Neutrinos vs Quarks MNS vs CKM

Mu-Chun Chen
University of California at Irvine

Based on work done in collaboration with K.T. Mahanthappa arXiv:0904.I72I; Phys. Lett. B652 (2007) 34

FPCP 2009, Lake Placid, NY, May 25 - June I, 2009

Mysteries of Masses and Mixing in SM

- Mixing among quarks


```
Mass eigenstates =
    mixture of weak
    eigenstates
```


Compelling Neutrino Oscillation Evidences

```
Atmospheric Neutrinos:
SuperKamiokande (up-down asymmetry, L/E, 0z dependence of }\mu\mathrm{ -like events)
    dominant channel: }\quad\mp@subsup{\nu}{\mu}{}->\mp@subsup{\nu}{\tau}{
    next: K2K, MINOS, CNGS (OPERA)
```

Solar Neutrinos:
Homestake, Kamiokande, SAGE, GALLEX/GNO, SK, SNO, BOREXINO,
KamLAND
dominant channel: $\quad \nu_{e} \rightarrow \nu_{\mu, \tau}$
next: BOREXINO, KamLAND, ...

LSND:

dominant channel: $\quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$
MiniBOONE -- negative result (2007)

Leptonic Mixing Parameters

- three neutrino mixing $\quad \nu_{\ell L}=\sum_{j=1}^{3} U_{\ell j} \nu_{j L} \quad \ell=e, \mu, \tau$
- mismatch between weak and mass eigenstates $\nu_{1,2,3} \rightarrow m_{1,2,3}$
$\mathcal{L}_{c c}=\left(\begin{array}{lll}\bar{\nu}_{1}, & \bar{\nu}_{2}, & \bar{\nu}_{3}\end{array}\right) \gamma^{\mu} U^{\dagger}\left(\begin{array}{c}e \\ \mu \\ \tau\end{array}\right) W_{\mu}^{+}$
- PMNS matrix

$$
U=V\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha_{21} / 2} & 0 \\
0 & 0 & e^{i \alpha_{31} / 2}
\end{array}\right) \quad V=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right) \underset{\text { reactor }}{\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)} \text { solar }
$$

- Dirac CP-violating phase: $\delta=[0,2 \pi]$
- Majorana CP-violating phases: α_{21}, α_{31}

CKM Matrix \longleftrightarrow PMNS Matrix

- Quark mixings are small

$$
V_{\text {СКМ }} \sim\left(\begin{array}{ccc}
0.9745-0.9757 & 0.219-0.224 & 0.002-0.005 \\
0.218-0.224 & 0.9736-0.9750 & 0.036-0.046 \\
0.004-0.014 & 0.034-0.046 & 0.9989-0.9993
\end{array}\right)
$$

- Lepton mixings are large

$$
U_{M N S} \sim\left(\begin{array}{ccc}
0.79-0.86 & 0.50-0.61 & 0.0-0.16 \\
0.24-0.52 & 0.44-0.69 & 0.63-0.79 \\
0.26-0.52 & 0.47-0.71 & 0.60-0.77
\end{array}\right)
$$

In Standard Model: determined by arbitrary Yukawa coupling constants

Mass spectrum of elementary particles

Origin of Mass Hierarchy \& Flavor Mixing

- no fundamental origin of fermion mass hierarchy and flavor mixing has been found or suggested
- less ambitious aim: reduce the number of parameters in the Yukawa sector
- parameter reductions by imposing symmetries
- grand unified gauge symmetry
- allowed relations between up, down, charged lepton and neutrino masses \Rightarrow connections between quark and lepton sectors
- family symmetry
- allow relations among three families \Rightarrow further reduction of parameters
- supersymmetry
- required by data to get correct predictions

Seesaw Mechanism

Minkowski, I977; Gell-mann, Ramond, Slansky, I98I; Yanagida, 1979; Mohapatra, Senjanovic, I98।

- Introduce right-handed neutrinos, which are SM gauge singlets [predicted in many GUTs, e.g. SO(10)]
- integrating out RH neutrinos: effective mass matrix

$$
\left(\begin{array}{cc}
0 & m_{D} \\
m_{D}^{T} & M_{R}
\end{array}\right)
$$

light neutrino mass: $m_{\nu} \sim \frac{m_{D}}{M_{R}} m_{D} \quad \gg m_{D}$
heavy neutrino mass: $M \sim M_{R}$

$$
\begin{aligned}
m_{\nu} \sim \sqrt{\Delta m_{a t m}^{2}} & \sim 0.05 \mathrm{eV}, m_{D} \sim m_{t} \sim 172 \mathrm{GeV} \\
\Rightarrow M_{R} \sim 10^{15} \mathrm{GeV} & \sim \mathrm{MGUT}
\end{aligned}
$$

SO(I0) GUT

- RH neutrino accommodated in the model

$$
16=\overline{5}+10+1
$$

$$
\begin{aligned}
16 & =(3,2,1 / 6) \sim\left(\begin{array}{lll}
u & u & u \\
d & d & d
\end{array}\right) \\
& +\left(3^{*}, 1,-2 / 3\right) \sim\left(\begin{array}{lll}
u^{c} & u^{c} & u^{c}
\end{array}\right) \\
& +\left(3^{*}, 1,1 / 3\right) \sim\left(\begin{array}{ll}
d^{c} & d^{c} \\
d^{c}
\end{array}\right) \\
& +(1,2,-1 / 2) \sim\left(\begin{array}{l}
v \\
e
\end{array}\right] \\
& +(1,1,1) \\
& +(1,1,0)
\end{aligned}
$$

- Natural for seesaw: offer both ingredients, i.e. RH neutrino \& heavy scale neutrino oscillation strongly support $\mathrm{SO}(\mathrm{I} 0)!$!
- Quark \& Leptons reside in the same GUT multiplets
- One set of Yukawa coupling for a given GUT multiplet
$\Rightarrow \mathrm{SO}(\mathrm{I} 0)$ relates quarks and leptons (intra-family relations)
\Rightarrow reduce \# of parameters in Yukawa sector

Models Based on SUSY SO(I0)

- large neutrino mixing from neutrino sector

$$
U_{M N S}=U_{e, L}^{+} U_{v, L}
$$

$\mathrm{SO}(10) \mathrm{GUT}+\mathrm{SU}(2)$ family symmetry
Barbieri, Hall, Raby, Romanino; ..
$\begin{aligned} \mathrm{SO}(\mathrm{I} 0) & \rightarrow \mathrm{SU}(4) \times \mathrm{SU}(2)_{\llcorner } \times \mathrm{SU}(2)_{\mathrm{R}} \\ & \rightarrow \mathrm{SU}(3) \times S U(2)_{\llcorner } \times U(\mathrm{I})_{Y}\end{aligned}$

- symmetric mass matrices: M.-C.C \& K.T. Mahanthappa, PRD 2000

SU(10)

Up-type quarks \Leftrightarrow Dirac neutrinos

$$
\text { seesaw } \Rightarrow M_{\nu} \sim\left(\begin{array}{ccc}
0 & 0 & * \\
0 & 1 & 1 \\
* & 1 & 1
\end{array}\right)
$$

12 parameters accommodate 22 fermion masses, mixing angles and CP phases in both quark and lepton sectors

- prediction for θ_{13} :

$$
\sin \theta_{13} \sim\left(\frac{\Delta m_{\text {sun }}^{2}}{\Delta m_{\text {atm }}^{2}}\right)^{1 / 2} \sim O(0.1) \Rightarrow \mathrm{LMA}
$$

Models Based on SUSY SO(I0)

- large neutrino mixing from charged lepton sector

Albright \& Barr

$$
U_{M N S}=U_{e, L}^{\dagger} U_{\nu, L}
$$

- lopsided mass matrices:

$$
M_{d}^{T}=M_{e} \sim\left(\begin{array}{lll}
* & * & * \\
* & * & 1 \\
* & * & 1
\end{array}\right)
$$

$$
\begin{aligned}
\mathrm{SO}(\mathrm{I} 0) & \rightarrow \mathrm{SU}(5) \\
& \rightarrow \mathrm{SU}(3) \times \mathrm{SU}(2) \mathrm{L} \times \mathrm{U}(\mathrm{I}) \mathrm{Y}
\end{aligned}
$$

$$
\text { down-type quarks } \Leftrightarrow \text { charged leptons }
$$

- large mixing in $\mathrm{U}_{\mathrm{e}, \mathrm{L}}$
- large mixing in $\mathrm{U}_{\mathrm{d}, \mathrm{R}}$ (effects in B physics)
D. Chang, A. Masiero, H. Murayama, 2002

- large $\mu \rightarrow \mathrm{e}+\gamma$ rate
- prediction for θ_{13} : can be small; $\sin \theta_{13} \sim 0.05$

Distinguishing Models

C. Albright \& M.-C.C, PRD 2006

Models with Normal Hierarchy

Models with Inverted Hierarchy

$\sin ^{2} \theta_{13}$

LFV Rare Processes

predictions for LFV processes in five viable SUSY SO(I0) models:
-- assuming MSUGRA boundary conditions
-- including Dark Matter constraints from WMAP

sensitivity of proposed
MECO-type exp
reach at MEG

Tri-bimaximal Neutrino Mixing

- Neutrino Oscillation Parameters (2 σ)

Schwetz, Tortola, Valle (Aug 2008)

$$
\begin{gathered}
U_{M N S}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha_{21} / 2} & 0 \\
0 & 0 & e^{i \alpha_{31} / 2}
\end{array}\right) \\
\sin ^{2} \theta_{23}=0.5_{-0.12}^{+0.14}, \quad \sin ^{2} \theta_{12}=0.304_{-0.032}^{+0.044}
\end{gathered}
$$

- indication for non-zero θ_{13} : Bari group, June 2008

$$
\sin ^{2} \theta_{13}=0.01_{-0.011}^{+0.016}(1 \sigma) \quad \text { consistent with } \theta_{13}=0
$$

- Tri-bimaximal neutrino mixing:

Harrison, Perkins, Scott, 1999

$$
\begin{gathered}
U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right) \\
\sin ^{2} \theta_{\mathrm{atm}, \mathrm{TBM}}=1 / 2 \\
\sin ^{2} \theta_{\odot, \mathrm{TBM}}=1 / 3 \\
\tan ^{2} \theta_{\odot, \exp }=0.429
\end{gathered} \begin{gathered}
\sin \theta_{13, \mathrm{TBM}}=0 . \\
\tan ^{2} \theta_{\odot, \mathrm{TBM}}=1 / 2 \\
\text { new KamLAND result: } \tan \theta_{\odot, e x p}^{2}=0.47_{-0.05}^{+0.06}
\end{gathered}
$$

Tri-bimaximal Neutrino Mixing

- Neutrino mass matrices:

$$
M=\left(\begin{array}{lll}
A & B & B \\
B & C & D \\
B & D & C
\end{array}\right) \quad \longrightarrow \quad \sin ^{2} 2 \theta_{23}=1 \quad \theta_{13}=0
$$

solar mixing angle NOT fixed

- S3 Mohapatra, Nasri, Yu, 2006; ...
- D4 Grimus, Lavoura, 2003; ...
- $\mu-\tau$ symmetry Fukuyama, Nishiura, ‘97; Mohapatra, Nussinov, ‘99; Ma, Raidal, ‘0I; ...
- if $\quad \mathrm{A}+\mathrm{B}=\mathrm{C}+\mathrm{D} \longrightarrow \tan ^{2} \theta_{12}=1 / 2 \quad$ TBM pattern
- A4 Ma, ${ }^{0} 4$;Altarelli, Feruglio, ${ }^{\circ} 06$;.....
- Z3 \times Z7 Luhn, Nasri, Ramond, 2007

Non-abelian Finite Family Symmetry

- TBM mixing matrix: can be realized in finite group family symmetry based on A4 Ma \& Rajasekaran, 'ol
- even permutations of 4 objects

$$
\begin{aligned}
& \mathrm{S}:(\mathrm{I} 234) \rightarrow(432 \mathrm{I}) \\
& \mathrm{T}:(\mathrm{I} 234) \rightarrow(23 \mathrm{I} 4)
\end{aligned}
$$

- invariance group of Tetrahedron

- orbifold compactification:

$$
6 \mathrm{D} \rightarrow 4 \mathrm{D} \text { on } \mathrm{T} 2 / \mathrm{Z2}
$$

Altarelli, Feruglio, ‘06

- Deficiencies:
- does NOT give rise to CKM mixing: $\mathrm{V}_{\mathrm{ckm}}=1$
- does NOT explain mass hierarchy
- all CG coefficients real

Group Theory of ${ }^{\prime}$

- Double covering of tetrahedral group A4:
- in-equivalent representations of T':

- generators:

$$
S^{2}=R, T^{3}=1,(S T)^{3}=1, R^{2}=1 \quad \begin{aligned}
& \mathrm{R}=1: 1,1^{\prime}, 1^{\prime \prime}, 3 \text { (vector) } \\
& \mathrm{R}=-1: 2,2^{\prime}, 2^{\prime \prime} \quad \text { (spinorial) }
\end{aligned}
$$

- generators: in 3-dim representations,T-diagonal basis

$$
S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 \omega & 2 \omega^{2} \\
2 \omega^{2} & -1 & 2 \omega \\
2 \omega & 2 \omega^{2} & -1
\end{array}\right) \quad T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right)
$$

Group Theory of ${ }^{\prime}$

- product rules:

$$
\begin{array}{ll}
1^{0} \equiv 1,1^{1} \equiv 1^{\prime}, 1^{-1} \equiv 1^{\prime \prime} & \\
1^{a} \otimes r^{b}=r^{b} \otimes 1^{a}=r^{a+b} \quad \text { for } r=1,2 & a, b=0, \pm 1 \\
1^{a} \otimes 3=3 \otimes 1^{a}=3 & \\
2^{a} \otimes 2^{b}=3 \oplus 1^{a+b} & \\
2^{a} \otimes 3=3 \otimes 2^{a}=2 \oplus 2^{\prime} \oplus 2^{\prime \prime} & \\
3 \otimes 3=3 \oplus 3 \oplus 1 \oplus 1^{\prime} \oplus 1^{\prime \prime} & \text { J. Q. Chen \&P.D }
\end{array}
$$

J. Q. Chen \& P. D. Fan, J. Math Phys 39, 5519 (1998)
\star complex CG coefficients in T^{\prime}
complexity cannot be avoided
by different basis choice

- spinorial \times spinorial \supset vector:

$$
2 \otimes 2=2^{\prime} \otimes 2^{\prime \prime}=2^{\prime \prime} \otimes 2^{\prime}=3 \oplus 1 \quad 3=\left(\begin{array}{c}
\left(\frac{1-i}{2}\right)\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right) \\
i \alpha_{1} \beta_{1} \\
\alpha_{2} \beta_{2}
\end{array}\right)
$$

- spinorial \times vector \supset spinorial:

$$
2 \otimes 3=2 \oplus 2^{\prime} \oplus 2^{\prime \prime} \quad 2=\binom{(1+i) \alpha_{2} \beta_{2}+\alpha_{1} \beta_{1}}{(1-i) \alpha_{1} \beta_{3}-\alpha_{2} \beta_{1}}
$$

A Novel Origin of CPViolation

M.-C.C., K.T. Mahanthappa, arXiv:0904.I72 I

- Conventionally:
- Explicit CP violation: complex Yukawa couplings
- Spontaneous CP violation: complex Higgs VEVs
\star complex CG coefficients in $\mathrm{T}^{\prime} \Rightarrow$ explicit CP violation
- real Yukawa couplings, real Higgs VEVs
- CP violation in both quark and lepton sectors determined by complex CG coefficients
- no additional parameters needed \Rightarrow extremely predictive model!!

Tri-bimaximal Neutrino Mixing

- fermion charge assignments:

$$
\left(\begin{array}{c}
\ell_{1} \\
\ell_{2} \\
\ell_{3}
\end{array}\right)_{L} \sim 3, \quad e_{R} \sim 1, \quad \mu_{R} \sim 1^{\prime \prime}, \quad \tau_{R} \sim 1^{\prime}
$$

- SM Higgs \sim singlet under T^{\prime}
- operator for neutrino masses: $\frac{H H L L}{M}\left(\frac{\langle\xi\rangle}{\Lambda}+\frac{\langle\eta\rangle}{\Lambda}\right)$
- two scalar (flavon) fields for neutrino sector: $\quad \xi \sim 3, \quad \eta \sim 1$

$$
T^{\prime} \rightarrow G_{T S T^{2}}: \quad\langle\xi\rangle=\xi_{0} \Lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad T^{\prime}-\text { invariant: }\langle\eta\rangle=u \Lambda
$$

- product rules:

$$
3 \otimes 3=3 \oplus 3 \oplus\left(1 \oplus 1^{\prime} \oplus 1^{\prime \prime}\right.
$$

Tri-bimaximal Neutrino Mixing

- neutrino masses: triplet Higgs contribution

$$
3_{S}=\frac{1}{3}\left(\begin{array}{l}
2 \alpha_{1} \beta_{1}-\alpha_{2} \beta_{3}-\alpha_{3} \beta_{2} \\
2 \alpha_{3} \beta_{3}-\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1} \\
2 \alpha_{2} \beta_{2}-\alpha_{1} \beta_{3}-\alpha_{3} \beta_{1}
\end{array}\right) \quad 1=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}
$$

- neutrino masses: singlet contribution $1=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}$
- Resulting mass matrix:

$$
\begin{aligned}
& M_{\nu}=\frac{\lambda v^{2}}{M_{x}}\left(\begin{array}{ccc}
2 \xi_{0}+u & -\xi_{0} & -\xi_{0} \\
-\xi_{0} & 2 \xi_{0} & u-\xi_{0} \\
-\xi_{0} & u-\xi_{0} & 2 \xi_{0}
\end{array}\right) \\
& V_{\nu}^{\mathrm{T}} M_{\nu} V_{\nu}=\operatorname{diag}\left(u+3 \xi_{0}, u,-u+3 \xi_{0}\right) \frac{v_{u}^{2}}{M_{x}} U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
\end{aligned}
$$

Form diagonalizable:
-- no adjustable parameters
-- neutrino mixing from CG coefficients!

General conditions for Form Diagonalizablility in seesaw: M.-C. Chen, S. F. King, arXiv:0903.0I 25

Tri-bimaximal Neutrino Mixing

- charged lepton sector -- non-GUT models
- operators for charged fermion masses:

$$
(\ell \phi)_{1} e_{R}(1)+(\ell \phi)_{1^{\prime}} \mu_{R}\left(1^{\prime \prime}\right)+(\ell \phi)_{1^{\prime \prime}} \tau_{R}\left(1^{\prime}\right)
$$

- scalar sector: flavon triplet for charged lepton sector $\phi \sim 3$

$$
\begin{aligned}
& 1=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2} \\
& 1^{\prime}=\alpha_{3} \beta_{3}+\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1} \\
& 1^{\prime \prime}=\alpha_{2} \beta_{2}+\alpha_{1} \beta_{3} \alpha_{3} \beta_{1}
\end{aligned} \quad T^{\prime} \rightarrow G_{T}: \quad\langle\phi\rangle=\phi_{0} \Lambda\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

- resulting charged lepton mass matrix: diagonal
- leptonic mixing matrix = tri-bimaximal

$$
V_{M N S}=V_{e, L}^{\dagger} V_{\nu}=\mathcal{I} \cdot U_{T B M}=U_{T B M}
$$

- in our model: $\mathrm{SU}(5) \mathrm{GUT} \Rightarrow$ corrections from charged lepton sector

The Model

M.-C.C., K.T. Mahanthappa,

Phys. Lett. B652 (2007) 34; arXiv:0904.I72I

- Symmetry: $\operatorname{SU}(5) \times \mathrm{T}^{\prime}$
- Particle Content $10\left(Q, u^{c}, e^{c}\right)_{L} \quad \overline{5}\left(d^{c}, \ell\right)_{L}$

	T_{3}	T_{a}	\bar{F}	H_{5}	$H_{\overline{5}}^{\prime}$	Δ_{45}	ϕ	ϕ^{\prime}	ψ	ψ^{\prime}	ζ	N	ξ	η
$\operatorname{SU}(5)$	10	10	$\overline{5}$	5	$\overline{5}$	45	1	1	1	1	1	1	1	1
T^{\prime}	1	2	3	1	1	1^{\prime}	3	3	2^{\prime}	2	$1^{\prime \prime}$	1^{\prime}	3	1
Z_{12}	ω^{5}	ω^{2}	ω^{5}	ω^{2}	ω^{2}	ω^{5}	ω^{3}	ω^{2}	ω^{6}	ω^{9}	ω^{9}	ω^{3}	ω^{10}	ω^{10}
Z_{12}^{\prime}	ω	ω^{4}	ω^{8}	ω^{10}	ω^{10}	ω^{3}	ω^{3}	ω^{6}	ω^{7}	ω^{8}	ω^{2}	ω^{11}	1	1

$\omega=e^{i \pi / 6}$.

- additional $Z_{12} \times Z_{12}^{\prime}$ symmetry:
* predictive model: only 9 operators allowed up to at least dim-7
* vacuum misalignment: neutrino sector vs charged fermion sector
* mass hierarchy: lighter generation masses allowed only at higher dim

The Model

- Lagrangian: only 9 operators allowed!!

$$
\begin{aligned}
\mathcal{L}_{\mathrm{Yuk}} & =\mathcal{L}_{\mathrm{TT}}+\mathcal{L}_{\mathrm{TF}}+\mathcal{L}_{\mathrm{FF}} \\
\mathcal{L}_{\mathrm{TT}} & =y_{t} H_{5} T_{3} T_{3}+\frac{1}{\Lambda^{2}} y_{t s} H_{5} T_{3} T_{a} \psi \zeta+\frac{1}{\Lambda^{2}} y_{c} H_{5} T_{a} T_{a} \phi^{2}+\frac{1}{\Lambda^{3}} y_{u} H_{5} T_{a} T_{a} \phi^{3} \\
\mathcal{L}_{\mathrm{TF}} & =\frac{1}{\Lambda^{2}} y_{b} H_{\overline{5}}^{\prime} \bar{F} T_{3} \phi \zeta+\frac{1}{\Lambda^{3}}\left[y_{s} \Delta_{45} \bar{F} T_{a} \phi \psi N+y_{d} H_{\overline{5}}^{\prime} \bar{F} T_{a} \phi^{2} \psi^{\prime}\right] \\
\mathcal{L}_{\mathrm{FF}} & =\frac{1}{M_{x} \Lambda}\left[\lambda_{1} H_{5} H_{5} \bar{F} \bar{F} \xi+\lambda_{2} H_{5} H_{5} \bar{F} \bar{F} \eta\right],
\end{aligned}
$$

Λ : cutoff scale above which the family symmetry T^{\prime} is exact M_{x} : scale at which the lepton number violating operator is generated

Neutrino Sector

- Operators: $\quad \mathcal{L}_{\mathrm{FF}}=\frac{1}{M_{x} \Lambda}\left[\lambda_{1} H_{5} H_{5} \bar{F} \bar{F} \xi+\lambda_{2} H_{5} H_{5} \bar{F} \bar{F} \eta\right] \rightarrow \frac{H H L L}{M}\left(\frac{\langle\xi\rangle}{\Lambda}+\frac{\langle\eta\rangle}{\Lambda}\right)$
- Symmetry breaking:

$$
T^{\prime} \rightarrow G_{T S T^{2}}: \quad\langle\xi\rangle=\xi_{0} \Lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad T^{\prime} \text { - invariant: } \quad\langle\eta\rangle=u_{0} \Lambda
$$

- Resulting mass matrix:
$M_{\nu}=\left(\begin{array}{ccc}2 \xi_{0}+u_{0} & -\xi_{0} & -\xi_{0} \\ -\xi_{0} & 2 \xi_{0} & -\xi_{0}+u_{0} \\ -\xi_{0} & -\xi_{0}+u_{0} & 2 \xi_{0}\end{array}\right) \frac{\lambda v^{2}}{M_{x}}$
$U_{\text {TBM }}^{T} M_{\nu} U_{\text {TBM }}=\operatorname{diag}\left(u_{0}+3 \xi_{0}, u_{0},-u_{0}+3 \xi_{0}\right) \frac{v_{u}^{2}}{M_{X}} \quad U_{\mathrm{TBM}}=\left(\begin{array}{ccc}\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\ -\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\ -\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}\end{array}\right)$
Form diagonalizable:
only vector representations involved
\Rightarrow all CG are real
\Rightarrow Majorana phases either 0 or π
$U_{\mathrm{TBM}}^{T} M_{\nu} U_{\mathrm{TBM}}=\operatorname{diag}\left(u_{0}+3 \xi_{0}, u_{0},-u_{0}+3 \xi_{0}\right) \frac{v_{u}^{2}}{M_{X}} \quad U_{\mathrm{TBM}}=\left(\begin{array}{ccc}\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\ -\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\ -\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}\end{array}\right)$
Form diagonalizable:
-- no adjustable parameters
-- neutrino mixing from CG coefficients!

Up Quark Sector

- Operators: $\quad \mathcal{L}_{\mathrm{TT}}=y_{t} H_{5} T_{3} T_{3}+\frac{1}{\Lambda^{2}} y_{t s} H_{5} T_{3} T_{a} \psi \zeta+\frac{1}{\Lambda^{2}} y_{c} H_{5} T_{a} T_{a} \phi^{2}+\frac{1}{\Lambda^{3}} y_{u} H_{5} T_{a} T_{a} \phi^{\prime 3}$
- top mass: allowed by T^{\prime}
- lighter family acquire masses thru operators with higher dimensionality
\Rightarrow dynamical origin of mass hierarchy
- symmetry breaking:

$$
\begin{array}{ll}
T^{\prime} \rightarrow G_{T}: & \langle\phi\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \phi_{0} \Lambda,\langle\psi\rangle=\binom{1}{0} \psi_{0}^{\prime} \Lambda
\end{array} \text { 个个 dim-6 }
$$ no contributions to elements involving Ist family; true to all levels

- Mass matrix:

$$
M_{u}=\left(\begin{array}{ccc}
i \phi_{0}^{3} & \frac{1-i}{2} \phi_{0}^{3} & 0 \\
\frac{1-i}{2} \phi_{0}^{\prime 3} & \phi_{0}^{3,}+\left(1-\frac{i}{2}\right) \phi_{0}^{2} & y^{\prime} \psi_{0} \zeta_{0} \\
0 & y^{\prime} \psi_{0} \zeta_{0} & 1
\end{array}\right) y_{t} v_{u} \quad \begin{aligned}
& \begin{array}{l}
\text { both vector and spinorial } \\
\text { reps involved } \\
\Rightarrow \text { complex CG }
\end{array} \\
& \hline
\end{aligned}
$$

Down Quark Sector

- operators: $\quad \mathcal{L}_{\mathrm{TF}}=\frac{1}{\Lambda^{2}} y_{b} H_{\overline{5}}^{\prime} \bar{F} T_{3} \phi \zeta+\frac{1}{\Lambda^{3}}\left[y_{s} \Delta_{45} \bar{F} T_{a} \phi \psi N+y_{d} H_{\overline{5}}^{\prime} \bar{F} T_{a} \phi^{2} \psi^{\prime}\right]$

个

- generation of b-quark mass \Rightarrow breaking of $\mathrm{T}^{\prime} \Rightarrow$ dynamical origin for hierarchy between m_{b} and m_{t}
- symmetry breaking:
$T^{\prime} \rightarrow G_{T}: \quad\langle\phi\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \phi_{0} \Lambda,\langle\psi\rangle=\binom{1}{0} \psi_{0}^{\prime} \Lambda \quad T^{\prime} \rightarrow$ nothing: $\left\langle\psi^{\prime}\right\rangle=\psi_{0}^{\prime} \Lambda\binom{1}{1}$
- mass matrix:
$M_{d}=\left(\begin{array}{ccc}0 & (1+i) \phi_{0} \psi_{0}^{\prime} & 0 \\ -(1-i) \phi_{0} \psi_{0}^{\prime} & \psi_{0} N_{0} & 0 \\ \phi_{0} \psi_{0}^{\prime} & \phi_{0} \psi_{0}^{\prime} & \zeta_{0}\end{array}\right) y_{b} v_{d} \phi_{0}, ~ ↔ M_{e}=\left(\begin{array}{cc}0 \\ (1+i) \phi_{0} \psi_{0}^{\prime} & -3 \psi_{0} N_{0} \\ 0 & 0\end{array}\right.$
- consider 2nd, 3rd families only: TBM exact
complex T' CG
- at Mgut: Georgi-Jarlskog relations

$$
m_{d} \simeq 3 m_{e} \quad m_{\mu} \simeq 3 m_{s} \quad m_{b} \simeq m_{\tau}
$$

Quark and Lepton Mixing Matrices

- CKM mixing matrix:

$$
\theta_{c} \simeq\left|\sqrt{m_{d} / m_{s}}-e^{i \alpha} \sqrt{m_{u} / m_{c}}\right| \sim \sqrt{m_{d} / m_{s}}
$$

$$
\text { Georgi-Jarlskog relations } \Rightarrow V_{d, L} \neq I
$$

- MNS matrix:

$$
S U(5) \Rightarrow M_{d}=\left(M_{e}\right)^{\top}
$$

$$
M_{e}=\left(\begin{array}{ccc}
0 & -(1-i) \phi_{0} \psi_{0}^{\prime} & \phi_{0} \psi_{0}^{\prime} \\
(1+i) \phi_{0} \psi_{0}^{\prime} & -3 \psi_{0} N_{0} & \phi_{0} \psi_{0}^{\prime} \\
0 & 0 & \zeta_{0}
\end{array}\right) y_{b} v_{d} \phi_{0} \quad \Longrightarrow \text { corrections to TBM related to } \theta_{\mathbf{c}}
$$

$$
U_{\mathrm{MNS}}=V_{e, L}^{\dagger} U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
1 & -\theta_{c} / 3 & * \\
\theta_{c} / 3 & 1 & * \\
* & * & 1
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
$$

$$
\tan ^{2} \theta_{\odot} \simeq \tan ^{2} \theta_{\odot, T B M}+\frac{1}{2} \theta_{c} \cos \delta
$$

$$
\theta_{13} \simeq \theta_{c} / 3 \sqrt{2}
$$

"Usual" Quark-Lepton Complementarity

Cepton mixing
quark mixing

more generally:

$$
\theta_{12}+\theta_{C}\left(\frac{1}{\sqrt{2}}+\frac{\theta_{C}}{4}\right) \simeq \frac{\pi}{4}
$$

RG effects: $\Delta \theta_{c} \sim \theta_{c}{ }^{4}$
MSSM: normal hierarchy $\Delta \theta_{12}<0.1^{\circ}$ Schmidt \& Smirnov, ${ }^{\circ} 06$
Motivate measurements of neutrino mixing angles to at least the accuracy of the measured quark mixing angles

Numerical Results

- Experimentally:

$$
m_{u}: m_{c}: m_{t}=\theta_{c}^{7.5}: \theta_{c}^{3.7}: 1 \quad m_{d}: m_{s}: m_{b}=\theta_{c}^{4.6}: \theta_{c}^{2.7}: 1
$$

- Model Parameters: (RG corrections included)

$$
\begin{aligned}
& M_{u}=\left(\begin{array}{ccc}
i g & \frac{1-i}{2} g & 0 \\
\frac{1-i}{2} g & g+\left(1-\frac{i}{2}\right) h & k \\
0 & k & 1
\end{array}\right) y_{t} v_{u} \\
& b \equiv \phi_{0} \psi_{0}^{\prime} / \zeta_{0}=0.00304 \\
& c \equiv \psi_{0} N_{0} / \zeta_{0}=-0.0172 \\
& k \equiv y^{\prime} \psi_{0} \zeta_{0}=-0.0266 \\
& \frac{M_{d}}{y_{b} v_{d} \phi_{0} \zeta_{0}}=\left(\begin{array}{ccc}
0 & (1+i) b & 0 \\
-(1-i) b & c & 0 \\
b & b & 1
\end{array}\right) \\
& h \equiv \phi_{0}^{2}=0.00426 \\
& g \equiv \phi_{0}^{3}=0.0000145 \\
& y_{t}=1 \quad y_{b} \phi_{0} \zeta_{0} \simeq m_{b} / m_{t} \simeq 0.011 \\
& 7 \text { parameters in } \\
& \text { charged fermion } \\
& \text { sector }
\end{aligned}
$$

- RG corrections from $M_{G u t}$ to M_{z} :
- mass ratios not renormalized
- mixing parameters:

$$
\begin{aligned}
\frac{Q\left(M_{x}\right)}{Q\left(M_{Z}\right)} & =\xi, \quad Q=A, V_{i j},(i j)=(13,31,23,32) \quad \xi=\left(M_{x} / M_{z}\right)^{-h_{t}^{2} /\left(16 \pi^{2}\right)} \simeq 0.811 \\
\frac{J_{c p}\left(M_{x}\right)}{J_{c p}\left(M_{z}\right)} & =\xi^{2}
\end{aligned}
$$

Numerical Results

- CKM Matrix:

$$
\begin{aligned}
V_{C K M}= & \left(\begin{array}{ccc}
0.974 & 0.227 & 0.00412 e^{-i 45.6^{\circ}} \\
-0.227-0.000164 e^{i 45.6^{\circ}} & 0.974-0.0000384 e^{i 45.6^{\circ}} & 0.0411 \\
0.00932-0.00401 e^{i 45.6^{\circ}} & -0.0400-0.000935 e^{i 45.6^{\circ}} & 1
\end{array}\right) \\
& \left|V_{C K M}\right|=\left(\begin{array}{ccc}
0.974 & 0.227 & 0.00412 \\
0.227 & 0.973 & 0.0412 \\
0.00718 & 0.0408 & 0.999
\end{array}\right)
\end{aligned}
$$

- CP violation measures

$$
\begin{aligned}
& \beta \equiv \arg \left(\frac{-V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right)=23.6^{o}, \sin 2 \beta=0.734, \\
& A=0.798 \\
& \bar{\rho}=0.299 \\
& \alpha \equiv \arg \left(\frac{-V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right)=110^{\circ}, \\
& \bar{\eta}=0.306 \\
& \gamma \equiv \arg \left(\frac{-V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right)=\delta_{q}=45.6^{\circ}, \\
& J \equiv \operatorname{Im}\left(V_{u d} V_{c b} V_{u b}^{*} V_{c s}^{*}\right)=2.69 \times 10^{-5}, \\
& 9 \text { masses, } 3 \text { mixing angles, I CP Phase; } \\
& \text { agree with exp within } 3 \sigma
\end{aligned}
$$

Numerical Results

- diagonalization matrix for charged leptons:
- MNS Matrix:

$$
\left(\begin{array}{ccc}
0.997 e^{i 177^{\circ}} & 0.0823 e^{i 131^{\circ}} & 1.31 \times 10^{-5} e^{-i 45^{\circ}} \\
0.0823 e^{i 41.8^{\circ}} & 0.997 e^{i 176^{\circ}} & 0.000149 e^{-i 3.58^{\circ}} \\
1.14 \times 10^{-6} & 0.000149 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
0.838 & 0.542 & 0.0583 e^{-i 227^{\circ}} \\
-0.385-0.0345 e^{i 227^{\circ}} & 0.594-0.0224 e^{i 227^{\circ}} & 0.705 \\
0.384-0.0346 e^{i 227^{\circ}} & -0.592-0.0224 e^{i 227^{\circ}} & 0.707
\end{array}\right) \rightarrow\left|U_{M N S}\right|=\left(\begin{array}{ccc}
0.838 & 0.542 & 0.0583 \\
0.362 & 0.610 & 0.705 \\
0.408 & 0.577 & 0.707
\end{array}\right)
$$

$$
\sin ^{2} 2 \theta_{a t m}=1, \quad \tan ^{2} \theta_{\odot}=0.419, \quad\left|U_{e 3}\right|=0.0583
$$

prediction for Dirac CP phase: $\delta=227$ degrees

$$
J_{\ell}=-0.00967
$$

Note that these predictions do NOT depend on u_{0} and ξ_{0}

- neutrino masses: using best fit values for $\Delta \mathrm{m}^{2}$

$$
u_{0}=-0.0593, \quad \xi_{0}=0.0369, \quad M_{X}=10^{14} \mathrm{GeV}
$$

$$
\left|m_{1}\right|=0.0156 \mathrm{eV}, \quad\left|m_{2}\right|=0.0179 \mathrm{eV}, \quad\left|m_{3}\right|=0.0514 \mathrm{eV}
$$

- Majorana phases $\alpha_{21}=\pi \quad \alpha_{31}=0$.

2 parameters in neutrino sector
predicting: 3 masses, 3 mixing angles, 3 CP Phases; both $\theta_{\text {sol }} \& \theta_{\text {atm }}$ agree with \exp

Neutrino Mass Sum Rule

- sum rule among three neutrino masses:

$$
m_{1}-m_{3}=2 m_{2}
$$

- the mass eigenvalues:

$$
\begin{aligned}
& m_{1}=u_{0}+3 \xi_{0} \\
& m_{2}=u_{0} \\
& m_{3}=-u_{0}+3 \xi_{0}
\end{aligned}
$$

$$
\begin{aligned}
\Delta m_{a t m}^{2} & \equiv\left|m_{3}\right|^{2}-\left|m_{2}\right|^{2}=-12 u_{0} \xi_{0} \\
\Delta m_{\odot}^{2} & \equiv\left|m_{2}\right|^{2}-\left|m_{1}\right|^{2}=-9 \xi_{0}^{2}-6 u_{0} \xi_{0}
\end{aligned}
$$

- leads to sum rule

$$
\Delta m_{\odot}^{2}=-9 \xi_{0}^{2}+\frac{1}{2} \Delta m_{a t m}^{2} \quad \longrightarrow \Delta m_{a t m}^{2}>0
$$

normal hierarchy predicted!!
M.-C.C., K.T. Mahanthappa, Phys. Lett. B652 (2007) 34

Neutrino Mass Sum Rule

For A4: Altarelli et al, 2006

Summary

- $\mathrm{SU}(5) \times \mathrm{T}^{\prime}$ symmetry:
near tri-bimaximal lepton mixing \Leftrightarrow realistic CKM matrix
- complex CG coefficients in T^{\prime} : origin of CPV both in quark and lepton sectors
- $\quad Z_{12} \times Z_{12}$: only 9 parameters in Yukawa sector
\star dynamical origin of mass hierarchy (including $m_{b} v s m_{t}$)
* forbid Higgsino-mediated proton decay
- interesting sum rules: leptonic Dirac CP phase: $\delta=227$ degrees

$$
\begin{array}{cc}
\tan ^{2} \theta_{\odot} \simeq \tan ^{2} \theta_{\odot, T B M}+\frac{1}{2} \theta_{c} \cos \delta & \text { right amount to account for } \\
\text { discrepancy }
\end{array}
$$

