

$2\beta_s$ Measurement at LHCb Géraldine Conti and the LHCb Collaboration

geraldine.conti@epfl.ch

Abstract

A measurement of $2\beta_s$, the phase of the $B_s^0 - \overline{B}_s^0$ oscillation amplitude with respect to that of the $b \rightarrow c^+W^-$ tree decay amplitude, is one of the key goals of the LHCb experiment with first data. In the Standard Model (SM), $2\beta_s$ is predicted to be $0.0360^{+0.0020}_{-0.0016}$ rad. The current constraints from the Tevatron are: $2\beta_s \in [0.32; 2.82]$ at 68%CL from the CDF experiment and $2\beta_s = 0.57^{+0.24}_{-0.30}$ from the DØ experiment. Although the statistical uncertainties are large, these results hint at the possible contribution of New Physics in the $B_s^0 - \overline{B}_s^0$ box diagram. After one year of data taking at LHCb at an average luminosity of $\mathcal{L} \sim 2 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ (integrated luminosity $\mathcal{L}_{int} \sim 2 \text{ fb}^{-1}$), the expected statistical uncertainty on the measurement is $\sigma(2\beta_s) \simeq 0.03$. This uncertainty is similar to the $2\beta_s$ value predicted by the SM.

Phenomenology B_{s}^{0} mesons can **decay into** $J/\psi\phi$ through tree and B_{s}^{0} mesons can **decay into** $J/\psi\phi$ through tree and $Ideally, the B_{s}^{0} \rightarrow J/\psi\phi$ selection is :

Flavour Tagging Flavour tagging is done by combining informa-

penguin processes (Fig. 1), but the tree diagram dominates, which has a single weak phase :

 $\Phi_{\rm D} = \arg(V_{\rm cs}V_{\rm cb}^*).$

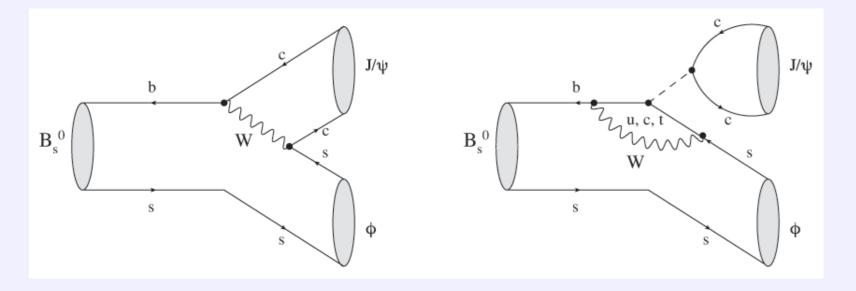


Fig. 1. Decay topologies contributing to $B^0_s \rightarrow J/\psi \phi$ within the SM.

Before decaying into $J/\psi\phi$, B_s^0 mesons can also **first oscillate into** \overline{B}_s^0 , with a B_s^0 mixing phase :

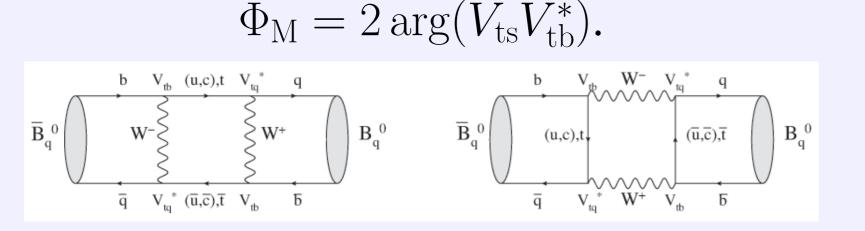


Fig. 2. Diagrams responsible of B_q - \overline{B}_q mixing, within the Standard Model (q=s,d). The interference between the two possible paths

to $J/\psi\phi$ gives rise to the CP violating phase : $\Phi_{J/\psi\phi} = \Phi_{\rm M} - 2\Phi_{\rm D} = -2 \cdot \arg(-V_{\rm ts}V_{\rm tb}^*/V_{\rm cs}V_{\rm cb}^*).$ Efficient : to select the highest signal yield possible with a reasonable background level.
Unbiased : to minimize the lifetime and

angular acceptance distortions (Fig. 4).

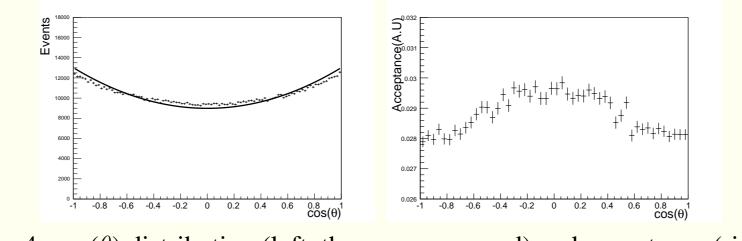


Fig. 4. $cos(\theta)$ distribution (left, theory superposed) and acceptance (right).

• As common as possible for the signal and control channels : to ensure the same phase

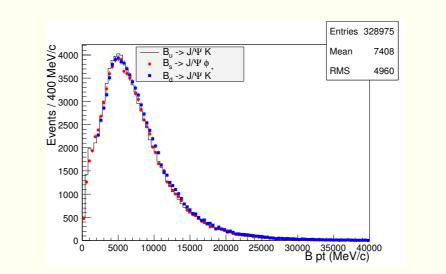


Fig. 5. p_T distributions for B_s^0 , B^0 and B^+ candidates after selection. The **trigger (Level-0 (L0) + HLT)** should fulfill the requirements above. The selection efficiency ϵ_{tot} and the event yield for triggered events are tion of the **Opposite-Side** (OS) (μ , e, K, ...) and **Same-Side** (SS) (π , K) taggers. The effective efficiency ε_{eff} , tagging efficiency ε_{tag} and mistag rate ω are given in Tab. 3.

Channel	E _{eff}	E tag	ω
$B_s^0 \rightarrow J/\psi(\mu\mu)\phi$	$(KK) = 6.23 \pm 0.15$	55.71 ± 0.17	33.27 ± 0.21
$B^0 \rightarrow J/\psi(\mu\mu)K$	$K^{*0}(K\pi) = 4.52 \pm 0.11$	53.60 ± 0.15	35.48 ± 0.19
$B^+ \rightarrow J/\psi(\mu\mu) F$	K ⁺ 4.45 ± 0.10	52.76 ± 0.14	35.48 ± 0.18

Tab. 3. Effective efficiency $\varepsilon_{\rm eff}$, tagging efficiency $\varepsilon_{\rm tag}$ and mistag rate ω .

Fitting

The likelihood function of N events is given by :

$$\mathcal{L} = \prod_{e}^{N} \mathcal{P}(X_e; \lambda)$$

Observables $X_e = \{t, \Omega, m, \text{flavour tag }q\}$. **Physics Parameters** $\lambda_{\text{phys}} = \{\Gamma_s, \Delta\Gamma_s, R_{\perp}, R_0, \delta_{\perp}, \delta_{\parallel}, \Delta m_s, \beta_s\}$. **Detector Parameters** $\lambda_{\text{det}} = \{\text{resolutions } \sigma_{(m,t)}, \omega, \text{ background properties}, ... \}$.

New physics could appear as new particles contributing to the box diagrams in Fig. 2.

 $B_s^0 \rightarrow J/\psi \phi$ is a pseudo-scalar to vector-vector decay. The final state is an **admixture of CP-even** $(\ell=0,2)$ and CP-odd $(\ell=1)$ states, ℓ being the orbital momentum between J/ψ and ϕ . An **angular analysis** of the decay products is required to distangle statistically the components. The decay product angles $\Omega = \{\theta, \varphi, \psi\}$ are given in Fig. 3.

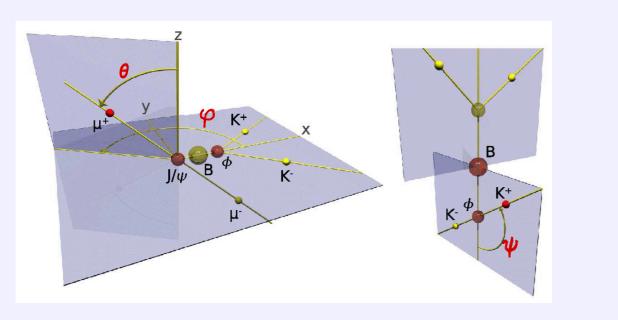


Fig. 3. Decay product angles $\Omega = \{\theta, \varphi, \psi\}$ in the transversity basis.

given in Tab. 1.

space (Fig. 5).

Channel	$\varepsilon_{\mathrm{tot}}$	Event yield	Event yield
	[%]	after L0	after L0+HLT
$B^0_s \rightarrow J/\psi(\mu\mu)\phi(KK)$	2.61 ± 0.01	156 k	117 k
$B^0 \rightarrow J/\psi(\mu\mu)K^{*0}(K\pi)$	1.54 ± 0.01	648 k	489 k
$B^+ \rightarrow J/\psi(\mu\mu)K^+$	2.61 ± 0.01	1 248 k	942 k

Tab. 1. Total selection efficiency ϵ_{tot} (no HLT) and and untagged event yield for selected and L0/L0+HLT triggered events.

Backgrounds

Prompt background (t < 0.2 ps) (Fig. 6):
All tracks come from the primary vertex.

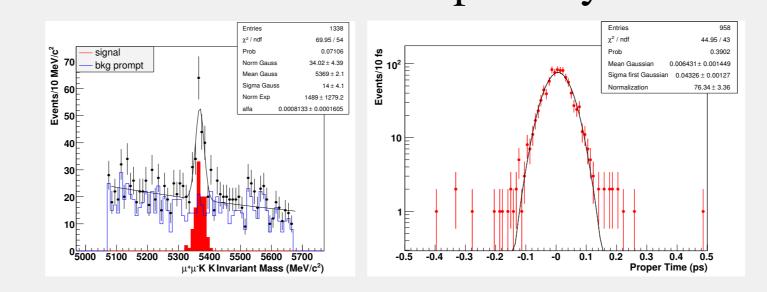
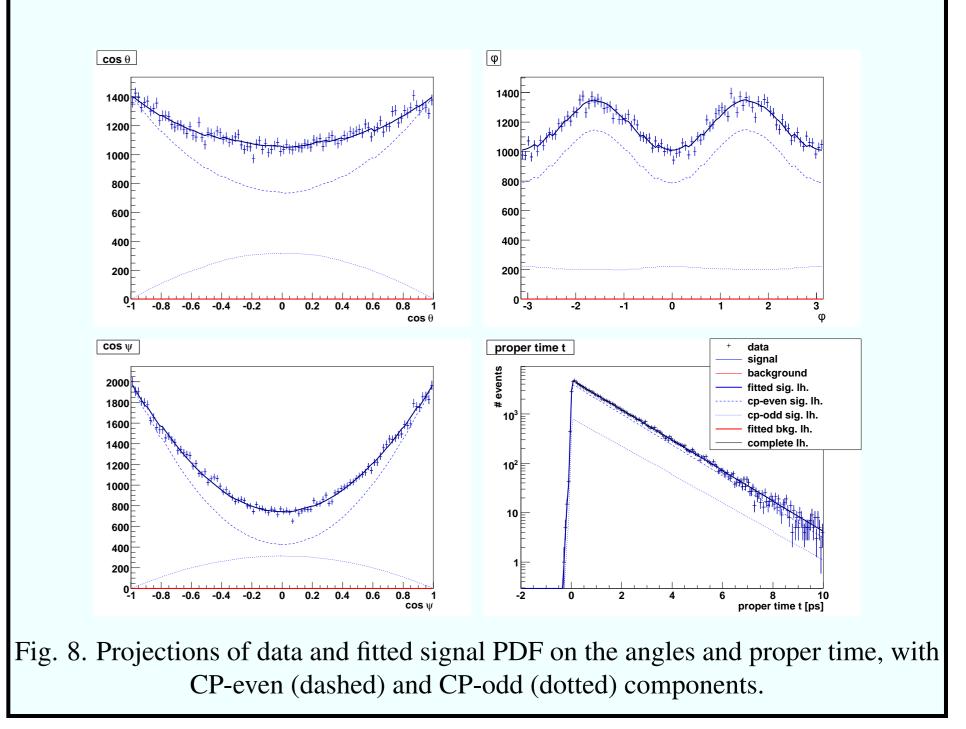



Fig. 6. Mass (left) and proper time distribution (right) for the prompt category.

Long-lived background (Fig. 7) :
● ≥ 1 of the tracks comes from the secondary vertices of other b or c decays.

7615 88.98 / 54 Long Lived background proper time

$$\mathbf{PDF} \,\mathcal{P} = f_{\mathrm{sig}} \cdot S + f_{\mathrm{Pr}} \cdot B_{\mathrm{Pr}} + (1 - f_{\mathrm{sig}} - f_{\mathrm{Pr}}) \cdot B_{\mathrm{LL}}$$

A $2\beta_{\rm s}$ sensitivity study has been performed with respect to the integrated luminosity $\mathcal{L}_{\rm int}$. At a value of $\mathcal{L}_{\rm int} \sim 2 \,{\rm fb}^{-1}$ (one year of data taking

 $2\beta_s$ is obtained from the fit of the theoretical expressions of differential decay rates. We need to: • trigger and select $B_s^0 \rightarrow J/\psi\phi$ events ;

• measure their propertime ;

 measure the transversity angles of their decay products;

• tag their initial flavour.

 $B^0 \rightarrow J/\psi K^{*0}$ and $B^+ \rightarrow J/\psi K^+$ are used as **control channels** in different parts of the analysis.

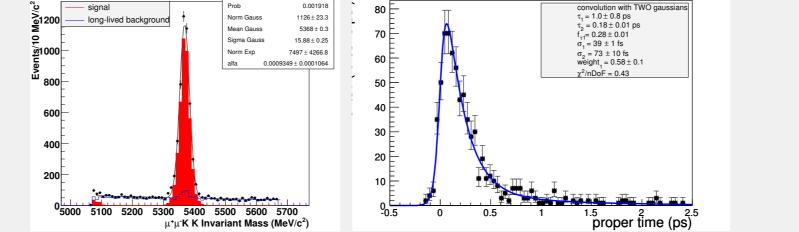
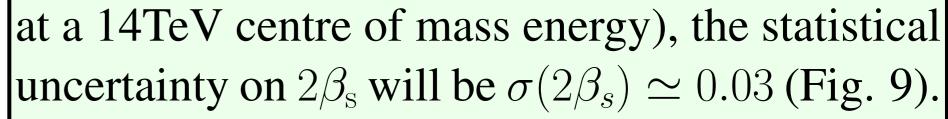



Fig. 7. Mass (left) and proper time distribution (right) for the long-lived category.

The B/S ratios are given in Tab. 2 :

Channel	$B_{\rm Pr}/S$	$B_{\rm LL}/S$	Minimum bias
$B_s^0 \rightarrow J/\psi(\mu\mu)\phi(KK)$	1.6 ± 0.6	0.51 ± 0.08	$\sim 0.3~{ m Hz}$
$B^0 \rightarrow J/\psi(\mu\mu)K^{*0}(K\pi)$	5.2 ± 0.3	1.53 ± 0.08	$\sim 8.1~{ m Hz}$
$B^+ \rightarrow J/\psi(\mu\mu)K^+$	1.6 ± 0.2	0.29 ± 0.06	$\sim 1.4~{ m Hz}$

Tab. 2. B/S ratios for prompt and long-lived categories ($\pm 50 \text{ MeV}/c^2$ mass window) and minimum bias rate ($\pm 300 \text{ MeV}/c^2$ mass window), after selection and L0.

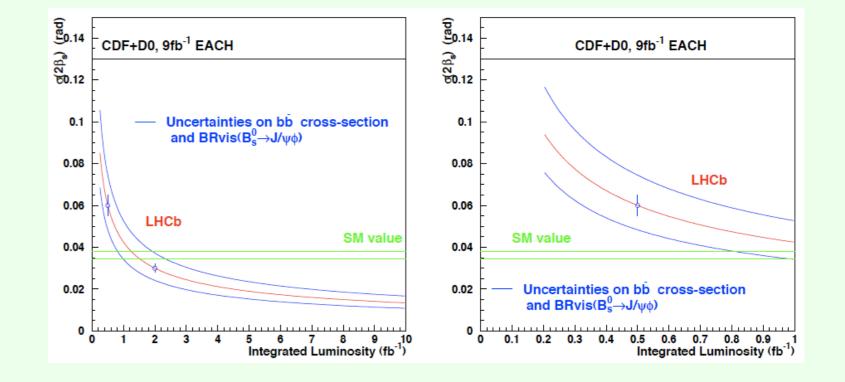


Fig. 9. Statistical uncertainty (red line) on $2\beta_s$ versus the integrated luminosity, bounded by the uncertainties coming from \overline{b} cross-section and the visible BR on $B_s^0 \rightarrow J/\psi\phi$ (blue lines). The green band is the SM value.

2009 Flavour Physics and CP violation Conference (Lake Placid, NY).