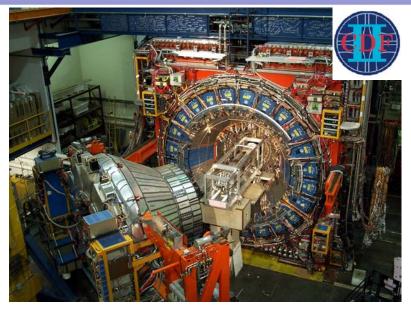
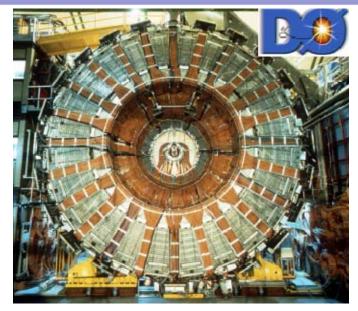
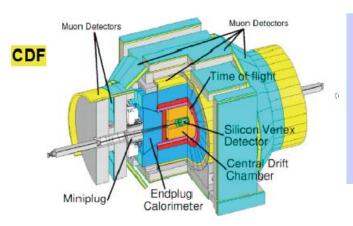
B spectroscopy at the Tevatron

Eduard De La Cruz Burelo

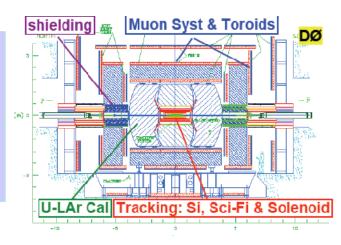

CINVESTAV IPN Mexico On behalf of the CDF and D0 collaboration FPCP 2009, Lake Placid NY


Outline:


- CDF and DØ detectors
- > B Physics @ Tevatron
- ▷ B_c mass measurement
- > Excited Bs mesons
- $\succ \Xi_{b}$ and Ω_{b} observations
- > Summary

August 28th, 2008

CDF and DØ detectors



Important:

- Triggering
- Muons
- Tracking/vertexing

B Physics @ Tevatron

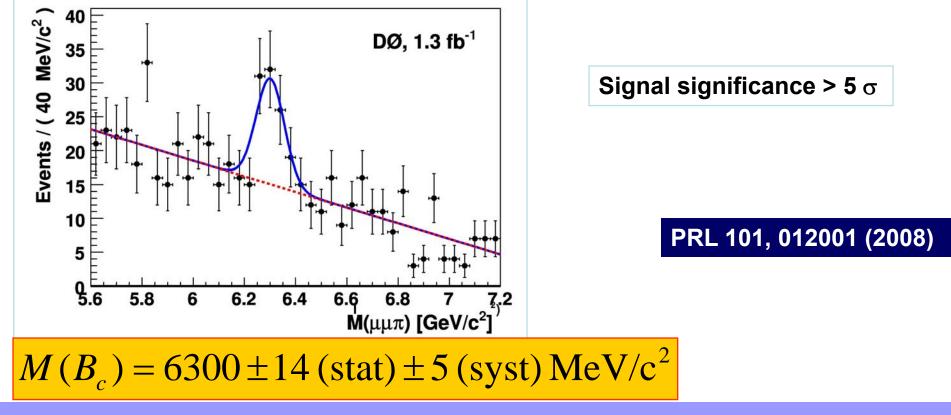
- Tevatron is an excellent place for B Physics
 - All B hadron species are produce: B⁺, B⁰, B_s, B_c, Λ⁰_b,

 - Need of smart selection beginning from triggers

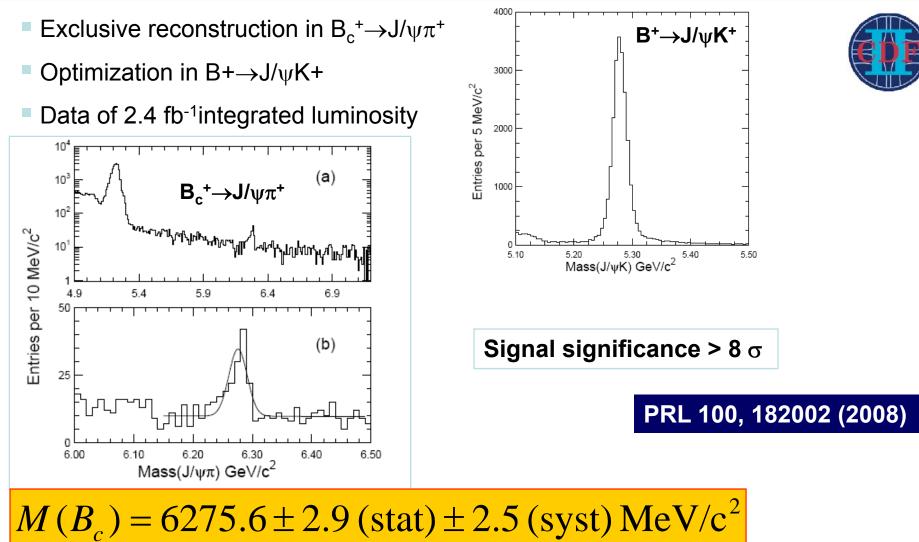
B spectroscopy status

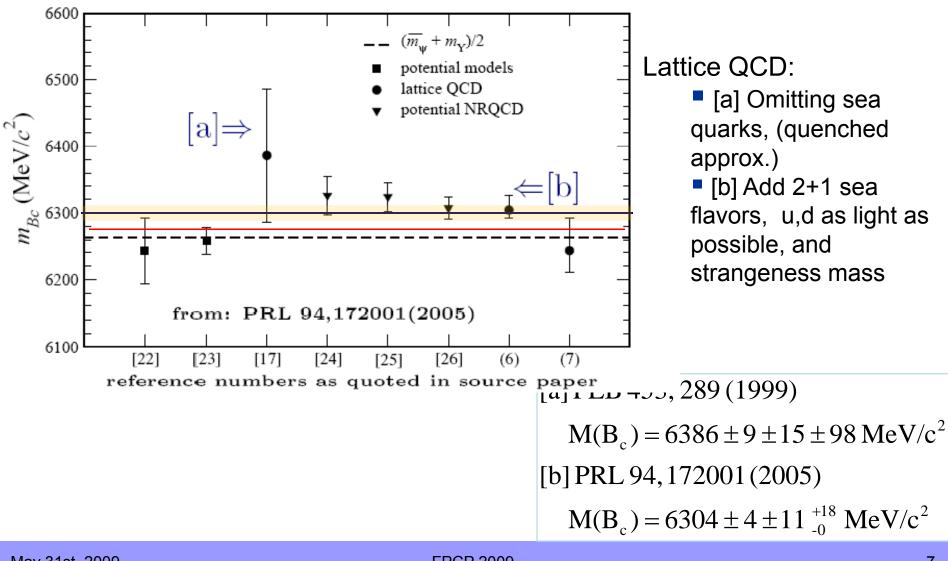
- Mesons:
 - B⁺, B⁰, B_s, B_c⁺ (established)
 - B* (established),
 - B**(CDF & DØ)
 - B_s** (CDF & DØ)
- Baryons
 - Λ_{b} (established)
 - $-\Sigma_{b}^{+}$, and Σ_{b}^{*+} (CDF)
 - Ξ_{b}^{-} , Ω_{b}^{-} (CDF & DØ)

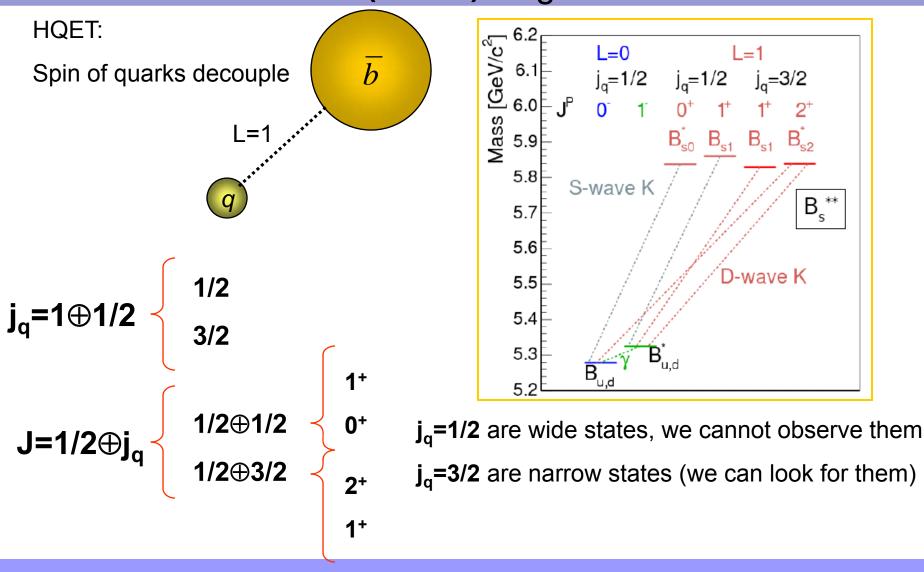
B_c system study


- B_c is not produced at b factories
- B_c is a unique (heavy-heavy, \neq q's) system.
- both *b* and *c* quark can decay weakly, with comparable probabilities
 - short (c-like) lifetimes observed
 - both DØ & CDF: τ~ 0:45 ps
- Experimentally challenging because of low production rate $f(b \rightarrow B_c) \sim 0.05\%$
- Observed and lifetime measured by DØ and CDF in $B_c \to J/\psi I\nu~(I=\mu,e)$

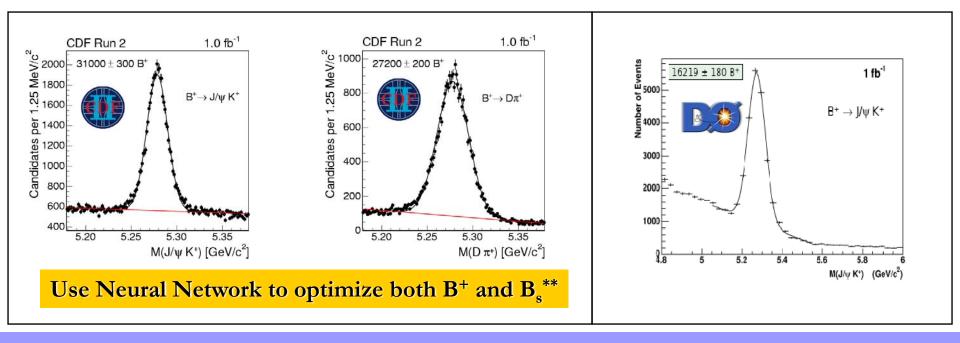
B_c mass measurement


- Exclusive reconstruction in $B_c^+ \rightarrow J/\psi \pi^+$
- Optimization in B+ \rightarrow J/ ψ K+ and B_c⁺ \rightarrow J/ ψ \pi⁺ Monte Carlo

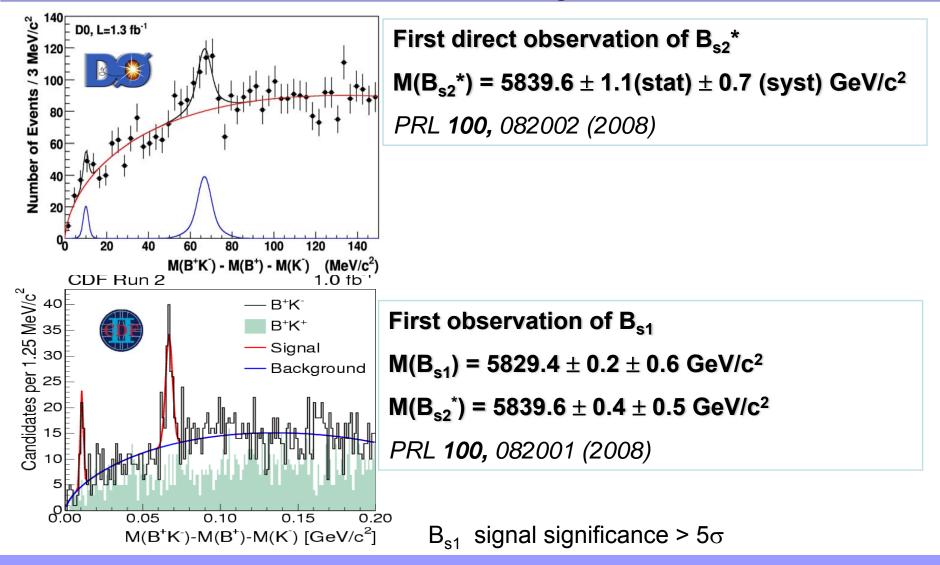

Data of 1.3 fb⁻¹integrated luminosity


B_c mass measurement

B_c mass predictions



Excited (L=1) B_s mesons


Search for narrow B_s^{**} mesons

• Reconstruct $B_s^{**} \rightarrow B^{(*)+}K^-$, $B^{*+} \rightarrow B^+\gamma$ (γ undetected), $B^+ \rightarrow J/\psi K^+$ (CDF & DØ) and $B^+ \rightarrow D^0\pi^+$ (CDF)

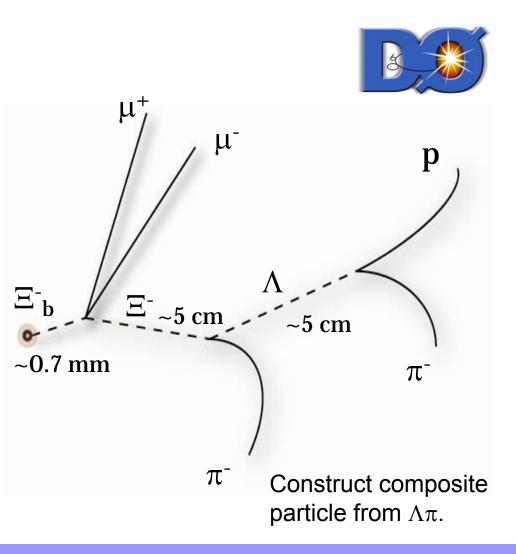
FPCP 2009

Excited (L=1) B_s mesons

When Tevatron Run II begun:

Notation	Quark content	JP	SU(3)	(I,I ₃)	S	Mass
Λ_b^{0}	b[ud]	1/2+	3*	(0,0)	0	5619.7±1.2±1.2 MeV
E ⁰	b[su]	1/2+	3*	(1/2,1/2)	-1	5.80 GeV
	b[sd]	1/2+	3*	(1/2,-1/2)	-1	5.80 GeV
${\Sigma_{b}}^+$	buu	1/2+	6	(1,1)	0	5.82 GeV
Σ_{b}^{0}	b{ud}	1/2+	6	(1,0)	0	5.82 GeV
Σ_{b}	bdd	1/2+	6	(1,-1)	0	5.82 GeV
Ξ _b ⁰ ,	b{su}	1/2+	6	(1/2,1/2)	-1	5.94 GeV
Ξ _b -'	b{sd}	1/2+	6	(1/2,-1/2)	-1	5.94 GeV
Ω_{b}^{-}	bss	1/2+	6	(0,0)	-2	6.04 GeV
${\Sigma_b}^{*+}$	buu	3/2+	6	(1,1)	0	5.84 GeV
${\Sigma_b}^{*0}$	bud	3/2+	6	(1,0)	0	5.84 GeV
Σ_{b}^{*-}	bdd	3/2+	6	(1,-1)	0	5.84 GeV
王 _b *0	bus	3/2+	6	(1/2,1/2)	-1	5.94 GeV
Ξ _b *-	bds	3/2+	6	(1/2,-1/2)	-1	5.94 GeV
Ω_{b}^{*}	bss	3/2+	6	(0,0)	-2	6.06 GeV

from hep-ph/9406359

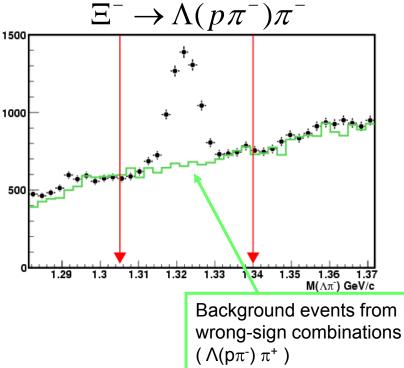

During Tevatron Run II

Notation	Quark content	JP	SU(3)	(I,I ₃)	S	Mass
Λ_b^{0}	b[ud]	1/2+	3*	(0,0)	0	5620.2 \pm 1.6 MeV
Ξ _b ⁰	b[su]	1/2+	3*	(1/2,1/2)	-1	5.80 GeV
Ξ _b	b[sd]	1/2+	3*	(1/2,-1/2)	-1	5792.4 \pm 3.0 MeV
Σ_{b}^{+}	buu	1/2+	6	(1,1)	0	$\textbf{5807.8} \pm \textbf{2.7}~\textbf{MeV}$
Σ_b^{0}	b{ud}	1/2+	6	(1,0)	0	5.82 GeV
Σ _b ¯	bdd	1/2+	6	(1,-1)	0	5815.2 ± 2.0 MeV
Ξ _b ⁰ ,	b{su}	1/2+	6	(1/2,1/2)	-1	5.94 GeV
Ξ _b -'	b{sd}	1/2+	6	(1/2,-1/2)	-1	5.94 GeV
Ω_{b}^{-}	bss	1/2+	6	(0,0)	-2	6.04 GeV
${\Sigma_{b}}^{*+}$	buu	3/2+	6	(1,1)	0	$\textbf{5829.0} \pm \textbf{3.4}~\textbf{MeV}$
Σ_{b}^{*0}	bud	3/2+	6	(1,0)	0	5.84 GeV
Σ _b *-	bdd	3/2+	6	(1,-1)	0	5836.4 ± 2.8 MeV
Ξ _b *0	bus	3/2+	6	(1/2,1/2)	-1	5.94 GeV
Ξ _b *-	bds	3/2+	6	(1/2,-1/2)	-1	5.94 GeV
${\Omega_{b}}^{\star\text{-}}$	bss	3/2+	6	(0,0)	-2	6.06 GeV

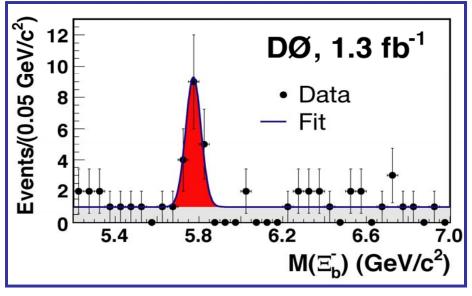
Search for $\Xi_{b}^{-} \rightarrow J/\psi \Xi \rightarrow (\mu + \mu -)\Lambda \pi$ -

Reconstruction procedure:

- > Reconstruct $J/\psi \rightarrow \mu^+\mu^-$
- ➢ Reconstruct Λ→pπ
- ➢ Reconstruct Ξ→Λ + π
- > Combine J/ ψ + Ξ
- Improve mass resolution by using an event-by-event mass difference correction
- > The optimization:
 - 1. $\Lambda_b \rightarrow J/\psi \Lambda$ decays in data
 - **2.** J/ψ + Ξ (fake from $\Lambda(p\pi^{-})\pi^{+}$)
 - 3. Monte Carlo simulation of $\Xi_{b}^{-} \rightarrow J/\psi + \Xi^{-}$


Ξ_{b}^{-} Search optimization

Final Ξ_{b} selection cuts:


- $\Lambda \rightarrow p\pi$ decays:
 - − p_T(p)>0.7 GeV
 - $p_T(\pi) > 0.3 \text{ GeV}$
- $\Xi^- \rightarrow \Lambda \pi$ decays:
 - p_T(π)>0.2 GeV
 - Transverse decay length>0.5 cm
 - Collinearity>0.99
- Ξ_b particle:
 - Lifetime significance>2.
 (Lifetime divided by its error)

Based on:

- $\Lambda_b \rightarrow J/\psi \Lambda$ decays in data
- J/ ψ + Ξ (fake from $\Lambda(p\pi$ -) π +)

Ξ_{b} observation (DØ)

• Fit:

- Unbinned extended log-likelihood fit
- Gaussian signal, flat background
- Number of background/signal events are floating parameters

Number of events: 15.2 ± 4.4

Mass: 5.774 ± 0.011(stat) GeV

Width: 0.037 ± 0.008 GeV

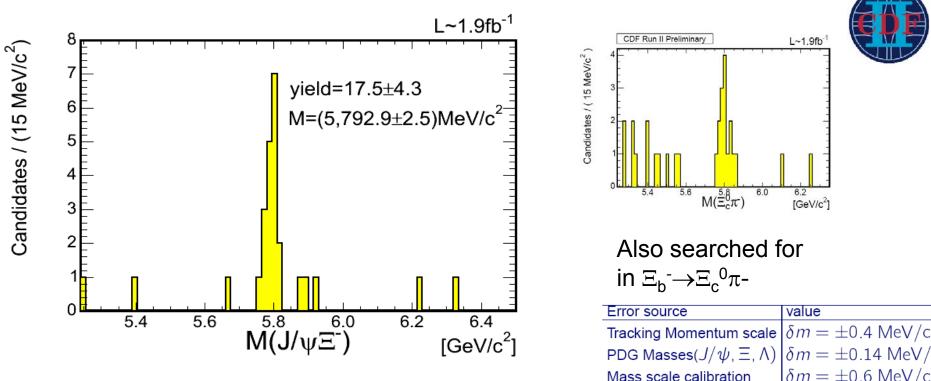
Signal Significance:

$$\sqrt{-2\Delta \ln L} = \sqrt{-2\ln\left(\frac{L_B}{L_{S+B}}\right)} = 5.5\sigma$$

We also measured:

$$R = \frac{\sigma \left(\Xi_{b}^{-}\right) BR \left(\Xi_{b}^{-} \rightarrow J / \psi \Xi^{-}\right)}{\sigma \left(\Lambda_{b}\right) BR \left(\Lambda_{b} \rightarrow J / \psi \Lambda\right)}$$

$$R = 0.28 \pm 0.09 \text{ (stat)}^{\pm 0.09} \text{ (syst)}$$


- 0.08

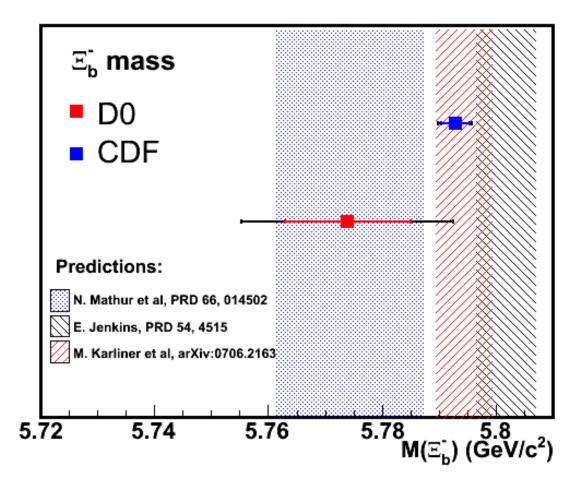
PRL 99, 052001 (2007)

(bybt)

 $M(\Xi_b^-) = 5.774 \pm 0.011 (\text{stat}) \pm 0.015 (\text{syst})$

Ξ_{b} observation (CDF)

 $M(\Xi_{b}^{-}) = 5792.9 \pm 2.5 \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/}c^{2}$

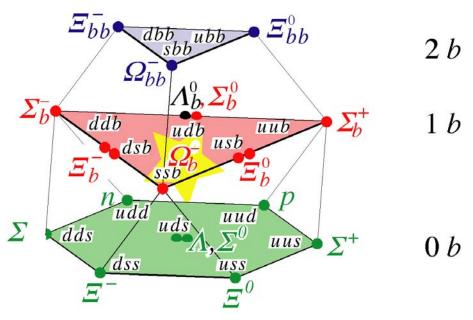

Tracking Momentum scale $\delta m = \pm 0.4 \text{ MeV/c}^2$ PDG Masses $(J/\psi, \Xi, \Lambda)$ $\delta m = \pm 0.14 \text{ MeV}/\text{c}^2$ $\delta m = \pm 0.6 \text{ MeV/c}^2$ Mass scale calibration $\delta m = \pm 1.5 \text{ MeV/c}^2$ Fit model/resolution $\delta m = \pm 1.7 \text{ MeV/c}$ Total

Signal significance = 7.8σ

PRL 99, 052002 (2007)

Updated 2009 mass measurement in G.Punzi talk

Comparison: Experiment/Theory

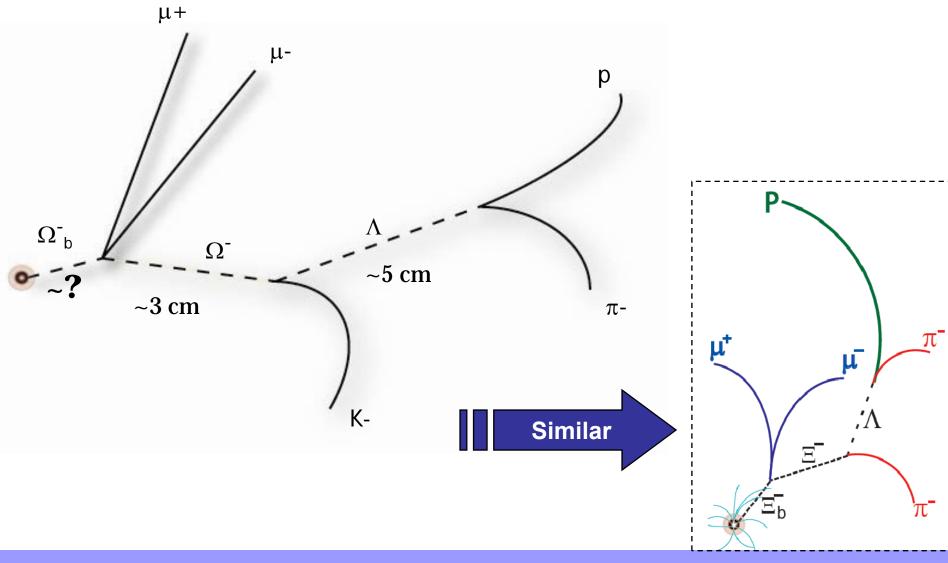


DØ PRL 99, 052001 (2007) CDF PRL 99, 052002 (2007)

Search for the $\Omega_{b}^{-}(bss)$

3 b

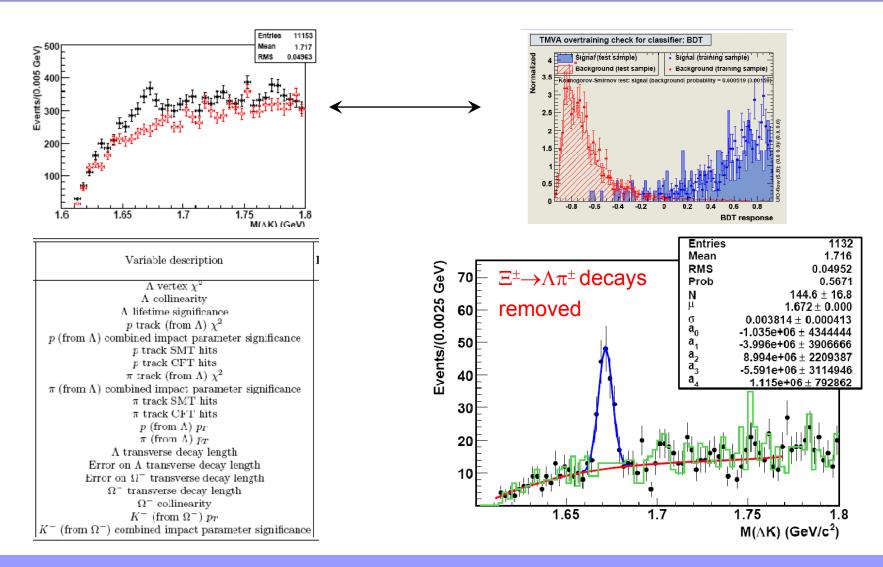
$J = 1/2 \ b$ Baryons



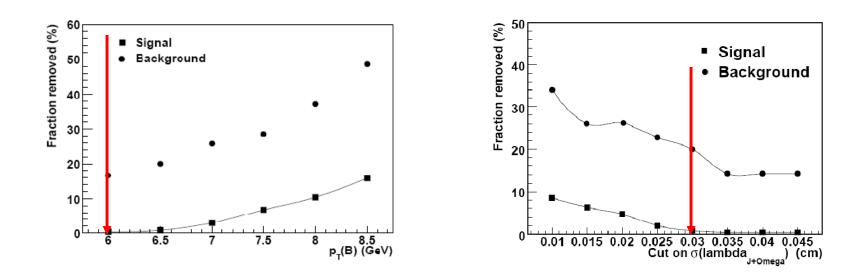
- bss quarks combination
- Mass is predicted to be 5.94 - 6.12 GeV

$$\succ M(\Omega_b) > M(\Lambda_b)$$

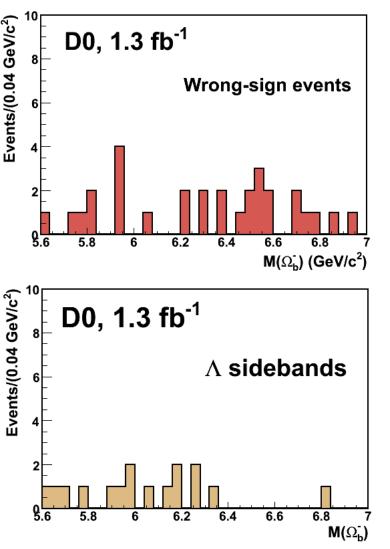
Lifetime is predicted to be 0.83<τ(Ω_b)<1.67 ps</p>

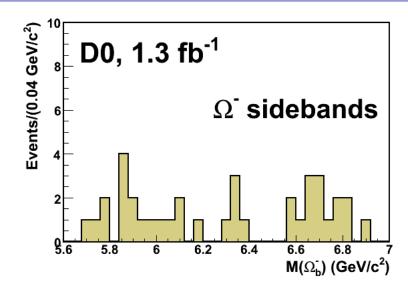

How do we look for it?

Analysis strategy


Select J/ψ candidates	Events are reprocessed to increase reconstruction efficiency of long-lived particles.
► Select Λ→pπ	Yield is optimized by using proper decay length significance cuts.
• Reconstruction of $\Omega \rightarrow \Lambda + K$	Optimize yield by using multivariate techniques
Combine J/ψ + (ΛK ⁺)	Keep blinded $J/\psi + \Omega$ combinations and optimize on $J/\psi + (\Lambda K^+)$
Event per event mass correction	Improve mass resolution from 80 MeV to 34 MeV
Fix selection criteria and then apply them to $J/\psi + \Omega$	Perform as many test as possible in different background samples

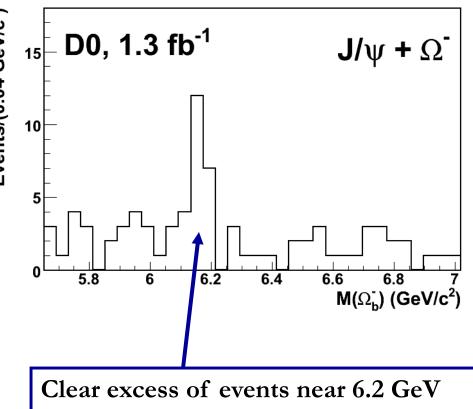
BDT to select $\Omega^{-} \rightarrow \Lambda K$ decays



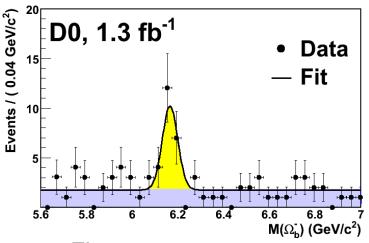

Final optimization

• We compare MC signal vs wrong-sign background events.

Nothing where nothing should be


We check also high statistics MC samples

 $\Lambda_{b} \rightarrow J/\psi \Lambda \rightarrow (\mu^{+}\mu^{-})(p\pi^{-})$ $B^{-} \rightarrow J/\psi K^{*-} \rightarrow (\mu^{+}\mu^{-})(K_{S}^{0}\pi^{-}) \rightarrow (\mu^{+}\mu^{-})((\pi^{+}\pi^{-})\pi^{-})$ $\Xi_{b}^{-} \rightarrow J/\psi \Xi^{-} \rightarrow (\mu^{+}\mu^{-})(\Lambda\pi^{-}) \rightarrow (\mu^{+}\mu^{-})((p\pi^{-})\pi^{-})$


No excess is observed in any control samples after selection criteria is applied to them.

Looking at right-sign combinations

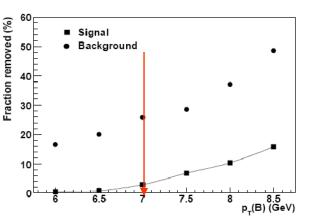
After optimization:
 > σ_λ<0.03 cm
 > J/ψ and Ω in the same hemisphere
 > p_T(J/ψ+Ω)>6 GeV
 Mass window for the search: 5.6 - 7 GeV

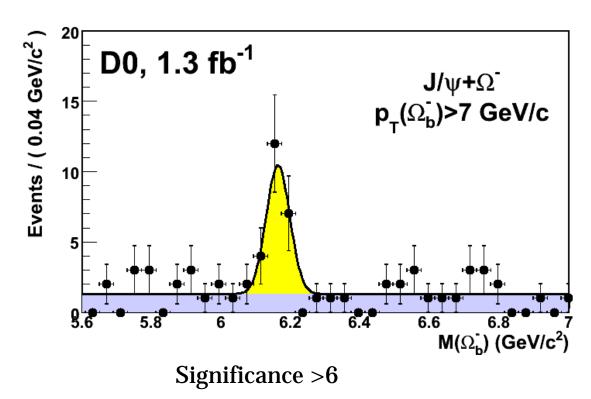
$\Omega_{\rm b}$ mass measurement

- Fit:
- Unbinned extended log-likelihood fit
- Gaussian signal, flat background
- Number of background/signal events are floating parameters
- N= 17.8 ± 4.9 (stat) ± 0.8 (syst)

Mass: 6.165 ± 0.010(stat) ± 0.013(syst) GeV

Width fixed (MC): 0.034 GeV


$$\sqrt{-2\Delta \ln L} = \sqrt{-2\ln\left(\frac{L_B}{L_{S+B}}\right)} = 5.4\sigma$$


 $M(\Omega_b^-) = 6.165 \pm 0.010(\text{stat}) \pm 0.013(\text{syst}) \text{ GeV}$

$$R = \frac{f(b \to \Omega_b^-)Br(\Omega_b^- \to J/\psi \ \Omega^-)}{f(b \to \Xi_b^-)Br(\Xi_b^- \to J/\psi \ \Xi^-)}$$
$$R = 0.80 \pm 0.32(stat)_{-0.22}^{+0.14}(syst)$$

PRL 101, 232002 (2008)

Consistency check: Increase $p_T(B)$

Cut Based Analysis (CBA)

Variable

 $p_{T}(\pi)$ (GeV)

 $p_{T}(p)$ (GeV)

 $p_{T}(K)$ (GeV)

 Ω^{-} collinearity

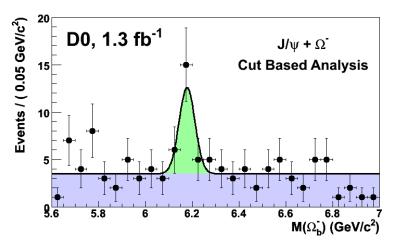
 Ω^{-} transverse decay length (cm)

Proper decay

(cm)

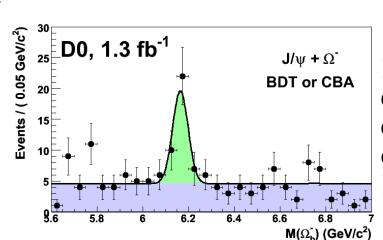
length uncertainty

BDT


>0.2 and input to BDT

>0.2 and input to BDT input to BDT

input to BDT


input to BDT

< 0.3

Number of signal events: 15.7 ± 5.3

Mean : 6.177 ± 0.015(stat) GeV Width fixed (MC): 0.034 GeV Signal significance: 3.9σ

➢ After remove
 duplicate events, we
 observe 25.5 ± 6.5
 events.
 ➢ Significance: 5.4σ

CBA

>0.2

>0.7

>0.3

>0.99

>0.5

< 0.3

Summary

Many unique results coming from Tevatron:

- First direct observation of $\rm B_{s1}$ and $\rm B_{s2}{}^{*}$
- Precise measurement of the B_c mass.
- First observation of $\Xi_{\rm b}{}^{\scriptscriptstyle -}$ and $\Omega_{\rm b}{}^{\scriptscriptstyle -}$ baryons
- Not shown here:
 - Precise B** mass measurement
 - First observation of Σ_{b}^{-} and Σ_{b}^{*-} baryons
 - Limits in η_{b} production
 - And many more results ...

http://www-d0.fnal.gov/Run2Physics/WWW/results/b.htm http://www-cdf.fnal.gov/physics/new/bottom/bottom.html