 0.04 \pm 0.09$          |
| $\Upsilon(2S)\pi^+\pi^-$ | $186 \pm 15$         | $14\sigma$  | 18.9    | $2.35 \pm 0.19 \pm 0.32$          | $0.78 \pm 0.06 \pm 0.11$          | $0.85 \pm 0.07 \pm 0.16$          |
| $\Upsilon(3S)\pi^+\pi^-$ | $10.5^{+4.0}_{-3.3}$ | $3.2\sigma$ | 1.5     | $1.44^{+0.55}_{-0.45} \pm 0.19$   | $0.48^{+0.18}_{-0.15}\pm0.07$     | $0.52^{+0.20}_{-0.17} \pm 0.10$   |
| $\Upsilon(1S)K^+K^-$     | $20.2^{+5.2}_{-4.5}$ | $4.9\sigma$ | 20.3    | $0.185^{+0.048}_{-0.041}\pm0.028$ | $0.061^{+0.016}_{-0.014}\pm0.010$ | $0.067^{+0.017}_{-0.015}\pm0.013$ |

Large partial rates.
 Continuum e<sup>+</sup>e<sup>-</sup>-> ππΥ(nS)
 background not subtracted.

•  $M(\pi\pi)$  and angular distribution. Compare to Y(4S).







E. Eichten – Fermilab

#### Flavor Physics and CP Violation - Lake Placid, NY - May 31, 2009

#### S states -> P states

- Generally good agreement with NR MPE
- Relativistic corrections 10%-20% effects in cc system.
- Need better theoretical guidance.





 $\mathcal{E}_{if}$ 



Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E. [Rev. Mod. Phys. 80, 1161 (2008)]

E. Eichten – Fermilab

Flavor Physics and CP Violation - Lake Placid, NY - May 31, 2009

#### $c\bar{c}$ $< v^2 >$ > (fm)State < |r| $J/\psi$ 0.32 0.26 $\chi_c(1P)$ 0.570.24 $\psi(2S)$ 0.70 0.29 $\psi(3770)$ 0.280.78bb $< v^2 >$ State > (fm)<|r| $\Upsilon(1S)$ 0.091 0.19 $\chi_b(1P)$ 0.35 0.072 $\Upsilon(2S)$ 0.086 0.44 $\Upsilon(1D)$ 0.080 0.50 $\chi_b(2P)$ 0.560.089 $\Upsilon(3S)$ 0.630.100 $\Upsilon(4S)$ 0.800.116

#### 3<sup>3</sup>S<sub>1</sub>->2<sup>3</sup>P<sub>J</sub> (bb)

Ο

#### $3^{3}S_{1} \rightarrow 1^{3}P_{J}$ transition dynamically suppressed. Rate very sensitive to relativistic corrections.

 $\mathcal{E}(3^3S_1, 1^3P_0) = 0.067 \pm 0.012 \text{ GeV}^{-1}$  $< \mathcal{E}(3^3 S_1, 1^3 P_J) >_J = 0.050 \pm 0.006 \text{ GeV}^{-1}$ GI Model (0.097, 0.045, -0.015)J = (2, 1, 0)

nP -> mS transitions. Generally good agreement with 0 NR predictions. Again better theoretical control for relativistic corrections needed



|              | Final         | Predicted | ${\mathcal B}$ Measured ${\mathcal B}$ |
|--------------|---------------|-----------|----------------------------------------|
| Level        | state         | (%) (2)   | (%) (12)                               |
| $2^{3}P_{0}$ | $\gamma + 1S$ | 0.96      | $0.9\pm0.6$                            |
|              | $\gamma + 2S$ | 1.27      | $4.6\pm2.1$                            |
| $2^{3}P_{1}$ | $\gamma + 1S$ | 11.8      | $8.5\pm1.3$                            |
|              | $\gamma + 2S$ | 20.2      | $21 \pm 4$                             |
| $2^{3}P_{2}$ | $\gamma + 1S$ | 5.3       | $7.1\pm1.0$                            |
|              | $\gamma + 2S$ | 18.9      | $16.2\pm2.4$                           |
|              |               |           |                                        |

Exp



Table 1: Cancellations in  $\mathcal{E}_{if}$  by node regions.

| bb                  | initial state node |          |          |       |  |
|---------------------|--------------------|----------|----------|-------|--|
| Transition          | < 1                | 1  to  2 | 2  to  3 | total |  |
| $2S \rightarrow 1P$ | 0.07               | -1.68    |          | -1.61 |  |
| $3S \rightarrow 2P$ | 0.04               | -0.12    | -2.43    | -2.51 |  |
| $3S \rightarrow 1P$ | 0.04               | -0.63    | 0.65     | 0.06  |  |

|                                            |            |             | $\chi_{cJ}$ ) in keV |
|--------------------------------------------|------------|-------------|----------------------|
|                                            | J = 2      | J = 1       | J = 0                |
| Our results CLEO<br>[PR D74 (2006) 031106] | < 21       | $70 \pm 17$ | $172 \pm 30$         |
| Rosner (non-relativistic) [7]              | $24 \pm 4$ | $73\pm9$    | $523\pm12$           |
| Ding-Qin-Chao [6]                          |            |             |                      |
| non-relativistic                           | 3.6        | 95          | 312                  |
| relativistic                               | 3.0        | 72          | 199                  |
| Eichten-Lane-Quigg [8]                     |            |             |                      |
| non-relativistic                           | 3.2        | 183         | 254                  |
| with coupled-channels corrections          | 3.9        | 59          | 225                  |
| Barnes-Godfrey-Swanson [9]                 |            |             |                      |
| non-relativistic                           | 4.9        | 125         | 403                  |
| relativistic                               | 3.3        | 77          | 213                  |

|   | $\chi_{cJ} \to J/\psi + \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                  |  |  |  |  |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|--|--|--|--|--|
| J | theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E835                                         | PDG                              |  |  |  |  |  |
| 2 | $a_2 \approx -\frac{\sqrt{5}}{3} \frac{k}{4m_c} (1 + \kappa_c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-0.093^{+0.039}_{-0.041} \pm 0.006$         | $-0.140 \pm 0.006$               |  |  |  |  |  |
| 2 | $a_3 \approx 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.020^{+0.055}_{-0.044} \pm 0.009$          | $0.011\substack{+0.041\\-0.033}$ |  |  |  |  |  |
| 1 | $a_2 \approx -\frac{k}{4m_c}(1+\kappa_c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.002 \pm 0.032 \pm 0.004$                  | $-0.002^{+0.008}_{-0.017}$       |  |  |  |  |  |
| J | $\psi' \rightarrow \chi_{cJ} + \gamma$ theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                                  |  |  |  |  |  |
| 2 | $a_2 \approx -\frac{\sqrt{3}}{2\sqrt{10}} \frac{k}{m_c} \left[ (1+\kappa_c)(1+\frac{\sqrt{2}}{5}X) - i\frac{1}{5}X \right] / \left[ 1 - \frac{1}{5\sqrt{2}}X \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                  |  |  |  |  |  |
| 2 | $a_3 \approx -\frac{12\sqrt{2}}{175} \frac{k}{m_c} X[1 + \frac{3}{8}Y] / [1 - \frac{1}{5\sqrt{2}}X]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                  |  |  |  |  |  |
| 1 | $a_2 \approx -\frac{k}{4m_c} [(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1+\kappa_c)(1$ | $+\frac{2\sqrt{2}}{5}X)+i\frac{3}{10}X]/[1+$ | $-\frac{1}{\sqrt{2}}X]$          |  |  |  |  |  |

ψ(3770)-> 1<sup>3</sup>P<sub>J</sub> transitions:
 Can study relativistic effects including coupling to decay channels.

ψ'(2S) -> 1<sup>3</sup>P<sub>J</sub> -> J/ψ transitions:
 Can study size of higher multipole terms
 M2 and E3.

#### Model generally in good agreement with experiment $\Box$

| Transition              | L            | $m_{\pi\pi}^{(\max)}$ | Branching Fraction                        | Partial Width $^1$ |                                              |
|-------------------------|--------------|-----------------------|-------------------------------------------|--------------------|----------------------------------------------|
| $i \to f$               | + X          | (MeV)                 | (%)                                       | $(\mathrm{keV})$   |                                              |
| $\psi(2S) \to J/\psi$   | $\pi^+\pi^-$ | 589                   | $33.54 \pm 0.14 \pm 1.10$                 | $113.0 \pm 8.4$    | $\Rightarrow  C_1  = 8.87 \times 10^{-3}$    |
|                         | $\pi^0\pi^0$ |                       | $16.52 \pm 0.14 \pm 0.58$                 | $55.7 \pm 4.1$     |                                              |
| $\psi(3770) \to J/\psi$ | $\pi^+\pi^-$ | 676                   | $(1.89 \pm 0.20 \pm 0.20) \times 10^{-1}$ | $43.5 \pm 11.5$    | $\Rightarrow  C_2 / C_1  = 1.52 +0.35 -0.45$ |
|                         | $\pi^0\pi^0$ |                       | $(0.80 \pm 0.25 \pm 0.16) \times 10^{-1}$ | $18.4\pm9.8$       |                                              |

Table 4: Two pion transitions observed in the  $c\bar{c}$  system.

Table 5: Two pion transitions observed in the  $b\bar{b}$  system.

| Transition                        |              | $m_{\pi\pi}^{(\max)}$ | Branching Fraction               | Partial Width $^2$ | Resca        |
|-----------------------------------|--------------|-----------------------|----------------------------------|--------------------|--------------|
| $i \rightarrow f$ -               | + X          | (MeV)                 | (%)                              | $(\mathrm{keV})$   |              |
| $\Upsilon(2S) \to \Upsilon(1S)$   | $\pi^+\pi^-$ | 563                   | $18.8\pm0.6$                     | $6.0\pm0.5$        | <b>}</b> 9.4 |
|                                   | $\pi^0\pi^0$ |                       | $9.0 \pm 0.8$                    | $2.6 \pm 0.2$      | 5 9.4        |
| $\Upsilon(3S) \to \Upsilon(1S)$   | $\pi^+\pi^-$ | 895                   | $4.48 \pm 0.21$                  | $0.77\pm0.06$      | } 1.4        |
|                                   | $\pi^0\pi^0$ |                       | $2.06\pm0.28$                    | $0.36\pm0.06$      | j 1. (       |
| $\Upsilon(3S) \to \Upsilon(2S)$   | $\pi^+\pi^-$ | 332                   | $2.8 \pm 0.6$                    | $0.48 \pm 0.12$    | 3.04         |
|                                   | $\pi^0\pi^0$ |                       | $2.00\pm0.32$                    | $0.35\pm0.07$      | <b>}</b> 0.6 |
| $\Upsilon(4S) \to \Upsilon(1S)$   | $\pi^+\pi^-$ | 1120                  | $(0.90 \pm 0.15) \times 10^{-2}$ | $1.8 \pm 0.4$      |              |
| $\Upsilon(4S) \to \Upsilon(2S)$   | $\pi^+\pi^-$ | 557                   | $(0.83 \pm 0.16) \times 10^{-2}$ | $1.7 \pm 0.5$      |              |
| $\chi_{b2}(2P) \to \chi_{b2}(1P)$ | $\pi^+\pi^-$ | 356                   | $(6.0 \pm 2.1) \times 10^{-1}$   | $0.83 \pm 0.32$    | 0.6          |
| $\chi_{b1}(2P) \to \chi_{b1}(1P)$ | $\pi^+\pi^-$ | 363                   | $(8.6 \pm 3.1) \times 10^{-1}$   | $0.83 \pm 0.32$    | 0.6          |

Rescaled Kuang & Yan model

Like the E1 case ?  $\Delta n = 2$  overlap suppressed. Predicted for Y(3S)->Y(1S)

Below lowest intermediate state threshold

$$\sum_{nl} \frac{|\Psi_{nl}\rangle \langle \Psi_{nl}|}{E_i - E_{nl}} \sim \frac{1}{E_i - E_{\text{string}}^{\text{TH}}} + \cdots$$

# Hence transition rates fairly insensitive to intermediate states details

| Transition                      | G                     |                       | $G < i  r^2  f >^2$ |
|---------------------------------|-----------------------|-----------------------|---------------------|
|                                 | $({\rm GeV}^7)$       | $(\mathrm{GeV}^{-2})$ | $	imes 10^2$        |
| $\psi(2S) \to J/\psi$           | $3.56 \times 10^{-2}$ | 3.36                  | 40.2                |
| $\Upsilon(2S) \to \Upsilon(1S)$ | $2.87 \times 10^{-2}$ | 1.19                  | 4.06                |
| $\Upsilon(3S) \to \Upsilon(1S)$ | 1.09                  | $2.37 \times 10^{-1}$ | 0.61                |
| $\Upsilon(3S) \to \Upsilon(2S)$ | $9.09 \times 10^{-5}$ | 3.70                  | 0.12                |
| $\Upsilon(4S) \to \Upsilon(1S)$ | 5.58                  | $9.74 \times 10^{-2}$ | 0.48                |
| $\Upsilon(4S) \to \Upsilon(2S)$ | $2.61 \times 10^{-2}$ | $4.64 \times 10^{-1}$ | 0.56                |

3. The rate for  $\Upsilon'' \rightarrow \Upsilon \pi \pi$  is surprisingly small. If we compare the phase-space integrals (2.4) for the two transitions  $\Upsilon'' \rightarrow \Upsilon \pi \pi$  and  $\Upsilon' \rightarrow \Upsilon \pi \pi$ , their ratio is large,

$$\frac{G(\Upsilon'' \to \Upsilon \pi \pi)}{G(\Upsilon' \to \Upsilon \pi \pi)} \approx 33 . \qquad (2.24)$$

The matrix element for  $\Upsilon'' \rightarrow \Upsilon \pi \pi$  is tremendously suppressed:

$$\left|\frac{f_{if}^{1}(\Upsilon' \to \Upsilon \pi \pi)}{f_{if}^{1}(\Upsilon' \to \Upsilon \pi \pi)}\right|^{2} \approx (2-4) \times 10^{-3} . \tag{2.25}$$

The large suppression is due to two effects. First, there is a great deal of cancellation among different terms in the series for  $f_{if}^1(\Upsilon'' \to \Upsilon \pi \pi)$ . Second, many high vibrational levels contribute, so the mean distance from these levels to  $\Upsilon''$  is large. Because of the delicate cancellations, we cannot expect our results to be very reliable.

Kuang & Yan (1981)

Note the large variations in phase space and overlaps for the various Y states.

#### If leading <E1-E1> suppressed, can the <M1-M1> significant?

E. Eichten – Fermilab

## **Single hadron transitions**

higher order <El Ml>; <Ml Ml>, <El M2>  $C_iC_f = -1$  +1

$$O(v) = O(v^2)$$

symmetry breaking: π; η, ω

$$\tilde{\pi}^0 = \pi^0 + \epsilon \eta + \epsilon' \eta'$$

$$\tilde{\eta} = \eta - \epsilon \pi^0 + \theta \eta'$$
$$\tilde{\eta}' = \eta' - \theta \eta - \epsilon' \pi^0,$$

| Transition              |         | Branching Fraction $^3$                   | Partial Width    |
|-------------------------|---------|-------------------------------------------|------------------|
| $i \rightarrow f$ -     | + X     | (%)                                       | $(\mathrm{keV})$ |
| $\psi(2S) \to J/\psi$   | $\eta$  | $3.25 \pm 0.06 \pm 0.11$                  | $11.0 \pm 0.84$  |
|                         | $\pi^0$ | $0.13 \pm 0.01 \pm 0.01$                  | $0.44 \pm 0.06$  |
| $\psi(2S) \to h_c(1P)$  | $\pi^0$ | $(1.0 \pm 0.2 \pm 0.18) \times 10^{-1}$   | $0.34 \pm 0.10$  |
| $\psi(3770) \to J/\psi$ | $\eta$  | $(0.87 \pm 0.33 \pm 0.22) \times 10^{-1}$ | $20 \pm 11$      |

| Transition                       |          | Branching Fraction                     | Partial Width $^4$             |
|----------------------------------|----------|----------------------------------------|--------------------------------|
| $i \rightarrow f +$              | X        | (%)                                    | $(\mathrm{keV})$               |
| $\Upsilon(2S) \to \Upsilon(1S)$  | $\eta$   | $(2.5 \pm 0.7 \pm 0.5) \times 10^{-2}$ | $(7.2 \pm 2.3) \times 10^{-3}$ |
| $\chi_{b1}(2P) \to \Upsilon(1S)$ | $\omega$ | $1.63 \pm 0.33 \pm 0.16$               | $1.56\pm0.59$                  |
| $\chi_{b2}(2P) \to \Upsilon(1S)$ | $\omega$ | $1.10 \pm 0.30 \pm 0.11$               | $1.52 \pm 0.64$                |

### chiral effective theory:

$$\epsilon = \frac{(m_d - m_u)\sqrt{3}}{4(m_s - \frac{m_u + m_d}{2})}, \quad \epsilon' = \frac{\tilde{\lambda}(m_d - m_u)}{\sqrt{2}(m_{\eta'}^2 - m_{\pi^0}^2)}, \quad \theta = \sqrt{\frac{2}{3}} \frac{\tilde{\lambda}\left(m_s - \frac{m_u + m_d}{2}\right)}{m_{\eta'}^2 - m_{\eta}^2},$$

E. Eichten – Fermilab

Flavor Physics and CP Violation - Lake Placid, NY - May 31, 2009

Image: Hybrid states and Lattice QCD
$$\Psi_{Q\bar{Q}}(\vec{r}) = \frac{u_{nl}(r)}{r} Y_{Im}(\theta, \phi)$$
 $-\frac{1}{2\mu} \frac{d^2 u(r)}{dr^2} + \left\{ \frac{\langle L^2_{Q\bar{Q}} \rangle}{2\mu r^2} + V_{Q\bar{Q}}(r) \right\} u(r) = E u(r)$  $J = L + S. S = s_Q + s_Q. L = L_{QQ} + J_S.$ Spectroscopic notation of diatomic molecules $(L_rJ_{gr}) = \langle J^2_{gr} \rangle = \Lambda^2$  $P = \varepsilon(-1)^{L+\Lambda+1}, \quad C = \eta \varepsilon(-1)^{L+S+\Lambda}.$  $\langle J^2_g \rangle = 0, 2, 6, ...$  $\Lambda = 0, 1, 2, ...$  denoted Σ, Π, Δ, ...naively 0, 1, 2, ... valence gluons $\eta = \pm 1$  (symmetry under combined charge conjugation and spatial inversion)denoted g(+1) or u(-1). $|LSJM; \lambda\eta\rangle + \varepsilon|LSJM; -\lambda\eta\rangle$  with  $\varepsilon = +1$  for Σ<sup>+</sup> and  $\varepsilon = -1$  for Σ<sup>-</sup>  
both signs for Λ>0.Potentials computed by lattice QCDK.J. Juge, J. Kuti and C. Morningstar [PRL 90, 161601 (2003)]Short distance: gluelumps  
Perturbative QCD, pNRQCD  
singlet: -4/3 α\_s /r  
octet : 2/3 α\_s /rLarge distance: String  
 $\sigma r + \pi N/r$   
Nambu-Gato string behavour  
octet : 2/3 α\_s /r $\bullet$  $\bullet$ <

E. Eichten – Fermilab

Flavor Physics and CP Violation – Lake Placid, NY – May 31, 2009

tion.

• Non DD decays of the  $\psi$  (3770)

#### •X J/ψ

Theory expectation for  $\pi^+\pi^-J/\psi$ : 0.1-0.7%

### •YX<sub>cJ</sub>

Good agreement with theory expectations including relativistic effects

### •light hadrons

No evidence for direct decays to light hadrons seen yet.

### Puzzle of missing decays

 $\sigma_{\psi(3770)} = 6.38 \pm 0.08 \stackrel{+0.41}{_{-0.30}} \text{ nb}$  $\sigma_{\psi(3770)} - \sigma_{\psi(3770) \to D\bar{D}} = -0.01 \pm 0.08 \stackrel{+0.41}{_{-0.30}} \text{ nb}$ 

$$\sigma_{\psi(3770)} = 7.25 \pm 0.27 \pm 0.34$$
 nb

### No evidence of unexpected rates for non DD decays

| $\psi'' \to \pi^+ \pi^- J/\psi$ | $0.34 \pm 0.14 \pm 0.09$    | BES  |
|---------------------------------|-----------------------------|------|
|                                 | $0.189 \pm 0.020 \pm 0.020$ | CLEO |
| $\psi'' \to \pi^0 \pi^0 J/\psi$ | $0.080 \pm 0.025 \pm 0.016$ | CLEO |
| $\psi'' \to \eta^0 J/\psi$      | $0.087 \pm 0.033 \pm 0.022$ | CLEO |

| Mode               | $E_{\gamma} (\mathrm{MeV})$ | Predicted (keV) |     |     |     |              | CLEO (keV)   |
|--------------------|-----------------------------|-----------------|-----|-----|-----|--------------|--------------|
|                    | [55]                        | (a)             | (b) | (c) | (d) | (e)          | [136]        |
| $\gamma \chi_{c2}$ | 208.8                       | 3.2             | 3.9 | 4.9 | 3.3 | $24\pm4$     | < 21         |
| $\gamma \chi_{c1}$ | 251.4                       | 183             | 59  | 125 | 77  | $73\pm9$     | $70 \pm 17$  |
| $\gamma \chi_{c0}$ | 339.5                       | 254             | 225 | 403 | 213 | $523 \pm 12$ | $172 \pm 30$ |

| Decay Mode                      | $\sigma_{\psi(3770) \to f}$           | $\sigma^{\rm up}_{\psi(3770)\to f}$ | $\mathcal{B}^{\mathrm{up}}_{\psi(3770)\to f}$ |
|---------------------------------|---------------------------------------|-------------------------------------|-----------------------------------------------|
|                                 | [pb]                                  | [pb]                                | $[\times 10^{-3}]$                            |
| $\phi \pi^0$                    | $< 3.5^{tn}$                          | < 3.5                               | < 0.5                                         |
| $\phi\eta$                      | $< 12.6^{tn}$                         | < 12.6                              | < 1.9                                         |
| $2(\pi^{+}\pi^{-})$             | $7.4 \pm 15.0 \pm 2.8 \pm 0.8$        | < 32.5                              | < 4.8                                         |
| $K^+K^-\pi^+\pi^-$              | $-19.6 \pm 19.6 \pm 3.3 \pm 2.1^{z}$  | < 32.7                              | < 4.8                                         |
| $\phi \pi^+ \pi^-$              | $< 11.1^{tn}$                         | < 11.1                              | < 1.6                                         |
| $2(K^+K^-)$                     | $-2.7 \pm 7.1 \pm 0.5 \pm 0.3^z$      | < 11.6                              | < 1.7                                         |
| $\phi K^+ K^-$                  | $-0.5 \pm 10.0 \pm 0.9 \pm 0.1^z$     | < 16.5                              | < 2.4                                         |
| $p\bar{p}\pi^{+}\pi^{-}$        | $-6.2 \pm 6.6 \pm 0.6 \pm 0.7^z$      | < 11.0                              | < 1.6                                         |
| $p\bar{p}K^+K^-$                | $1.4 \pm 3.5 \pm 0.1 \pm 0.2$         | < 7.2                               | < 1.1                                         |
| $\phi p \bar{p}$                | $< 5.8^{tn}$                          | < 5.8                               | < 0.9                                         |
| $3(\pi^{+}\pi^{-})$             | $16.9 \pm 26.7 \pm 5.5 \pm 2.4$       | < 61.7                              | < 9.1                                         |
| $2(\pi^+\pi^-)\eta$             | $72.7 \pm 55.0 \pm 7.3 \pm 8.2$       | < 164.7                             | < 24.3                                        |
| $2(\pi^+\pi^-)\pi^0$            | $-35.4 \pm 24.6 \pm 6.6 \pm 4.0^{z}$  | < 42.3                              | < 6.2                                         |
| $K^+K^-\pi^+\pi^-\pi^0$         | $-36.9 \pm 43.8 \pm 12.8 \pm 4.2^{z}$ | < 75.2                              | < 11.1                                        |
| $2(K^+K^-)\pi^0$                | $18.1 \pm 7.7 \pm 0.7 \pm 2.0^n$      | < 31.2                              | < 4.6                                         |
| $p\bar{p}\pi^0$                 | $1.5 \pm 3.9 \pm 0.5 \pm 0.1$         | < 7.9                               | < 1.2                                         |
| $p\bar{p}\pi^{+}\pi^{-}\pi^{0}$ | $26.0 \pm 13.9 \pm 2.6 \pm 3.2$       | < 49.7                              | < 7.3                                         |
| $3(\pi^+\pi^-)\pi^0$            | $-12.7 \pm 55.9 \pm 8.7 \pm 1.8^{z}$  | < 92.8                              | < 13.7                                        |

#### BES [hep-ex/0705.2276]

E. Eichten – Fermilab

Flavor Physics and CP Violation – Lake Placid, NY – May 31, 2009

**CLEO** 

BES