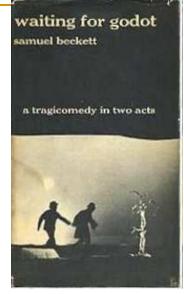
Godot and the New Physics

(or conference highlights: FPCP 2011 ... FPCP 2014)

"Are we there yet?"


Guy Wilkinson University of Oxford

Godot and the New Physics Guy Wilkinson, FPCP 09

Waiting for Godot – a parable for the flavour physics community ?

Samuel Beckett's play (1949) a landmark of modern theatre.

Two tramps, Vladimir and Estragon, await the arrival of the mysterious Godot. He does not come, although other sinister characters pass through whom they mistake for Mr G. They pass their time in meaningless activities and talk.

A play of existentialist angst focused on the futility of the human condition...

...or a parable of the search for new physics in the flavour sector ?

(which in turn could be seen as a tale of existentialist angst focused on the futility of the human condition)

Why are we here? Godot as the New Physics

- Like Vladimir and Estragon, we hope we know what we are doing here
- "But that is not the question. Why are we here,
- that is the question. And we are blessed in this,
- that we happen to know the answer. Yes, in this
- immense confusion one thing alone is clear.
- We are waiting for Godot to come."
- We know why we are doing what we're doing. We are awaiting the arrival of the New Physics.

All we know tells us that if there is New Physics it must affect the flavour sector ! This can sometimes make us a little too enthusiastic...

It's Godot, we're saved!

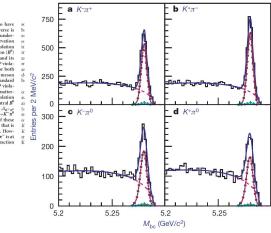
In our excitement we are eager to acclaim interesting deviations as New Physics

POZZO:

"You took me for him?"

ESTRAGON:

"That's to say ... you understand ... the dusk ... the strain ... waiting ... I confess ... I imagined ... for a second ..."



LETTERS

Difference in direct charge-parity violation between charged and neutral *B* meson decays

The Belle Collaboration*

Equal amounts of matter and antimatter are predicted to have been produced in the flig Jang, but our observable Universe is how standing this climitation of antimatter is the monoconservation of of charge-parity (CP) symmetry. So far, two types of CP violation in have been observed in the neutral Knesson (KP) and Banes (CP violation in the decay of each mesons". The observed factor for both sumparticle K² and likewise² (or R² and B²), and direct CP violation in the decay of each mesons". The observed factor for both system. However, Bey are still consistent with the standard be model of particle physics, which has a unique source" of CP violation that is hown to be too small² to account for the matterdominated Universe. Here we report that the direct CP violation in charged B²⁺, etc² decays in different from that in the account clim the difference between the number of observed B²⁻, etc²⁺, event versus B²⁻, etc² are constinent methers. Here, we request the asymmetry A_{CP}, in f² are K⁻¹ versus Berney Here asymmetry A_{CP}, in f² are K⁻¹ versus Berney Here, the the 10% level K²⁺. Although it is associable to the source of the two the asymmetry A_{CP}, in f² are K⁻¹ versus B²⁺ are (see the symmetry A_{CP}, in f² are K⁻¹ versus B²⁺ are (see the symmetry A_{CP}). Although it is associable to the source in the the -10% level K²⁺. Although it is associable to the source in the symmetry A_{CP}, in f²⁺ are (see the symmetry A_{CP}) are for B²⁺ are (see the symmetry A_{CP}). The factor A²⁺ is ant the -10% level K²⁺. Although it is associable to strong interaction factor the source in the source in the source in the symmetry A_{CP} are for B²⁺ are (see the symmetry A_{CP}) are for B²⁺ are (see the symmetry A_{CP}). The factor is anteraction for the source in th

Vol 452 20 March 2008 doi:10.1038/natu

$$\Delta \mathcal{A} \equiv \mathcal{A}_{K^{\pm} \pi^{0}} - \mathcal{A}_{K^{\pm} \pi^{\mp}} = +0.164 \pm 0.037$$

?!?

But we don't give up

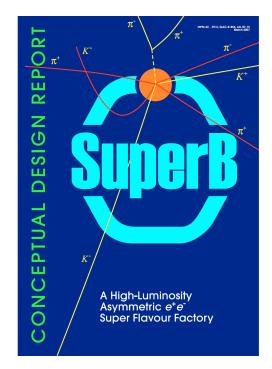
VLADIMIR:

"What are you insinuating? That we've come to the wrong place?" ESTRAGON:

"He should be here."

VLADIMIR:

"He didn't say for sure he'd come." ESTRAGON:

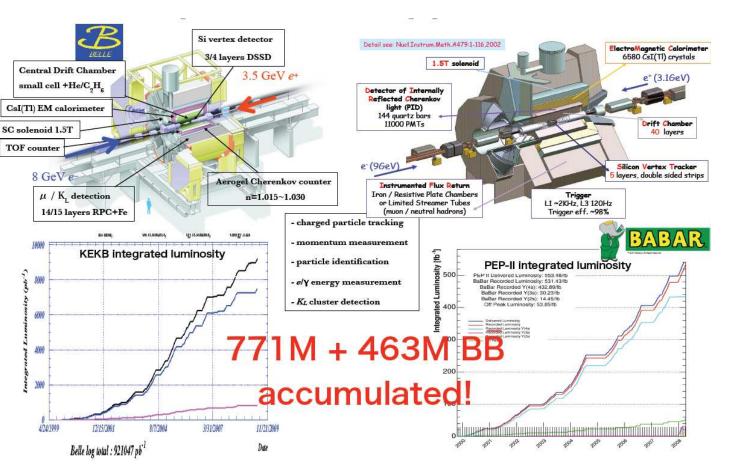

"And if he doesn't come?" VLADIMIR:

"We'll come back tomorrow." ESTRAGON:

"And then the day after tomorrow." VLADIMIR:

"Possibly." (ie, subject to funding body support)

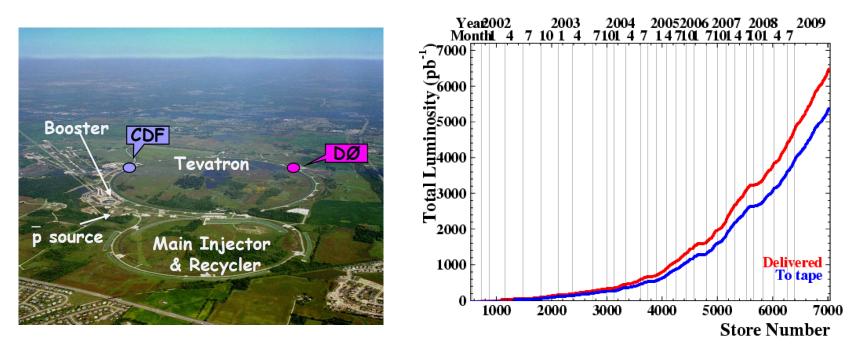
'the day after tomorrow' ?


Aims of this talk

Will present a highly selective and personal view of opportunities where we have the possibility to find New Physics in the coming 5 years ('tomorrow') – or at least the areas where advances necessary for this end will occur.

- Dramatis Personae
- Time dependent CPV measurements
- The least well known angle
- Rare decays
- The lepton sector: Θ_{13}
- Conclusions

Dramatis Personae


B-factories

Truly *astounding* achievement ! Bulk of data analysed in bulk of analyses. Still much *vital* work to be done. But low likelihood of real surprises (?)

Prospects at the Tevatron

Donati, Giurgi et al.

Most analyses seen this conference with 1-3 fb⁻¹. Already > 5 fb⁻¹ on tape per experiment, and prospect of significantly more (x 2?) to come

Tevatron harvest is only just beginning – CDF & D0 still have their best years are still ahead of them! (but do they retain the manpower to exploit the data?)

LHC prospects 2009-2010

Lopes-Pegna, Deschamps

Machine running scenario and corresponding luminosity projections still evolving

Provided this week from Mike Lamont:


LHCb 2009 - 2010 luminosity performance - rough estimate many caveats and assumptions – use with care!

Month	Comment	Turn around time	Availability	Max number colliding bunches	Protons/Bunch	Min beta*	Peak Luminosity cm ⁻² s ⁻¹	Integrated Luminosity
1	Beam commissioning							First collsions
2	Pilot physics, no squeeze, gentle increase in bunch intensity, max 19 displaced bunches	Long	Low	19	3 x 10 ¹⁰	10 m	2.4 x 10 ²⁹	~50 nb ⁻¹
3	No squeeze	5	40%	19	5 x 10 ¹⁰	10 m	6 x 10 ²⁹	~ 0.3 pb ⁻¹
4	Partial squeeze	5	40%	72	5 x 10 ¹⁰	6 m	3.8 x 10 ³⁰	~2 pb ⁻¹
5		5	40%	72	7 x 10 ¹⁰	4 m	1.1 x 10 ³¹	~6 pb ⁻¹
6	50 ns	5	40%	138	7 x 10 ¹⁰	4 m	2.1 x 10 ³¹	~11 pb ⁻¹
7	50 ns	5	40%	276	7 x 10 ¹⁰	4 m	4.2 x 10 ³¹	~22 pb ⁻¹
8	50 ns*	5	40%	414	7 x 10 ¹⁰	4 m	6.3 x 10 ³¹	~34 pb ⁻¹
9	50 ns*	5	40%	414	9 x 10 ¹⁰	4 m	1.0 x 10 ³²	~55 pb ⁻¹
10	50 ns*	5	40%	414	9 x 10 ¹⁰	4 m	1.0 x 10 ³²	~55 pb ⁻¹
							TOTAL	~200 pb ⁻¹

Similar / slightly higher luminosities to be delivered to ATLAS/CMS

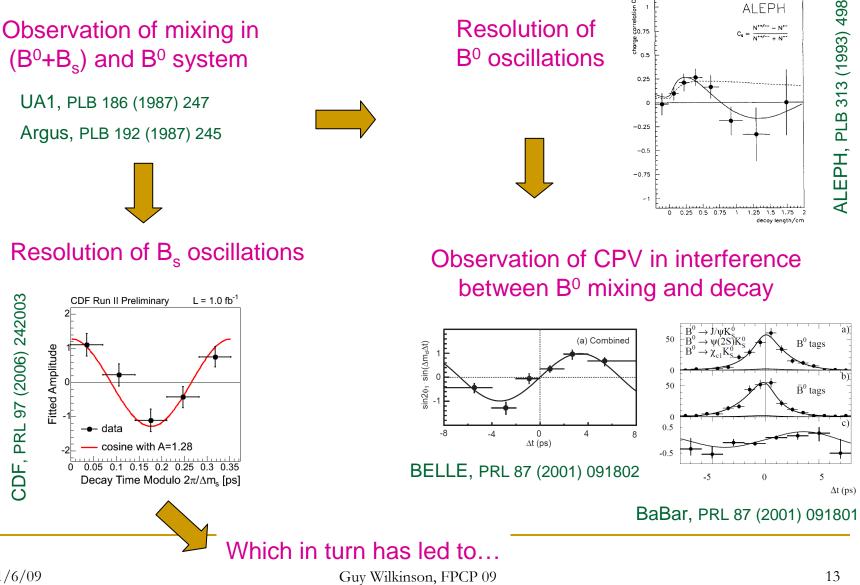
The 3rd generation experiments: $2015 \rightarrow$

Super B-factories: two options under consideration

50-100x increase in statistics w.r.t.BaBar/Belle Very exciting prospects particularly for inclusive rare processes and LFV

TDR being written Upgraded trigger and detector; 10x higher luminosity. Overall yield increases w.r.t. LHCb:

 ${\rightarrow}10x$ for leptonic modes


 \rightarrow 20x for hadronic modes

Compelling & complementary programmes – but today I am focussing on <2015...

Time dependent CPV

Godot and the New Physics Guy Wilkinson, FPCP 09

The Long and Wiggling Road to CP Violation

It's Godot, we're saved!

...`observation' of anomalously high CPV in B_s system by UTfit collaboration

FIRST EVIDENCE OF NEW PHYSICS IN $\mathbf{b} \leftrightarrow \mathbf{s}$ TRANSITIONS

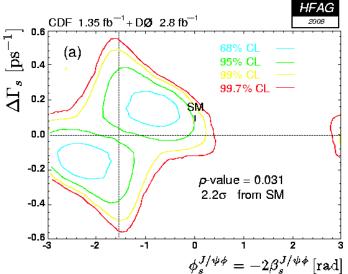
(UTfit Collaboration)

M. Bona,¹ M. Ciuchini,² E. Franco,³ V. Lubicz,^{2,4} G. Martinelli,^{3,5} F. Parodi,⁶ M. Pierini,¹ P. Roudeau,⁷ C. Schiavi,⁶ L. Silvestrini,³ V. Sordini,⁷ A. Stocchi,⁷ and V. Vagnoni⁸ ¹CERN, CH-1211 Geneva 23, Switzerland ²INFN, Sezione di Roma Tre, I-00146 Roma, Italy ³INFN, Sezione di Roma, I-00185 Roma, Italy ⁴Dipartimento di Fisica, Università di Roma Tre, I-00146 Roma, Italy ⁵Dipartimento di Fisica, Università di Roma Tre, I-00185 Roma, Italy ⁶Dipartimento di Fisica, Università di Genova and INFN, I-16146 Genova, Italy ⁷Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université de Paris-Sud, BP 34, F-91898 Orsay Cedex, France ⁸INFN, Sezione di Bologna, I-40126 Bologna, Italy

We combine all the available experimental information on B_s mixing, including the very recent tagged analyses of $B_s \to J/\Psi \phi$ by the CDF and DØ collaborations. We find that the phase of the B_s mixing amplitude deviates more than 3σ from the Standard Model prediction. While no single measurement has a 3σ significance yet, all the constraints show a remarkable agreement with the combined result. This is a first evidence of physics beyond the Standard Model. This result disfavours New Physics models with Minimal Flavour Violation with the same significance.

(Recall in SM phase $\equiv -2\beta_s = -0.037 \approx 0$, so any significant CPV observed within present experimental precision is a clear sign on new physics)

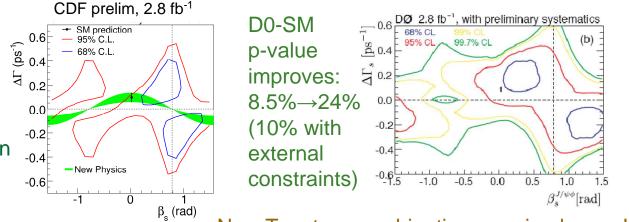
Not so fast! UTfit performed a valuable service to the community by highlighting this intriguing hint, but combinations are best left to the experiments themselves


UTFIT, arXiv:0803.0659 [hep-ph]

Combinations of $2\beta_s^{J/\psi\Phi}$ results

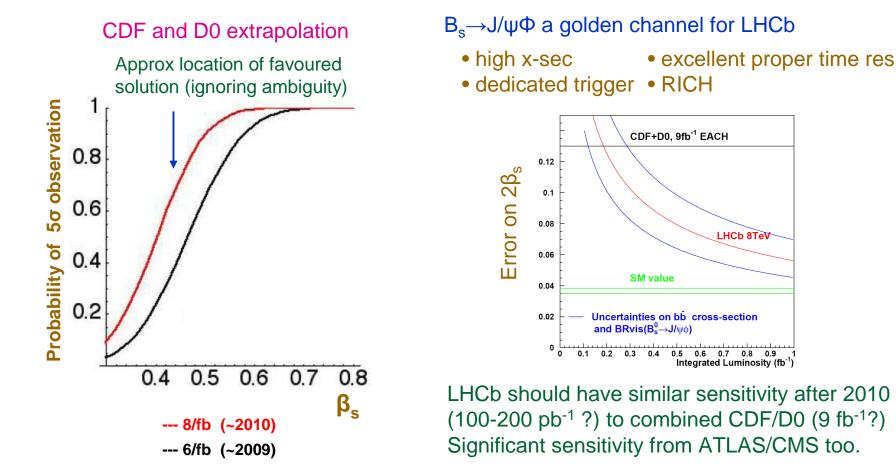
Giurgiu Beale

When making *common* assumptions (including none about strong phase values)


Expt Int lumi	From SM	S
CDF: 1.35 fb ⁻¹	1.5 sigma	Summer
D0: 2.8 fb ⁻¹	1.8 sigma	-
Combined	2.2 sigma	80,

Updates from both CDF (2.8 fb⁻¹) & D0 (systematics revisited for 2.8 fb⁻¹ sample):

CDF-SM consistency degraded from 1.5 to 1.8 sigma

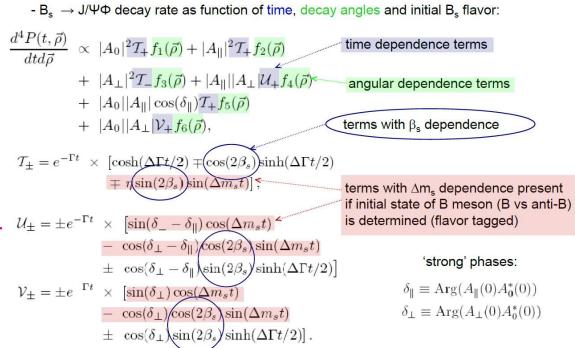

Precision of these data will improve with inclusion of SS kaon tagger

New Tevatron combination promised soon !

Godot and the New Physics Guy Wilkinson, FPCP 09

How long must we wait?

If present preferred value is a fact of nature, we will know soon! If instead $2\beta_s$ is closer to SM-value, then LHC is also prepared – but will take longer


$B_s \rightarrow J/\psi \Phi$: a closer look

Giurgiu

Analysis which yields these results is very non-trivial:

P→VV transition (hence mixture of + & - CP states) with significant width ($\Delta\Gamma_s$) and mass splitting (Δm_s)

So β_{s} sensitivity has angular $\mathcal{U}_{\pm} = \pm e^{-\Gamma t} \times [\sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta_{\perp} - \cos(\delta_{\perp} - \delta_{\parallel})\cos(\Delta_{\perp} - \cos(\delta_{\perp} - \delta_{\parallel})\cos(\Delta_{\perp} - \delta_{\parallel})\cos(\Delta_{\perp} - \delta_{\parallel})\cos(\Delta_{\perp} - \delta_{\parallel})\sin(\Delta_{\perp} - \delta_{\parallel})\cos(\Delta_{\perp} - \delta_{\parallel})\sin(\Delta_{\perp} - \delta_{\parallel})\cos(\Delta_{\perp} - \delta_{\perp})\cos(\Delta_{\perp} - \delta_{\parallel})\cos(\Delta_{\perp} - \delta_{\perp})\cos(\Delta_{\perp} - \delta_$

Further issues: does KK system has a S-wave component buried under Φ ? Stone & Zhang [PRD 79 (2009) 074024] estimate 5-10% possible. Not a worry right now but a headache in future. But this points way to another possibility...

...we can use $B_s \rightarrow J/\Psi f_0(980)[\rightarrow \pi\pi]$. $P \rightarrow VS$ so no angular analysis required !

Zhang (poster) Xin

 $\underbrace{\overset{w}{}}_{s}\overset{u}{} \left\{ \pi^{+} \right\}$

25

0

Use pole model

0.25

0.50

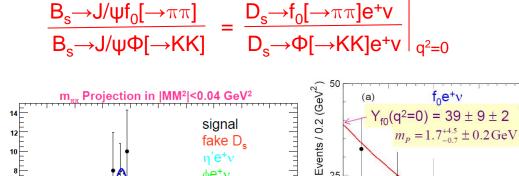
 q^2 (GeV²)

0.75

 $f_{+}(q^{2})$

Efficency Corrected

$B_{s} \rightarrow J/\psi f_{0}(980)[\rightarrow \pi \pi]$


Advantage of this mode clear – and doesn't have problem of other channels with neutrals &/or high multiplicity in final state, eg. $B_s \rightarrow J/\psi\eta$, $J/\psi\eta'$, $\eta_c \Phi$, $D_s^+D_s^-$

But what is relative rate w.r.t $J/\psi\Phi[\rightarrow KK]$? One estimate:

New CLEO-c preliminary result from 600 pb⁻¹ at 4170 MeV:

 $\frac{\Gamma(D_s^+ \to f_0 e^+ v, f_0 \to \pi^+ \pi^-, q^2 = 0)}{\Gamma(D_s^+ \to \phi e^+ v, \phi_0 \to K^+ K^-, q^2 = 0)} = (42 \pm 11)\%$

(from ~44 signal events)

n'e⁺v

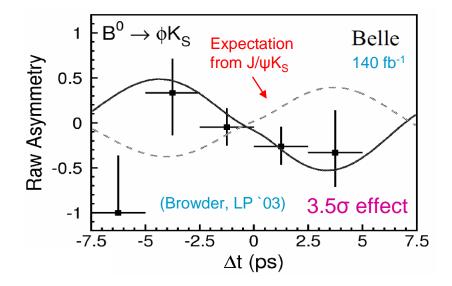
be⁺ν

f_o mass (GeV²)

 D_{s}

Very encouraging! Can the Tevatron have a look?

With this central value, mode would have β_s sensitivity approaching that of J/ $\psi\Phi$


2.5

1.00

Yusa Dutta (poster)

$sin2\beta_{eff}$ in b \rightarrow sq \bar{q}

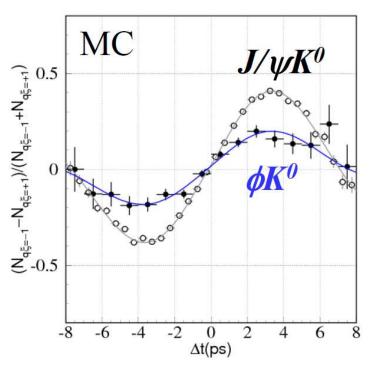
A true "It's Godot, we're saved!" moment

Since then:

- more data
- more modes
- more sophisticated analyses (eg. complete Dalitz treatments)

Present status not so encouraging. ΦK_S now 1.3 σ away from b \rightarrow ccs, and no other clear discrepancies

	sin($(2\beta^e)$	$ff) \equiv s$	sin(20		FRAG
b→ccs	World Aver	age	ł	•	- (0.67 ± 0.02
φ Κ ⁰	Average	H	*			0.44 ^{+0.17}
η′ Κ ⁰	Average			<mark>⊢ ★ ⊣</mark>	(0.59 ± 0.07
K _s K _s K _s	Average				* ().7 4 ± 0.17
$\pi^0 K^0$	Average		—	*		0.57 ± 0.17
ρ ⁰ Κ _S	Average		F	*	-	0.54 ^{+0.18}
ωK _s	Average		*		-	0.45 ± 0.24
f ₀ K _S	Average		ł	*	-1	0.60 +0.11 -0.13
K ⁺ K ⁻ K ⁰	Average		;		⊢ ★⊣	0.07 ± 0.07
-0.2	0	0.2	0.4	0.6	0.8	1

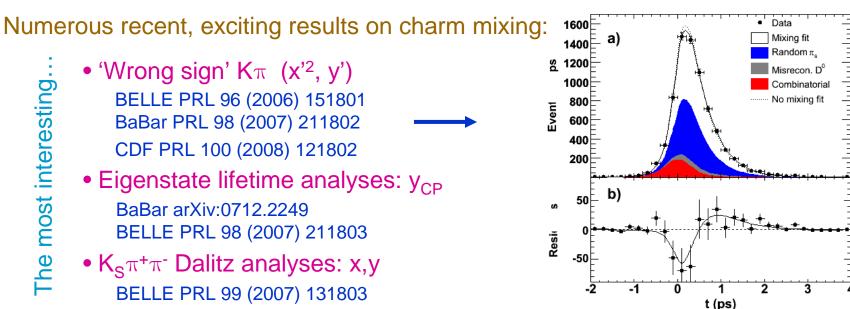

But overall tendency is intriguing, and recall that in general 'corrections' will accentuate discrepancy

Nil desperandum!

T-dep asymmetries in $b \rightarrow sqq$ remain an ideal way to look for NP effects

Initial size of effect was way out of line with expectations. It has faded (but not disappeared)

We should not be discouraged from continuing with a precision programme (a salutary lesson for $B_s \rightarrow J/\psi \Phi$ perhaps?) Superflavor: 50 ab⁻¹ with present WA central values


But further progess will not be immediate:

- LHCb will measure ΦK_s asymmetry to ~0.10 (10 fb⁻¹) but other modes difficult. However $B_s \rightarrow \Phi \Phi$ is a very promising alternative ($\sigma_{Asymm} \sim 0.05$ in 10 fb⁻¹)
- Real precision era must await Superflavor Factory and LHCb upgrade (a 'day after tomorrow' prospect)

21

Golob (Sakai)

D⁰-**D**⁰ Mixing: Observation

V (%) HFAG-charm CPV allowed 1.5 0.5 0 10 -0.5 2σ No mixing 3σ 4σ 5σ -0.5 0 0.5 1 1.5 2 x (%) A whole armada of complementary analyses Taken *together*, no doubt now that mixing exists...

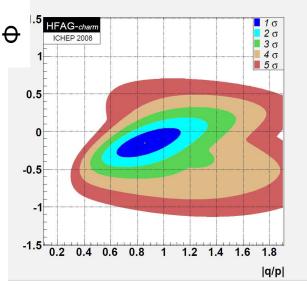
$$x = 1.00 \pm \frac{0.24}{0.26} \%$$
$$y = 0.76 \pm \frac{0.17}{0.18} \%$$

(HFAG Aug 08, CPV allowed)

...but what does it mean?

Godot and the New Physics Guy Wilkinson, FPCP 09

Grossman, **Neubert**


$D^0-\overline{D}^0$ oscillations – the next step

Values of x & y at top end of SM expectation – but *not* inconsistent. Use results to constrain many NP models. See, for example, Golowich et al. PRL 98 (2007) 181801.

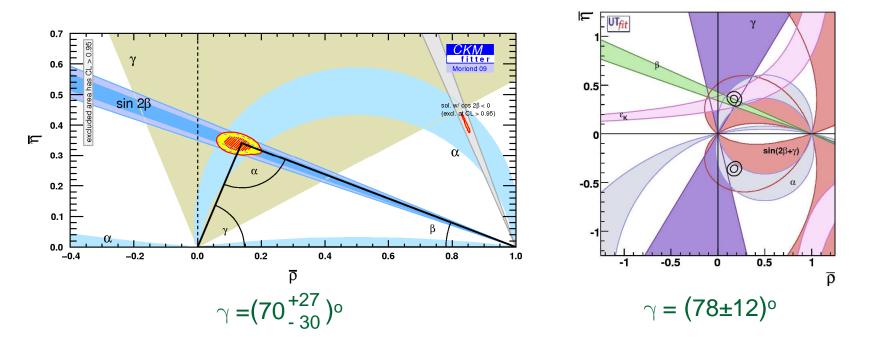
'High' values of x & y encourage us to follow lessons of B sector - look for CPV !

In SM Φ =0 and |q/p|=1 is an almost perfect approximation. Looking for deviations from this a powerful NP probe, and one complementary to B / K-sector searches.

> $|q/p| = 0.86 \pm \frac{0.17}{0.15}$ $\phi = -8.8 \pm \frac{7.6}{7.2}$ degrees

More results expected from B-factory and CDF.

With these, and LHCb order of magnitude improvement possible? Going still further is a strong argument for LHCb upgrade / project-X / superflavor factory

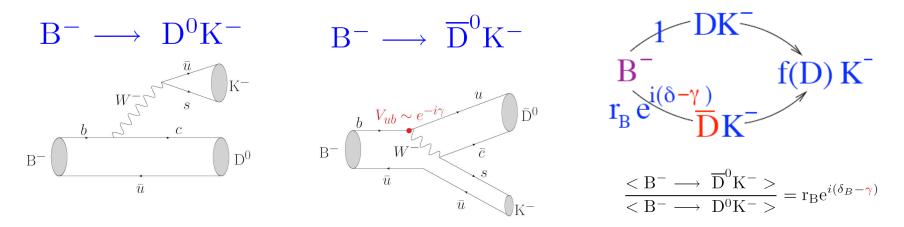

(For similar reasons, we must intensify the hunt for direct CPV in charm)

The Unitarity triangle: what is γ/Φ_3 ?

Godot and the New Physics Guy Wilkinson, FPCP 09

The least well known angle: γ / Φ_3

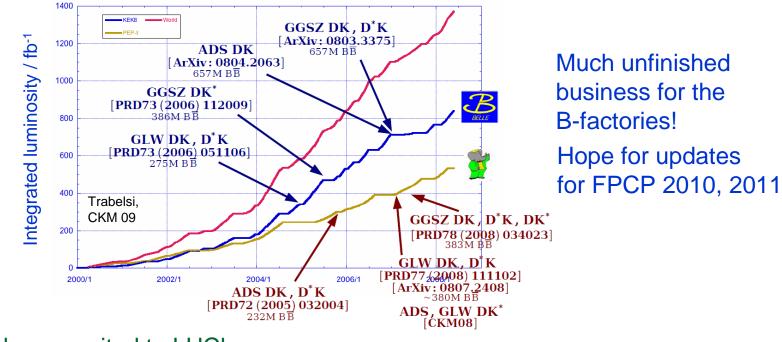
But how badly known is badly known ? Frequentists (CKMfitter) and Bayesians (UTfit) cannot agree, which is surely an indication that our knowledge is too fuzzy.



Furthermore γ is the only CP-violating observable that can be measured at tree level – a benchmark quantity to be measured as well as we possibly can.

Most powerful way to measure γ is through 'B \rightarrow DK' strategy:

Here D final state is common to both D^0 and D^0 – many, many possibilities:


'whole is greater than the sum of the parts'

All B decay parameters in common – so important to exploit as many modes as possible. Beware, however, as each D/D decay (if not a CP-eigenstate) brings its own strong phase difference which needs to be known

Deschamps Rama

<i>\gamma prospects

B-factories have plenty more gas in the tank (see figure) and Tevatron also can contribute (see 'GLW' measurement with 1 fb⁻¹: CDF note 9109) :

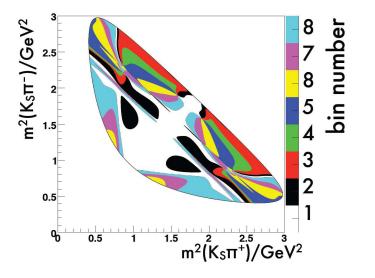
Approach very suited to LHCb:

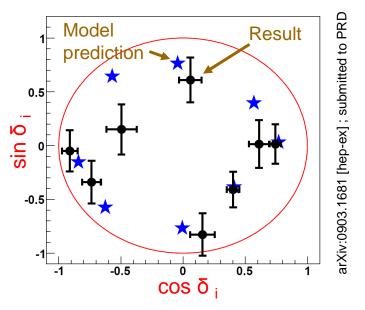
• self-tagging - full statistics can be used

Precision of 2-3° with 10 fb⁻¹ ?

• lots of kaons – RICH system invaluable

Rademacker


Brisbane (poster)


Synergy between facilities

 $B \rightarrow DK$ analyses require knowledge of strong phase differences in D-decays. These can be measured in 'CP-tagged' Dalitz plot analyses at $\psi(3770)$

Eight bins of strong phase differences according to model developed in flavour-tagged $D^0 \rightarrow K_S \pi \pi$ decays

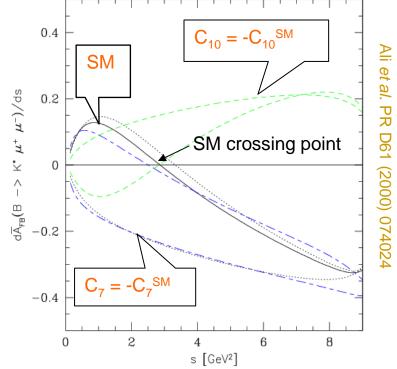
CLEO-c measurements of cosine and sine of these strong phase differences

Such measurements will eliminate all model dependence from γ determination (pioneering measurements at CLEO-c to be augmented by high stats at BES-III)

Rare decays':looking for Godot inCP-conserving processes

 $\mathbf{B} \rightarrow \mathbf{K}^{(*)}$ |+|-

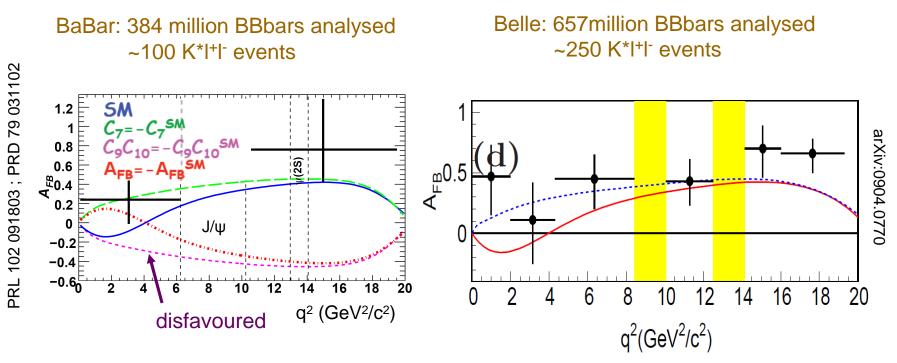
Lunghi


One of the most powerful laboratories in which to probe for New Physics effects in B decays is $B \rightarrow K^{(*)}I^+I^-$.

Host of interesting observables

Most promising in K*I^{+I-} are angular distributions, eg. forward-backward asymmetry of the angle between lepton and B in the dilepton rest frame

sensitive to effective Wilson coefficients C_7 , C_9 and C_{10}


Position of zero-asymmetry 'crossing-point rather cleanly predicted in SM, but also sensitive to new physics effects

Godot and the New Physics Guy Wilkinson, FPCP 09

Salvati

$B \rightarrow K^{(*)}I^+I^-$: state of play

Intriguing shape perhaps emerging, but poor precision – need much higher statistics! (Also interesting behaviour in isospin asymmetry at low q². BaBar see 3.9σ excursion from zero, Belle a 2.4σ effect)

CDF have ~20 K*µµ events in 1 fb⁻¹ (PRD 79 011104)

Godot and the New Physics Guy Wilkinson, FPCP 09

Deschamps

$B \rightarrow K^*I^+I^-$ at the LHC

Belle In 0.1 fb⁻¹ LHCb will accumulate in K*µµ similar ___0.5 ▼ statistics to present Belle analysis ($e^+e^- + \mu^+\mu^-$) (Ergo, no new physics discovery here in 2010?) Initial asymmetry determination will 10 12 14 16 18 20 proceed through counting analysis $q^2(GeV^2/c^2)$ LHCb precision on An example 0.1fb⁻¹ experiment A_{FB} An example 0.5fb⁻¹ experiment q² of crossing-point NB: Opposite sign convention to BELLE 0.2 0.8 GeV² 0.5 fb⁻¹ 2 fb⁻¹ 0.5 GeV² -0.2 0.3 GeV² 10 fb⁻¹ -0.4 LHCb, 2010? LHCb, 2011 ? q^2 (GeV²) q^2 (GeV²) Better than present theory

error on prediction ~ 0.32. Improved precision (~0.12) exists in inclusive prediction - SuperB !

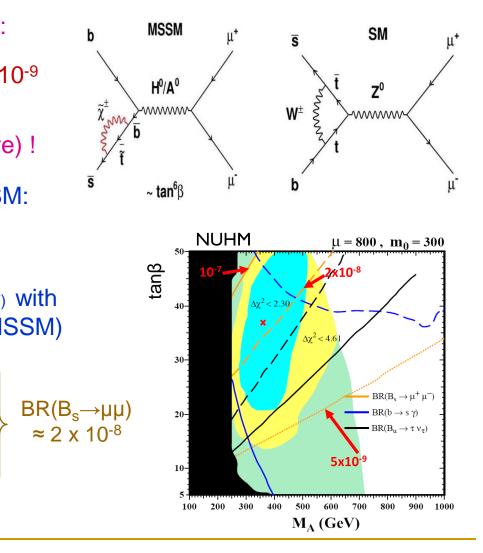
Full angular analysis will allow amplitudes to be extracted and other asymmetries to be Formed [Egede et al., JHEP 0811:0322,2008] – will benefit from upgrade statistics.

Neubert, Grinstein

Godot will come tomorrow: $B_s \rightarrow \mu \mu$

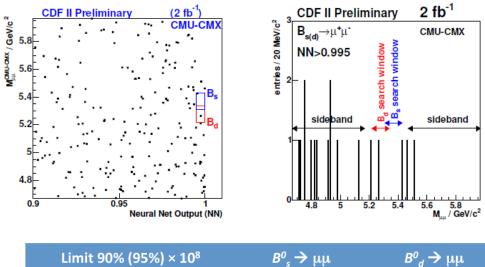
B physics rare decay par excellence:

 $BR(B_s \rightarrow \mu \mu)_{SM} = (3.35 \pm 0.32) \times 10^{-9}$

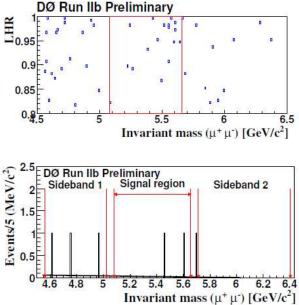

(Blanke et al., JHEP 0610:003,2006)

Precise prediction (which will improve) !

Very high sensitivity to NP, eg. MSSM: $Br^{MSSM}(Bq \rightarrow l^+l^-) \propto \frac{m_b^2 m_l^2 \tan^6 \beta}{M_{A0}^4}$


One example (Ellis et al., JHEP 0710:092,2007) with NUHM (= generalised version of CMSSM)

- b \rightarrow s γ and Higgs > 114.4 GeV \implies M_A > ~ 300 GeV & tan β < ~50
- $(g_{\mu}-2)$ is 3.4 σ from SM $\implies M_A < \sim 500 \text{ GeV } \& \tan\beta > \sim 20$



Tevatron $B_s \rightarrow \mu\mu$: status and prospects

Both experiments make a loose preselection and then use a likelihood (D0) or NN (CDF) to isolate signal like events (muon quality, flight distance, isolation etc). Normalise what is seen to $B^+ \rightarrow J/\psi K^+$.

Limit 90% (95%) × 10 ⁸	<i>Β⁰_s</i> → μμ	В ⁰ _d → µµ
Previous best	9.4	3.9
BaBar [PRD 77, 032007 (2008)]	n/a	5.2
DØ (Note 5344)	7.5 (9.3)	n/a
CDF [PRL 100, 101802 (2008)]	4.7 (5.8)	1.5 (1.8)

D0 have improved analysis and expect 90% CL upper limit of 4.3 x 10⁻⁸ with 5 fb⁻¹ (Note 5906)

Still better expected from CDF \rightarrow Tevatron now entering a very interesting regime!

$B_s \rightarrow \mu\mu$ at LHCb

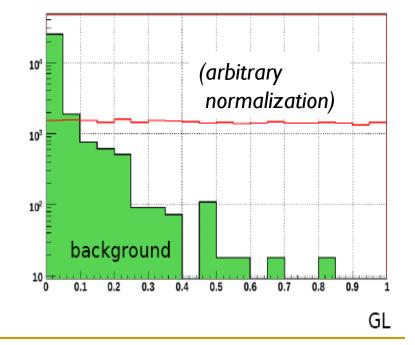
Deschamps

Bettler (poster)

LHCb approach will be philosophically similar to Tevatron's: loose preselection (which is optimised to have similar efficiency for signal and control channels: $B_{(s)} \rightarrow h^+h^-$, $B^+ \rightarrow J/\psi K^+$, $B \rightarrow J/\psi K^*$), and then construction of global likelihood

Global likelihood built from:

- 'Geometrical likelihood' (topology & lifetime info)
- Invariant mass likelihood
- Particle id likelihood


Observation then turned into limit or BR measurement after comparing with known control channel, eg. $B^+ \rightarrow J/\psi K^+$

Remark – uncertainty on B_s/B^+ production ratio (~13%) an annoying systematic. Improved measurements of B_s BRs at $\Upsilon(5S)$ from Belle would be interesting.

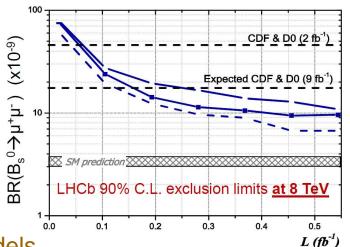
$$\mathcal{B}(B_s^0 \to D_s^- \pi^+) =$$
~20% with 24 fb⁻¹
 $(3.67^{+0.35}_{-0.33}(\text{stat})^{+0.43}_{-0.42}(\text{syst}) \pm 0.49(f_s)) \times 10^{-3}$

[Belle, PRL 102 (2009) 021801]

(Signal calibrated on control channels; background from sidebands)

Godot and the New Physics Guy Wilkinson, FPCP 09

Deschamps, Pegna

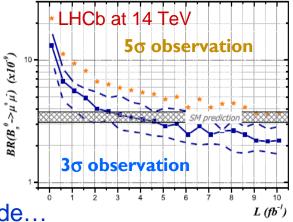

Bettler, Grybel (posters)

LHC 2010 prospects for $B_s \rightarrow \mu\mu$

For 0.1-0.2 fb⁻¹, limit should be ~ 2×10^{-8} - similar to that of the Tevatron

Contributions in this ballpark will also come from ATLAS/CMS

CERN, or indeed worldwide \overleftarrow{m} combination could be useful? ¹ Will ask interesting questions of many models



Even better – an observation!

- 2 x 10⁻⁸ could be observed at 5σ with ~0.5 fb⁻¹
- SM requires 10 fb⁻¹

LHCb at 14 TeV

Once observed *need* to measure BR as well ¹/₊ as possible. If SM-like this would require upgrade...

The Lepton Sector

• Neutrinos: tracking down Θ_{13}

• LFV: of front-rank importance, but I have no time - apologies!

Dukes Simonetto

Prospects with neutrinos

Dornan

De Gouvea

In the next 5 years we are unlikely (???) to uncover New Physics in neutrinos (but recall $m_{\nu} \neq 0$ IS a non-SM result). First we need to gain sensitivity to all elements of the PMNS matrix and map out the mass spectrum.

Immediate challenge: measure / better constrain Θ_{13}

Reactor:

 $\nu_{\rm e}$ disappearance in $\nu_{\rm e}$ beam

	start	$sin^2 2\theta_{13}$
Double Chooz	2009-10	>~0.02
Daya Bay	2011	>~0.01
RENO	2011	>~0.02

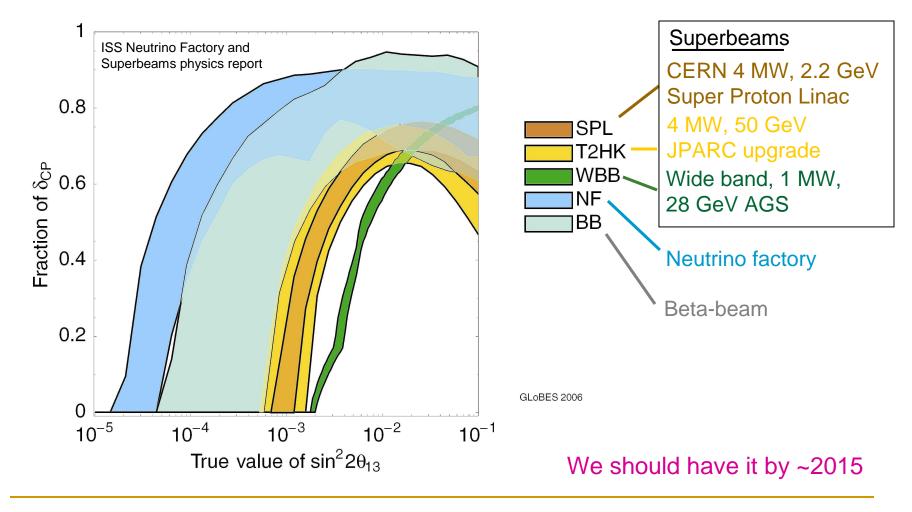
No matter effects - but small 'signal'

Off-axis superbeam: $\nu_{\rm e}$ appearance in ν_{μ} beam

• T2K (~now)

(Kato, Neutrino 08)

Expected number of events at SK (0.75kW beam x 5yr)


$ain^2 20$	Ba	Signal		
$sin^22\theta_{13}$	ν_{μ} induced	Beam v_{e}	Total	Signal
0.1	10	10	22	103
0.01	10	13	23	10

• Nova (2012)

Similar performance – with better sensitivity to mass hierarchy

Neutrino physics: the day after tomorrow

Better knowledge of θ_{13} is essential to decide on next generation of experiments

Our wait may soon be at an end

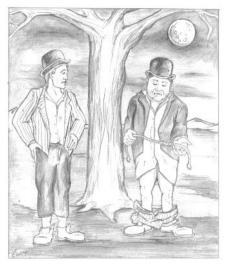
The next 5 years hold rich promise

At the least - significant improvements in precision:

- $\gamma \ / \ \varphi_3$ Charm: mixing and the race for CPV
- A_{FB} in K*I+I- Θ_{13}

Real possibilities of NP signals / *fierce* constraints *very* soon:

- β_s in $B_s \rightarrow J/\psi \Phi$: we will know soon if the hints are correct, or we are in for the longer haul (if so nil desperandum!)
- $B_s \rightarrow \mu\mu$: this may well be THE result of the first LHC run
- A reason to be cheerful Godot may soon arrive!


But it will take longer to learn who he is.

ie. what *is* the nature of the new physics

VLADIMIR:

We'll hang ourselves tomorrow... Unless Godot comes.

ESTRAGON: And if he comes?

VLADIMIR: We'll be saved.

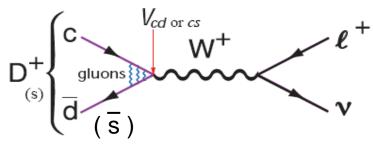
Not all sequels live up to the original...

"One of the best-written movies I've ever seen", **Bob Stout, Texas,**

"Worst sequel ever?" www.imdb.com

Many thanks to the organisers !

Victor, Sadia, Liming 13


1/6/09

+ Alessandra,

Backups

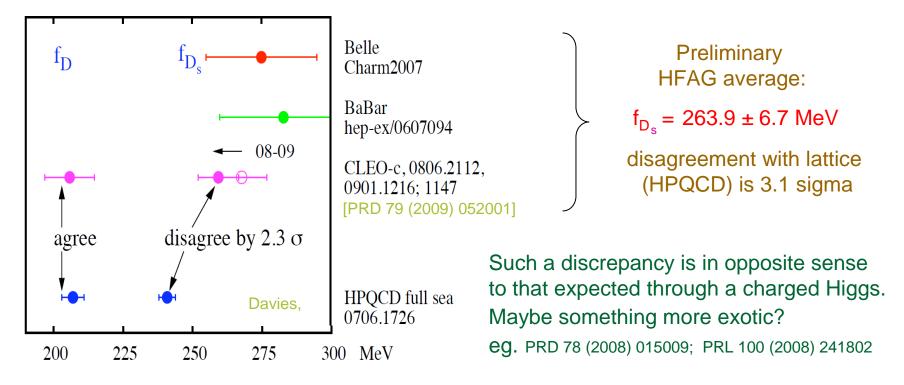
Leptonic D Decays and Decay Constants

In D⁺ and D_s c and spectator quark can annihilate to produce leptonic final state:

In general, for all pseudoscalars:

$$\Gamma(\mathbf{P}^{+} \to \ell^{+} \nu) = \frac{1}{8\pi} G_{F}^{2} f_{P}^{2} m_{\ell}^{2} M_{P} \left(1 - \frac{m_{\ell}^{2}}{M_{P}^{2}} \right)^{2} |V_{Qq}|^{2}$$

Since V_{cd} and V_{cs} well known, can extract f_D and f_{D_s} and compare with lattice !


Important confidence building exercise for using lattice calculations in B-sector, which are critical ingredients in unitarity triangle tests

Results for $f_{D_{q}}$ from BaBar, BELLE and CLEO-c, and for f_{D} from CLEO-c

Curiouser and curiouser

Briere Davies Kahlil (poster)

Consistency between measurement and lattice QCD in f_D , but tension for f_{D_s} , although this has eased a little in last year with final CLEO-c results

This needs resolving ! New results on f_{D_s} expected from B-factories, but clarification will probably only come from BES-III when it takes data at 4170 MeV