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Mysteries of Masses and Mixing in SM
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Mysteries of masses and families in SM

• Mixing among quarks

mass

eigenstates

weak

eigenstates

d

W+W+

Mass states: d’, s’, b’

Charged current weak states: d, s, b
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CKM matrix

Mass eigenstates =

mixture of weak

eigenstates

3 mixin angles 

1 phase



Compelling Neutrino Oscillation Evidences

Atmospheric Neutrinos:  
SuperKamiokande (up-down asymmetry, L/E, θz dependence of μ-like events)

 dominant channel:
next: K2K, MINOS, CNGS (OPERA)

Solar Neutrinos:  
Homestake, Kamiokande, SAGE, GALLEX/GNO, SK, SNO, BOREXINO, 
KamLAND

dominant channel:
next: BOREXINO, KamLAND, ...

LSND:  

dominant channel: 

MiniBOONE -- negative result (2007)

νµ and νµ disappear

νe and νe do not

P (νa → νb) =
∣∣〈νb|ν, t
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ν1, 2, 3 → m1, 2, 3

Lcc = ( ν1, ν2, ν3 )γµU†
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νe → νµ,τ

M1 ∼ 109 − 1012 GeV

M1 < 109 GeV

YB =
nB − nB

s
∼ 8.6× 10−11

YB % 10−2εκ

κ : efficiency factor ∼ (10−1 − 10−3)

mν ∼
√

∆m2
atm ∼ 0.05 eV, mD ∼ mt ∼ 172 GeV

⇒MR ∼ 1015GeV

light neutrino mass: mν ∼
mD

MR
mD

φ1 : one of the Majorana phases

small symmetry breaking parameter η ' 1 :

sin θ13 ∼ η ∼ 10−2, ε ∼ 10−6 can be generated

sin θ13 = 0 ⇒ J lep
CP ∝ sin θ13 = 0

CP violation through Majorana phases: α21, α31

Im(yDy†D) = 0

(MDM†
D)11

M1
∝

(
mc

mt

)2

vL < O(10−7) eV

1

νµ → νe

νe → νµ,τ

M1 ∼ 109 − 1012 GeV

M1 < 109 GeV

YB =
nB − nB

s
∼ 8.6× 10−11

YB % 10−2εκ

κ : efficiency factor ∼ (10−1 − 10−3)

mν ∼
√

∆m2
atm ∼ 0.05 eV, mD ∼ mt ∼ 172 GeV

⇒MR ∼ 1015GeV

light neutrino mass: mν ∼
mD

MR
mD

φ1 : one of the Majorana phases

small symmetry breaking parameter η ' 1 :

sin θ13 ∼ η ∼ 10−2, ε ∼ 10−6 can be generated

sin θ13 = 0 ⇒ J lep
CP ∝ sin θ13 = 0

CP violation through Majorana phases: α21, α31

Im(yDy†D) = 0
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• three neutrino mixing

• mismatch between weak and mass eigenstates

• PMNS matrix

• Dirac CP-violating phase: 

• Majorana CP-violating phases:
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〉∣∣2 " sin2 2θ sin2
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Parameters for 3 Light Neutrinos
Leptonic Mixing Matrix

• Weak interaction eigenstates:                            Mass eigenstates:

• Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix:

• Three families mixing:

                        atm                     reactor                        solar                Majorana phases
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atm reactor solar
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Leptonic Mixing Parameters
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CKM Matrix            PMNS Matrix

• Quark mixings are small

• Lepton mixings are large

• How to realize this when quarks and leptons are unified??
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In Standard Model:  determined by 
arbitrary Yukawa coupling constants 
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eV keV MeV GeV TeVmeV

tcu
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µ !e
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"2
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"3

normal hierarchy

inverted hierarchy

nearly degenerate

Mass spectrum of elementary particles

LMA-MSW solution

In Standard Model:  determined by 
arbitrary Yukawa coupling constants 



Origin of Mass Hierarchy & Flavor Mixing

• no fundamental origin of fermion mass hierarchy and flavor mixing has 
been found or suggested

• less ambitious aim: reduce the number of parameters in the Yukawa 
sector

• parameter reductions by imposing symmetries

• grand unified gauge symmetry

• allowed relations between up, down, charged lepton and neutrino 
masses ⇒ connections between quark and lepton sectors

• family symmetry

• allow relations among three families ⇒ further reduction of 

parameters

• supersymmetry

• required by data to get correct predictions
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Seesaw Mechanism

• Introduce right-handed neutrinos, which are SM gauge singlets
[predicted in many GUTs, e.g. SO(10)]

• integrating out RH neutrinos: effective mass matrix

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

TASI 2006 Lectures on Leptogenesis 23

The neutrino sector is therefore described by a 2 × 2 seesaw matrix as,
(

0 mD

mT
D MR

)
. (1.84)

Diagonalizing this 2 × 2 seesaw matrix, the light and heavy neutrino mass
eigenstates are obtained as,

ν " V T
ν νL + V ∗

ν νc
L, N " νR + νc

R (1.85)

with corresponding masses

mν " −V T
ν mT

D
1

MR
mDVν , mN " MR . (1.86)

Here the unitary matrix Vν is the diagonalization matrix of the neutrino
Dirac matrix.

At temperature T < MR, RH neutrinos can generate a lepton number
asymmetry by means of out-of-equilibrium decays. The sphaleron processes
then convert ∆L into ∆B.

1.2.1.1. The Asymmetry

At the tree level, the i-th RH neutrino decays into the Higgs doublet and
the charged lepton doublet of α flavor, Ni → H + #α, where α = (e, µ, τ).
The total width of this decay is,

ΓDi =
∑

α

[
Γ(Ni → H + #α) + Γ(Ni → H + #α)

]
(1.87)

=
1

8π
(hh†)iiMi .

Suppose that the lepton number violating interactions of the lightest right-
handed neutrino, N1, wash out any lepton number asymmetry generated in
the decay of N2,3 at temperatures T % M1. (For effects due to the decays
of N2,3, see Ref. [26].) In this case with N1 decay dominating, the final
asymmetry only depends on the dynamics of N1. The out-of-equilibrium
condition requires that the total width for N1 decay, ΓD1 , to be smaller
compared to the expansion rate of the Universe at temperature T = M1,

ΓD1 < H

∣∣∣∣
T=M1

. (1.88)

That is, the heavy neutrinos are not able to follow the rapid change of the
equilibrium particle distribution, once the temperature dropped below the
mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry

light neutrino mass: mν ∼
mD

MR
mD

φ1 : one of the Majorana phases

small symmetry breaking parameter η " 1 :

sin θ13 ∼ η ∼ 10−2, ε ∼ 10−6 can be generated

sin θ13 = 0 ⇒ J lep
CP ∝ sin θ13 = 0

CP violation through Majorana phases: α21, α31

Im(yDy†D) = 0

(MDM†
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mt

)2

vL < O(10−7) eV

ΓN1

H|T=M1

=
1

0.01 eV
(MDM†

D)11
M1

< 1

ε = 10−2 ×∆ε′ < (10−5 − 10−4)

= 0

J lep
CP ∼ sinαL

νµ and νµ disappear

νe and νe do not

P (νa → νb) =
∣∣〈νb|ν, t

〉∣∣2 ( sin2 2θ sin2

(
∆m2

4E
L

)

νµ → ντ
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small symmetry breaking parameter η # 1 :

sin θ13 ∼ η ∼ 10−2, ε ∼ 10−6 can be generated

sin θ13 = 0 ⇒ J lep
CP ∝ sin θ13 = 0

CP violation through Majorana phases: α21, α31
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νµ and νµ disappear

νe and νe do not
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∆m2
atm ∼ 0.05 eV, mD ∼ mt ∼ 172 GeV

⇒MR ∼ 1015GeV

light neutrino mass: mν ∼
mD

MR
mD

φ1 : one of the Majorana phases

small symmetry breaking parameter η # 1 :

sin θ13 ∼ η ∼ 10−2, ε ∼ 10−6 can be generated

sin θ13 = 0 ⇒ J lep
CP ∝ sin θ13 = 0

CP violation through Majorana phases: α21, α31

Im(yDy†D) = 0

(MDM†
D)11

M1
∝

(
mc

mt

)2

vL < O(10−7) eV

ΓN1

H|T=M1

=
1

0.01 eV
(MDM†

D)11
M1

< 1

ε = 10−2 ×∆ε′ < (10−5 − 10−4)

= 0

J lep
CP ∼ sinαL

νµ and νµ disappear

νe and νe do not

1

~ MGUT

Minkowski, 1977; Gell-mann, Ramond, Slansky,1981; 
Yanagida, 1979; Mohapatra, Senjanovic, 1981
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Small neutrino mass: See-saw Mechanism

• Smallness of neutrino

masses suggests a high

mass scale

   For

• Mixture of light fields and
heavy fields:

• Diagonalize the mass
matrix:
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m"
3
~ #m
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Gell-Mann, Ramond, Slansky, 1981

! 

mheavy ~ MR

!R !R : sterile (singlets under ALL gauge

groups in SM); mass term allowed

! 

m
D

~ m
t

~ 180  GeV

MGUT ~1016 GeV

M =




A B B
B C D
B D C





∼
√

∆m2
12/∆m2

31

∼ ∆m2
12/∆m2

31

heavy neutrino mass: M ∼MR

" mD

1

M =




A B B
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B D C
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√

∆m2
12/∆m2

31

∼ ∆m2
12/∆m2

31

heavy neutrino mass: M ∼MR

" mD
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SO(10) GUT

• RH neutrino accommodated in the model

• Natural for seesaw: offer both ingredients, i.e. RH neutrino & 
heavy scale  neutrino oscillation strongly support SO(10)!!

• Quark & Leptons reside in the same GUT multiplets

• One set of Yukawa coupling for a given GUT multiplet

➡ SO(10) relates quarks and leptons (intra-family relations)

➡ reduce # of parameters in Yukawa sector

M =




A B B
B C D
B D C





∼
√

∆m2
12/∆m2

31

∼ ∆m2
12/∆m2

31

heavy neutrino mass: M ∼MR

" mD

16 = 5 + 10 + 1

1

M =




A B B
B C D
B D C





∼
√

∆m2
12/∆m2

31

∼ ∆m2
12/∆m2

31

heavy neutrino mass: M ∼MR

" mD

16 = 5 + 10 + 1

νR

1
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SO(10) Grand Unification

• Matter unification:

All 15 known fermions

and the RH neutrino

are unified into one

single spinor

representation

• RH neutrino has a

natural place in the

theory!!

• Charge quantization

explained

16 = ( 3, 2, 1/6 )  ~     u  u   u

                                   d   d  d

      + ( 3*, 1, -2/3 ) ~ ( uc  uc  uc )

      + ( 3*, 1, 1/3 )  ~ ( dc  dc  dc )

      + ( 1, 2, -1/2 )  ~     !

                                      e

      + ( 1, 1, 1 )      ~   ec

      + ( 1, 1, 0 )      ~   !c



Models Based on SUSY SO(10)

• large neutrino mixing from neutrino sector

SO(10) GUT + SU(2) family symmetry

• symmetric mass matrices:

12 parameters accommodate 22 fermion masses, mixing angles and CP 
phases in both quark and lepton sectors

• prediction for θ13:
UMNS = U†

e,LUν,L (1)

sin θ13 ∼
(

∆m2
sun

∆m2
atm

)1/2

∼ O(0.1)⇒ LMA

1

33

The Horizontal Symmetry

• Three families are the

same under vertical

symmetry; yet

different under

horizontal symmetry

• Zeros in the mass

matrices are protected

by a family symmetry

SU(2)F

uuu

ddd

eee

sss

ttt

bbb

!!!µµµ

"""µµµ

!!!"""

ccc

!!!eee

SU(2)F

SU(10)

M.-C.C & K.T. Mahanthappa, PRD 2000

SO(10) → SU(4) x SU(2)L x SU(2)R

            → SU(3) x SU(2)L x U(1)Y

30

Fermion masses in SO(10)

Left-right symmetry breaking route:

             SO(10)  ! SU(4) " SU(2)L " SU(2)R

                           ! SU(3) " SU(2)L " U(1)Y

# symmetric mass matrices

# Intra-family mass relations:

    Up-type quarks $ Dirac neutrinos

Down-type quarks $ charged leptons

UMNS = U†
e,LUν,L (1)

sin θ13 ∼
(

∆m2
sun

∆m2
atm

)1/2

∼ O(0.1) ⇒ LMA

θ12 + θc = 45o

=
1
2
− 1

2
θc cos β

tan θ2
!,exp = 0.47+0.06

−0.05

seesaw ⇒ Mν ∼




0 0 ∗
0 1 1
∗ 1 1





MT
d = Me ∼




∗ ∗ ∗
∗ ∗ 1
∗ ∗ 1





1

€ 

UMNS =Ue,L
+ Uν ,L

Barbieri, Hall, Raby, Romanino; ...



Models Based on SUSY SO(10)

• large neutrino mixing from charged lepton sector

• lopsided mass matrices:

• large mixing in Ue,L

• large mixing in Ud,R (effects in B physics)

• large µ → e + γ rate

• prediction for θ13: can be small;  sin θ13  ~ 0.05

Albright & Barr

UMNS = U†
e,LUν,L (1)

1

SO(10) → SU(5) 
            → SU(3) x SU(2)L x U(1)Y

UMNS = U†
e,LUν,L (1)

sin θ13 ∼
(

∆m2
sun

∆m2
atm

)1/2

∼ O(0.1) ⇒ LMA

θ12 + θc = 45o

=
1
2
− 1

2
θc cos β

tan θ2
!,exp = 0.47+0.06

−0.05

MT
d = Me ∼




∗ ∗ ∗
∗ ∗ 1
∗ ∗ 1





1

down-type quarks ⇔ charged leptons

D. Chang,  A. Masiero, H. Murayama, 2002
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d s
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_
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Figure 1: Possible important contributions to B-physics from large b̃R-s̃R

mixing, such as Bs-B̄s mixing, and SUSY penguin contribution to Bd → φKs

transition.

4 Consequences in B Physics

In this Section we present some implications of a large and complex δR
23 in B

physics. The discussion is semi-quantitiative. Fully quantitative evaluation
of effects in B-physics and their corelations will be discussed elsewhere.††

The diagrammatic contributions of δR
23 to various ∆B = −∆S = 2 and

∆B = −∆S = 1 processes were worked out in detail in Ref. [18]‡‡. In
particular a complex δR

23 can play a major role in CP violating B decays
[20, 14, 21, 16, 22].

The first effect of a conspicuous δR
23 would be a large contribution to the

∆B = −∆S = 2, Bs-B̄s mixing through the operator Q1 = s̄α
Rγµbα

Rs̄β
Rγµsβ

R

with complex coefficient

Heff = −
α2

s

216m2
q̃

(

δd
23

)2

RR

(

24 Q1 x f6(x) + 66 Q1 f̃6(x)
)

(16)

where the functions f6 and f̃6 are defined as in Ref. [18].
From Eqs. (13,15) we see that δR

23 can easily be as large as 0.5, yielding
a SUSY contribution to ∆Ms comparable to that of the SM. Hence, in our
scheme the operator gives rise to a large Bs-B̄s mixing with a complex phase

††We stick to mass insertion formalism for illustrative purposes, but fully quantitative
discussions would require calculations in the mass eigenbasis.

‡‡For an updated analysis of the gluino-mediated SUSY contributions to the Bd-B̄d

mixing and to the CP asymmetry in the decay B → J/ψKs including the NLO QCD
corrections and B coefficients as computed in the lattice instead of using the vacuum
insertion approximation, see Ref. [19]
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that predict normal mass hierarchy, while the lower diagram includes models that predict inverted mass

hierarchy.
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Predictions of all 46 models for 1-3 mixing:
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FIG. 11: Branching ratio predictions for µ − e conversion vs. branching ratio predictions for µ → e + γ in

the five models considered. The more restrictive WMAP dark matter constraints apply for the thick line

segments shown.

Zeff = 17.6 and the nuclear form factor is F (q2 # −m2
µ) # 0.54 [30]. In the case of the conversion

process, we have explicitly carried out the full evolution running from the GUT scale to the Z

scale. The µ − e conversion branching ratio is then obtained from the conversion rate above by

scaling it with the µ capture rate on T i, which is quoted in [38] as (2.590± 0.012)× 106 sec−1 with

the present experimental limit on the conversion branching ratio found to be R ≤ 4 × 10−12.

In Fig. 11. we show a plot of the µ − e conversion branching ratio vs. the µ → eγ branching

ratio for each of the five models considered. We have limited the line segments by applying the

WMAP dark matter constraints of Sect. III. It is clear that the GK and AB models would be

tested first, followed by the DR, CY and CM models. In fact, a first generation µ − e conversion

experiment may be able to reach a branching ratio of 10−17, while a second generation experiment

may lower the limit from the present value of 4 × 10−12 down to 10−18. If such proves to be the

case and no signal is seen, all five models will be eliminated. Hence the conversion experiment is

inherently more powerful than the MEG experiment looking for µ → eγ which is designed to reach

a level of 10−13−10−14, sufficient only to eliminate the GK and AB models. The caveat, of course,

is that MEG is now starting to take data, while no new conversion experiment has been approved.
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predictions for LFV processes in five viable SUSY SO(10) models:

 -- assuming MSUGRA boundary conditions
 -- including Dark Matter constraints from WMAP 



Tri-bimaximal Neutrino Mixing
• Neutrino Oscillation Parameters (2σ) 

• indication for non-zero θ13: 

• Tri-bimaximal neutrino mixing:

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =





√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2

−
√

1/6 1/
√

3 1/
√

2




, (2)

which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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Tri-bimaximal Mixing

• Neutrino Oscillation Parameters [Circa 2006 + MINOS July 07] 

• Tri-bimaximal neutrino mixing:

• new KamLAND result: 

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global
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angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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UMNS = U†
e,LUν,L (1)

sin θ13 ∼
(

∆m2
sun

∆m2
atm

)1/2

∼ O(0.1)⇒ LMA

θ12 + θc = 45o

=
1
2
− 1

2
θc cos β

tan θ2
!,exp = 0.47+0.06

−0.05

1

UPMNS =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1








1 0 0
0 eiα21/2 0
0 0 eiα31/2



 (1)

∆m2
31 = (2.40+0.24

−0.22)× 10−3 eV2, ∆m2
21 = (7.65+0.46

−0.40)× 10−5 eV2

sin2 θ23 = 0.5+0.14
−0.12, sin2 θ12 = 0.304+0.044

−0.032, sin2 θ13 = 0.01(≤ 0.040)

1

Schwetz, Tortola, Valle (Aug 2008)

consistent with θ13 = 0 

UPMNS =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1








1 0 0
0 eiα21/2 0
0 0 eiα31/2



 (1)

∆m2
31 = (2.40+0.24

−0.22)× 10−3 eV2, ∆m2
21 = (7.65+0.46

−0.40)× 10−5 eV2

sin2 θ23 = 0.5+0.14
−0.12, sin2 θ12 = 0.304+0.044

−0.032, sin2 θ13 = 0.01(≤ 0.040)

sin2 θ13 = 0.01+0.016
−0.011 (1σ)

1

14

Bari group,  June 2008

The effective neutrino mass matrix, Meff is symmetric and thus diagonalizable by orthogonal transformation:

UT
MNSMeffUMNS = diag(|m1|, |m2|, |m3|) (1)

where mi are the mass eigenvalues.

The UMNS matrix can be parametrized by,

UMNS = R(θ23) · R(θ13, δ) · R(θ12)P = V · P , (2)

=




c12c13 c13s12 s13e−iδ

−c23s12 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23

s12s23 − c12c23s13eiδ c12s23 − c23s12s13eiδ c13c23



 P (3)

=




c12c13 c13s12 s13

−c23s12 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23eiδ

s12s23 − c12c23s13eiδ c12s23 − c23s12s13eiδ c13c23eiδ



 Pα, (4)

=




1 0 0
0 1 0
0 0 eiδ








c12c13 c13s12 s13

−c23s12 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23eiδ

s12s23e−iδ − c12c23s13 c12s23e−iδ − c23s12s13 c13c23



 Pα (5)

= Pδ · VMaiani · Pα (6)

where VMaiani is the Maiani parametrization for the CKM matrix. The diagonal phase matrix, Pδ, on the left can
be absorbed by redefinition of the LH lepton doublets (which are Dirac particles). To see this, recall that for the
quark sector, in the mass eigenstate basis, one has the freedom to make the rotations on quark fields,

VCKM = VuV †
d → eiΦU VCKMe−iΦD , ΦU = diag(φu, φc, φt), ΦD = diag(φd, φs, φb) (7)

and the physical quantities should be invariant under the phase redefinition. For the lepton sector, as neutrinos
are Majorana particle, the Majorana condition does not allow the re-phasing. Thus the only re-phasing degrees of
freedom only exist for the charged leptons:

UMNS = V †
e Vν → eΦE V †

e Vν (8)

In the above equation, the matrices P and R are defined as follows:

R(θ23) =




1 0 0
0 c23 −s23

0 s23 c23



 , R(θ13) =




c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13



 , R(θ12) =




c12 s12 0
−s12 c12 0

0 0 1



 (9)

P = PδPα =




1 0 0
0 eiα21/2 0
0 0 ei(α31/2+δ)



 , (10)

Pδ =




1 0 0
0 1 0
0 0 eiδ



 , Pα =




1 0 0
0 eiα21/2 0
0 0 eiα31/2



 (11)

The parametrization invariant measures for CP violation due to Majorana phases are,

S1 ≡ Im{UMNS,e1U
∗
MNS,e3}, S2 = Im{UMNS,e2U

∗
MNS,e3} (12)

and the two Majorana phases, α21 and α31 are related to S1 and S2 as

cos α31 = 1− 2S2
1

|UMNS,e1|2|UMNS,e3|2
, cos(α31 − α21) = 1− 2S2

2

|UMNS,e2|2|UMNS,e3|2
(13)

1
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Tribimaximal Mixing, Leptogenesis, and θ13

Elizabeth E. Jenkins and Aneesh V. Manohar
(Dated: August 12, 2008)

We show that seesaw models based on flavor symmetries (such as A4 and Z7 ! Z3) which produce
exact tribimaximal neutrino mixing also imply a vanishing leptogenesis asymmetry. We show
that higher order symmetry breaking corrections in these models can give a non-zero leptogenesis
asymmetry and generically also give deviations from tribimaximal mixing and a non-zero θ13 ! 10−2.

Experiments using solar, atmospheric and reactor neu-
trinos, and neutrino beams produced at accelerators have
confirmed the existence of neutrino oscillations. The re-
sults are consistent with neutrino mixing produced if the
neutrino weak eigenstates νe, νµ and ντ are related to the
mass eigenstates ν1, ν2 and ν3 by a 3× 3 unitary matrix
U , commonly called the PMNS matrix,

|να〉 = Uαi |νi〉 (1)

where α ∈ {e, µ, τ} and i ∈ {1, 2, 3}. The matrix U is
written in terms of three angles θ12, θ13, and θ23, and
three CP -violating phases δ, α1 and α2 [1],

U =




1 0 0
0 c23 s23

0 −s23 c23



 ×




c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13





×




c12 s12 0
−s12 c12 0

0 0 1



 ×




eiα1/2 0 0

0 eiα2/2 0
0 0 1



 (2)

with cij ≡ cos θij , sij ≡ sin θij , and 0 ≤ θij ≤ π/2,
0 ≤ δ, α1,2 < 2π. The Majorana phases α1,2 enter in lep-
ton number violating amplitudes, and so are not observ-
able presently in neutrino oscillation experiments, which
measure lepton number conserving processes. The cur-
rent experimental values of measured neutrino oscillation
observables (taken from Ref. [2]) are:

∆m2
21 = (8.0 ± 0.3) × 10−5 eV2

∣∣∆m2
32

∣∣ = (2.5 ± 0.2) × 10−3 eV2

tan2 θ12 = 0.45 ± 0.05 (30◦ < θ12 < 38◦)

sin2 2θ23 = 1.02 ± 0.04 (36◦ < θ23 < 54◦)

sin2 2θ13 = 0.0 ± 0.05 (θ13 < 10◦) . (3)

There is an ongoing experimental program to measure or
place an upper bound on θ13 at the level of sin2 2θ13 ∼
0.01 [3].

The ratio of the solar and atmospheric mass squared
differences is r = ∆m2

21/
∣∣∆m2

32

∣∣ = (3.2±0.3)×10−2. Al-
though the individual neutrino masses mi are not deter-
mined, the neutrino masses are known to be much smaller
than the masses of all other standard model fermions
from tritium endpoint, neutrinoless double beta decay
and cosmological data. The smallness of neutrino masses
can be naturally explained using the seesaw model [4],
which extends the standard model by adding gauge sin-
glet neutrinos. The singlet neutrinos NR of the seesaw

model naturally have Majorana masses much larger than
the electroweak scale, unlike the standard model fermions
which acquire mass proportional to electroweak symme-
try breaking. An interesting feature of the seesaw model
is that CP -violating decays of heavy singlet neutrinos can
produce a lepton asymmetry in the early universe, which
is converted into a baryon asymmetry at the electroweak
scale. This leptogenesis mechanism [5, 6] provides a sim-
ple explanation for the observed baryon asymmetry of
the universe.

The neutrino mixing matrix has two large angles (θ12,
θ23), and one small angle (θ13). A particularly inter-
esting ansatz for the mixing matrix is the tribimaximal
matrix [7]

UTB =





√
2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2



 (4)

with tan2 θ12 = 1/2, sin 2θ23 = 1 and θ13 = 0. The phase
δ is undefined since θ13 = 0. Eq. 4 can be easily extended
to include non-vanishing Majorana phases α1,2, UTB →
UTB diag(eiα1/2, eiα2/2, 1), which is the generalized form
of tribimaximal mixing that we will consider in this work.
The tribmaximal mixing matrix has been derived using
models with discrete flavor symmetries. The models rely
on the observation due to Ma [8] that a Majorana mass
matrix of the form




A B B
B C D
B D C



 (5)

is diagonalized by a mixing matrix with θ13 = 0 and
sin2 2θ23 = 1. If A+B = C +D, then tan2 θ12 = 1/2 and
the mixing matrix is tribimaximal. The mixing matrix
can have Majorana phases α1,2 if A, B, C, D are complex.
Particularly interesting are models based on the symme-
tries A4 [8, 9] and Z7 ! Z3 [10]. These groups have a
three-dimensional irreducible representation, and three
inequivalent one-dimensional representations, so that the
three generations of lepton doublets, charged leptons and
singlet neutrinos can either transform as a 3, or as three
inequivalent one-dimensional representations, which dis-
tinguish between the generations.

It turns out that the seesaw models in the literature
which derive exact tribimaximal mixing from a flavor
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Tribimaximal Mixing, Leptogenesis, and θ13

Elizabeth E. Jenkins and Aneesh V. Manohar
(Dated: August 12, 2008)

We show that seesaw models based on flavor symmetries (such as A4 and Z7 ! Z3) which produce
exact tribimaximal neutrino mixing also imply a vanishing leptogenesis asymmetry. We show
that higher order symmetry breaking corrections in these models can give a non-zero leptogenesis
asymmetry and generically also give deviations from tribimaximal mixing and a non-zero θ13 ! 10−2.

Experiments using solar, atmospheric and reactor neu-
trinos, and neutrino beams produced at accelerators have
confirmed the existence of neutrino oscillations. The re-
sults are consistent with neutrino mixing produced if the
neutrino weak eigenstates νe, νµ and ντ are related to the
mass eigenstates ν1, ν2 and ν3 by a 3× 3 unitary matrix
U , commonly called the PMNS matrix,

|να〉 = Uαi |νi〉 (1)

where α ∈ {e, µ, τ} and i ∈ {1, 2, 3}. The matrix U is
written in terms of three angles θ12, θ13, and θ23, and
three CP -violating phases δ, α1 and α2 [1],

U =




1 0 0
0 c23 s23

0 −s23 c23



 ×




c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13





×




c12 s12 0
−s12 c12 0

0 0 1



 ×




eiα1/2 0 0

0 eiα2/2 0
0 0 1



 (2)

with cij ≡ cos θij , sij ≡ sin θij , and 0 ≤ θij ≤ π/2,
0 ≤ δ, α1,2 < 2π. The Majorana phases α1,2 enter in lep-
ton number violating amplitudes, and so are not observ-
able presently in neutrino oscillation experiments, which
measure lepton number conserving processes. The cur-
rent experimental values of measured neutrino oscillation
observables (taken from Ref. [2]) are:

∆m2
21 = (8.0 ± 0.3) × 10−5 eV2

∣∣∆m2
32

∣∣ = (2.5 ± 0.2) × 10−3 eV2

tan2 θ12 = 0.45 ± 0.05 (30◦ < θ12 < 38◦)

sin2 2θ23 = 1.02 ± 0.04 (36◦ < θ23 < 54◦)

sin2 2θ13 = 0.0 ± 0.05 (θ13 < 10◦) . (3)

There is an ongoing experimental program to measure or
place an upper bound on θ13 at the level of sin2 2θ13 ∼
0.01 [3].

The ratio of the solar and atmospheric mass squared
differences is r = ∆m2

21/
∣∣∆m2

32

∣∣ = (3.2±0.3)×10−2. Al-
though the individual neutrino masses mi are not deter-
mined, the neutrino masses are known to be much smaller
than the masses of all other standard model fermions
from tritium endpoint, neutrinoless double beta decay
and cosmological data. The smallness of neutrino masses
can be naturally explained using the seesaw model [4],
which extends the standard model by adding gauge sin-
glet neutrinos. The singlet neutrinos NR of the seesaw

model naturally have Majorana masses much larger than
the electroweak scale, unlike the standard model fermions
which acquire mass proportional to electroweak symme-
try breaking. An interesting feature of the seesaw model
is that CP -violating decays of heavy singlet neutrinos can
produce a lepton asymmetry in the early universe, which
is converted into a baryon asymmetry at the electroweak
scale. This leptogenesis mechanism [5, 6] provides a sim-
ple explanation for the observed baryon asymmetry of
the universe.

The neutrino mixing matrix has two large angles (θ12,
θ23), and one small angle (θ13). A particularly inter-
esting ansatz for the mixing matrix is the tribimaximal
matrix [7]
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with tan2 θ12 = 1/2, sin 2θ23 = 1 and θ13 = 0. The phase
δ is undefined since θ13 = 0. Eq. 4 can be easily extended
to include non-vanishing Majorana phases α1,2, UTB →
UTB diag(eiα1/2, eiα2/2, 1), which is the generalized form
of tribimaximal mixing that we will consider in this work.
The tribmaximal mixing matrix has been derived using
models with discrete flavor symmetries. The models rely
on the observation due to Ma [8] that a Majorana mass
matrix of the form




A B B
B C D
B D C



 (5)

is diagonalized by a mixing matrix with θ13 = 0 and
sin2 2θ23 = 1. If A+B = C +D, then tan2 θ12 = 1/2 and
the mixing matrix is tribimaximal. The mixing matrix
can have Majorana phases α1,2 if A, B, C, D are complex.
Particularly interesting are models based on the symme-
tries A4 [8, 9] and Z7 ! Z3 [10]. These groups have a
three-dimensional irreducible representation, and three
inequivalent one-dimensional representations, so that the
three generations of lepton doublets, charged leptons and
singlet neutrinos can either transform as a 3, or as three
inequivalent one-dimensional representations, which dis-
tinguish between the generations.

It turns out that the seesaw models in the literature
which derive exact tribimaximal mixing from a flavor

ar
X

iv
:0

8
0

7
.4

1
7

6
v

2
  

[h
ep

-p
h

] 
 1

2
 A

u
g

 2
0

0
8

Tribimaximal Mixing, Leptogenesis, and θ13

Elizabeth E. Jenkins and Aneesh V. Manohar
(Dated: August 12, 2008)

We show that seesaw models based on flavor symmetries (such as A4 and Z7 ! Z3) which produce
exact tribimaximal neutrino mixing also imply a vanishing leptogenesis asymmetry. We show
that higher order symmetry breaking corrections in these models can give a non-zero leptogenesis
asymmetry and generically also give deviations from tribimaximal mixing and a non-zero θ13 ! 10−2.

Experiments using solar, atmospheric and reactor neu-
trinos, and neutrino beams produced at accelerators have
confirmed the existence of neutrino oscillations. The re-
sults are consistent with neutrino mixing produced if the
neutrino weak eigenstates νe, νµ and ντ are related to the
mass eigenstates ν1, ν2 and ν3 by a 3× 3 unitary matrix
U , commonly called the PMNS matrix,

|να〉 = Uαi |νi〉 (1)

where α ∈ {e, µ, τ} and i ∈ {1, 2, 3}. The matrix U is
written in terms of three angles θ12, θ13, and θ23, and
three CP -violating phases δ, α1 and α2 [1],

U =




1 0 0
0 c23 s23

0 −s23 c23



 ×




c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13





×




c12 s12 0
−s12 c12 0

0 0 1



 ×




eiα1/2 0 0

0 eiα2/2 0
0 0 1



 (2)

with cij ≡ cos θij , sij ≡ sin θij , and 0 ≤ θij ≤ π/2,
0 ≤ δ, α1,2 < 2π. The Majorana phases α1,2 enter in lep-
ton number violating amplitudes, and so are not observ-
able presently in neutrino oscillation experiments, which
measure lepton number conserving processes. The cur-
rent experimental values of measured neutrino oscillation
observables (taken from Ref. [2]) are:

∆m2
21 = (8.0 ± 0.3) × 10−5 eV2

∣∣∆m2
32

∣∣ = (2.5 ± 0.2) × 10−3 eV2

tan2 θ12 = 0.45 ± 0.05 (30◦ < θ12 < 38◦)

sin2 2θ23 = 1.02 ± 0.04 (36◦ < θ23 < 54◦)

sin2 2θ13 = 0.0 ± 0.05 (θ13 < 10◦) . (3)

There is an ongoing experimental program to measure or
place an upper bound on θ13 at the level of sin2 2θ13 ∼
0.01 [3].

The ratio of the solar and atmospheric mass squared
differences is r = ∆m2

21/
∣∣∆m2

32

∣∣ = (3.2±0.3)×10−2. Al-
though the individual neutrino masses mi are not deter-
mined, the neutrino masses are known to be much smaller
than the masses of all other standard model fermions
from tritium endpoint, neutrinoless double beta decay
and cosmological data. The smallness of neutrino masses
can be naturally explained using the seesaw model [4],
which extends the standard model by adding gauge sin-
glet neutrinos. The singlet neutrinos NR of the seesaw

model naturally have Majorana masses much larger than
the electroweak scale, unlike the standard model fermions
which acquire mass proportional to electroweak symme-
try breaking. An interesting feature of the seesaw model
is that CP -violating decays of heavy singlet neutrinos can
produce a lepton asymmetry in the early universe, which
is converted into a baryon asymmetry at the electroweak
scale. This leptogenesis mechanism [5, 6] provides a sim-
ple explanation for the observed baryon asymmetry of
the universe.

The neutrino mixing matrix has two large angles (θ12,
θ23), and one small angle (θ13). A particularly inter-
esting ansatz for the mixing matrix is the tribimaximal
matrix [7]

UTB =
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 (4)

with tan2 θ12 = 1/2, sin 2θ23 = 1 and θ13 = 0. The phase
δ is undefined since θ13 = 0. Eq. 4 can be easily extended
to include non-vanishing Majorana phases α1,2, UTB →
UTB diag(eiα1/2, eiα2/2, 1), which is the generalized form
of tribimaximal mixing that we will consider in this work.
The tribmaximal mixing matrix has been derived using
models with discrete flavor symmetries. The models rely
on the observation due to Ma [8] that a Majorana mass
matrix of the form




A B B
B C D
B D C



 (5)

is diagonalized by a mixing matrix with θ13 = 0 and
sin2 2θ23 = 1. If A+B = C +D, then tan2 θ12 = 1/2 and
the mixing matrix is tribimaximal. The mixing matrix
can have Majorana phases α1,2 if A, B, C, D are complex.
Particularly interesting are models based on the symme-
tries A4 [8, 9] and Z7 ! Z3 [10]. These groups have a
three-dimensional irreducible representation, and three
inequivalent one-dimensional representations, so that the
three generations of lepton doublets, charged leptons and
singlet neutrinos can either transform as a 3, or as three
inequivalent one-dimensional representations, which dis-
tinguish between the generations.

It turns out that the seesaw models in the literature
which derive exact tribimaximal mixing from a flavor

solar mixing angle NOT fixed

TBM pattern

Mohapatra, Nasri, Yu, 2006; ...

Luhn, Nasri, Ramond, 2007

Ma, ‘04; Altarelli, Feruglio, ‘06; .....

Grimus, Lavoura, 2003; ...

Fukuyama, Nishiura, ‘97; Mohapatra, Nussinov, ‘99; Ma, Raidal, ‘01; ...



Non-abelian Finite Family Symmetry

• TBM mixing matrix: can be realized in finite group family 
symmetry based on A4 

• even permutations of 4 objects 

S: (1234) → (4321)

T: (1234) → (2314)

• invariance group of  Tetrahedron

• orbifold compactification:

               6D → 4D on T2/Z2

• Deficiencies:

• does NOT give rise to CKM mixing:    Vckm = 1

• does NOT explain mass hierarchy

• all CG coefficients real

Ma & Rajasekaran, ‘01

The vertices of a cube can be grouped into

two groups of four, each forming a regular

tetrahedron (see above, and also animation,

showing one of the two tetrahedra in the

cube). The symmetries of a regular

tetrahedron correspond to half of those of a

cube: those which map the tetrahedrons to

themselves, and not to each other.

The tetrahedron is the only Platonic solid

that is not mapped to itself by point

inversion.

The regular tetrahedron has 24 isometries,

forming the symmetry group Td,

isomorphic to S4. They can be categorized

as follows:

T, isomorphic to alternating group A4 (the identity and 11 proper rotations) with the following conjugacy

classes (in parentheses are given the permutations of the vertices, or correspondingly, the faces, and the
unit quaternion representation):

identity (identity; 1)
rotation about an axis through a vertex, perpendicular to the opposite plane, by an angle of ±120°:
4 axes, 2 per axis, together 8 ((1 2 3), etc.; (1±i±j±k)/2)
rotation by an angle of 180° such that an edge maps to the opposite edge: 3 ((1 2)(3 4), etc.; i,j,k)

reflections in a plane perpendicular to an edge: 6
reflections in a plane combined with 90° rotation about an axis perpendicular to the plane: 3 axes, 2 per
axis, together 6; equivalently, they are 90° rotations combined with inversion (x is mapped to !x): the
rotations correspond to those of the cube about face-to-face axes

The isometries of irregular tetrahedra

The isometries of an irregular tetrahedron depend on the geometry of the tetrahedron, with 7 cases possible. In

each case a 3-dimensional point group is formed.

An equilateral triangle base and isosceles (and non-equilateral) triangle sides gives 6 isometries,
corresponding to the 6 isometries of the base. As permutations of the vertices, these 6 isometries are the
identity 1, (123), (132), (12), (13) and (23), forming the symmetry group C3v, isomorphic to S3.

Four congruent isosceles (non-equilateral) triangles gives 8 isometries. If edges (1,2) and (3,4) are of
different length to the other 4 then the 8 isometries are the identity 1, reflections (12) and (34), and 180°
rotations (12)(34), (13)(24), (14)(23) and improper 90° rotations (1234) and (1432) forming the
symmetry group D2d.

Four congruent scalene triangles gives 4 isometries. The isometries are 1 and the 180° rotations (12)(34),

(13)(24), (14)(23). This is the Klein four-group V4 ! Z2
2, present as the point group D2.

Two pairs of isomorphic isosceles (non-equilateral) triangles. This gives two opposite edges (1,2) and
(3,4) that are perpendicular but different lengths, and then the 4 isometries are 1, reflections (12) and
(34) and the 180° rotation (12)(34). The symmetry group is C2v, isomorphic to V4.

Two pairs of isomorphic scalene triangles. This has two pairs of equal edges (1,3), (2,4) and (1,4), (2,3)
but otherwise no edges equal. The only two isometries are 1 and the rotation (12)(34), giving the group

The proper rotations and reflections in the symmetry group of the

regular tetrahedron

Altarelli, Feruglio, ‘06



Group Theory of T′

• Double covering of tetrahedral group A4:

• in-equivalent representations of T’: 

• generators: 

• generators:  in 3-dim representations, T-diagonal basis

A4:  1,  1′,  1″, 3
other:   2,  2′,  2″

UMNS = V †
e,LUTBM =




1 −θc/3 ∗

θc/3 1 ∗
∗ ∗ 1









√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2
−

√
1/6 1/

√
3 1/

√
2





(1)

UMNS =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1





S2 = T 3 = (ST )3 = 1

S2 = R, T 3 = 1, (ST )3 = 1, R2 = 1

1

R=1:    1,  1′,  1″, 3  (vector)
R= -1:   2,  2′,  2″     (spinorial)

2 +1 assignments for quarks

TBM for neutrinos

Frampton & Kephart, IJMPA (1995)
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A Novel Origin of CP Violation

Mu-Chun Chen1, ∗ and K.T. Mahanthappa2, †

1Department of Physics & Astronomy, University of California, Irvine, CA 92697-4575, USA
2Department of Physics, University of Colorado at Boulder, Boulder, CO 80309-0390, USA

(Dated: April 9, 2009)

We propose the complex group theoretical Clebsch-Gordon coefficients as a novel origin of CP
violation. This is manifest in our model based on SU(5) combined with the double tetrahedral group
T ′ as the family symmetry. Due to the presence of the doublet representations in T ′, there exist
complex CG coefficients, leading to explicit CP violation in the model, while the Yukawa couplings
and the vacuum expectation values of the scalar fields remain real. The predicted CP violation
measures in the quark sector are consistent with the current experimental data. The leptonic Dirac
CP violating phase, δ!, is predicted to be ∼ − cos−1(2/3), which turns out to be the value needed
to account for the difference between the experimental best fit value for the solar mixing angle and
the tri-bimaximal mixing matrix prediction. The existence of a non-vanishing leptonic Dirac CP
phase may be relevant for the generation of the baryonic asymmetry in the universe.

The origin of the cosmological matter antimatter
asymmetry in the universe is one of the fundamental
questions that still remain to be answered. It has long
been known that in order to generate the baryonic asym-
metry, three conditions [1] must be satisfied, i.e. baryon
and lepton number violations, CP violation and out-
of-equilibrium decay. Given the evidence that our uni-
verse is expanding, the out-of-equilibrium condition can
be simply satisfied. In most extensions of the Standard
Model, such as grand unified theories, there naturally ex-
ist processes that violate baryon and/or lepton numbers.
Due to the small quark mixing, the complex phase in
the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix
generate a baryonic asymmetry that is roughly 18 orders
of magnitude smaller than the observed value [2]. The ob-
servation of neutrino oscillation, on the other hand, opens
up the possibility of generating the baryonic asymmetry
through leptogenesis [3]. The success of leptogenesis cru-
cially depends on the existence of CP violating phases in
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
that describes the neutrino mixing [4].

Generally, CP violation can arise either explicitly
through complex Yukawa coupling constants, or sponta-
neously through the complex vacuum expectation values
(VEVs) of the Higgs fields, or a combination of both.
In these two scenarios, the complex phases appear to be
free parameters, adding to the list of parameters in the
Yukawa sector that accommodate the observed fermion
masses, mixing angles and CP violation measures.

In this letter, we propose the complex Clebsch-Gordon
(CG) coefficients as a new origin of CP violation. Such
complex CG coefficients exist in the double tetrahedral
group, T ′. In this scenario, CP violation occurs explicitly
from the CG coefficients of the T ′ group theory, while the
Yukawa coupling constants and the VEVs of the scalar
fields remain real. As a result, the amount of CP vio-
lation in our model is determined entirely by the group
theory, unlike in the usual scenarios.

Experimentally, the best fit values for the neutrino

mixing angles are very close to the prediction of the tri-
bimaximal mixing (TBM) matrix [5],

UTBM =





√

2/3
√

1/3 0
−

√

1/6
√

1/3 −
√

1/2
−

√

1/6
√

1/3
√

1/2



 (1)

which predicts sin2 θatm = 1/2, tan2 θ# = 1/2 and
sin θ13 = 0. It has been realized the the TBM matrix
can arise from an underlying A4 symmetry [6]. Never-
theless, A4 does not give rise to quark mixing [7]. Even
though the exact TBM matrix does not give rise to CP
violation, due to the correction from the charged lepton
sector in our model, as we will show, leptonic CP viola-
tion can still arise.

Group Theory of T ′.—The finite group T ′ is the double
covering group of the tetrahedral group, A4. It has 24
elements, and is generated by two generators, S and T .
In the T diagonal basis, these two generators in the triplet
representation are given by,

S =
1

3





−1 2ω 2ω2

2ω2 −1 2ω
2ω 2ω2 −1



 , T =





1 0 0
0 ω 0
0 0 ω2



 , (2)

with ω = e2iπ/3. While all CG coefficients can be chosen
to be real in A4, this is not the case in T ′, which has
three doublet representations, 2, 2′, 2′′, in addition to
the triplet, 3, and three singlet representations, 1, 1′, 1′′,
that exist in A4. In the basis of Eq. 2, the complex CG
coefficients appear in the products of the doublets with
the triplet representations, 2 ⊗ 3, 2′ ⊗ 3 and 2′′ ⊗ 3 [8].

The Model.—In Ref. [9], we have constructed a SU(5)
model combined with a family symmetry based on T ′,
which simultaneously gives rise to the tri-bimaximal neu-
trino mixing and realistic CKM quark mixing [10]. (T ′

has also been utilized by others [11].) The field content
of our model is summarized in Table I. Note that since
all fields in a full SU(5) multiplet transform in the same
way under the T ′ symmetry, our model is free of discrete
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A Novel Origin of CP Violation
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1Department of Physics & Astronomy, University of California, Irvine, CA 92697-4575, USA
2Department of Physics, University of Colorado at Boulder, Boulder, CO 80309-0390, USA

(Dated: April 9, 2009)

We propose the complex group theoretical Clebsch-Gordon coefficients as a novel origin of CP
violation. This is manifest in our model based on SU(5) combined with the double tetrahedral group
T ′ as the family symmetry. Due to the presence of the doublet representations in T ′, there exist
complex CG coefficients, leading to explicit CP violation in the model, while the Yukawa couplings
and the vacuum expectation values of the scalar fields remain real. The predicted CP violation
measures in the quark sector are consistent with the current experimental data. The leptonic Dirac
CP violating phase, δ!, is predicted to be ∼ − cos−1(2/3), which turns out to be the value needed
to account for the difference between the experimental best fit value for the solar mixing angle and
the tri-bimaximal mixing matrix prediction. The existence of a non-vanishing leptonic Dirac CP
phase may be relevant for the generation of the baryonic asymmetry in the universe.

The origin of the cosmological matter antimatter
asymmetry in the universe is one of the fundamental
questions that still remain to be answered. It has long
been known that in order to generate the baryonic asym-
metry, three conditions [1] must be satisfied, i.e. baryon
and lepton number violations, CP violation and out-
of-equilibrium decay. Given the evidence that our uni-
verse is expanding, the out-of-equilibrium condition can
be simply satisfied. In most extensions of the Standard
Model, such as grand unified theories, there naturally ex-
ist processes that violate baryon and/or lepton numbers.
Due to the small quark mixing, the complex phase in
the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix
generate a baryonic asymmetry that is roughly 18 orders
of magnitude smaller than the observed value [2]. The ob-
servation of neutrino oscillation, on the other hand, opens
up the possibility of generating the baryonic asymmetry
through leptogenesis [3]. The success of leptogenesis cru-
cially depends on the existence of CP violating phases in
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
that describes the neutrino mixing [4].

Generally, CP violation can arise either explicitly
through complex Yukawa coupling constants, or sponta-
neously through the complex vacuum expectation values
(VEVs) of the Higgs fields, or a combination of both.
In these two scenarios, the complex phases appear to be
free parameters, adding to the list of parameters in the
Yukawa sector that accommodate the observed fermion
masses, mixing angles and CP violation measures.

In this letter, we propose the complex Clebsch-Gordon
(CG) coefficients as a new origin of CP violation. Such
complex CG coefficients exist in the double tetrahedral
group, T ′. In this scenario, CP violation occurs explicitly
from the CG coefficients of the T ′ group theory, while the
Yukawa coupling constants and the VEVs of the scalar
fields remain real. As a result, the amount of CP vio-
lation in our model is determined entirely by the group
theory, unlike in the usual scenarios.

Experimentally, the best fit values for the neutrino

mixing angles are very close to the prediction of the tri-
bimaximal mixing (TBM) matrix [5],

UTBM =
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 (1)

which predicts sin2 θatm = 1/2, tan2 θ# = 1/2 and
sin θ13 = 0. It has been realized the the TBM matrix
can arise from an underlying A4 symmetry [6]. Never-
theless, A4 does not give rise to quark mixing [7]. Even
though the exact TBM matrix does not give rise to CP
violation, due to the correction from the charged lepton
sector in our model, as we will show, leptonic CP viola-
tion can still arise.

Group Theory of T ′.—The finite group T ′ is the double
covering group of the tetrahedral group, A4. It has 24
elements, and is generated by two generators, S and T .
In the T diagonal basis, these two generators in the triplet
representation are given by,
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−1 2ω 2ω2

2ω2 −1 2ω
2ω 2ω2 −1
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1 0 0
0 ω 0
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 , (2)

with ω = e2iπ/3. While all CG coefficients can be chosen
to be real in A4, this is not the case in T ′, which has
three doublet representations, 2, 2′, 2′′, in addition to
the triplet, 3, and three singlet representations, 1, 1′, 1′′,
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the triplet representations, 2 ⊗ 3, 2′ ⊗ 3 and 2′′ ⊗ 3 [8].

The Model.—In Ref. [9], we have constructed a SU(5)
model combined with a family symmetry based on T ′,
which simultaneously gives rise to the tri-bimaximal neu-
trino mixing and realistic CKM quark mixing [10]. (T ′

has also been utilized by others [11].) The field content
of our model is summarized in Table I. Note that since
all fields in a full SU(5) multiplet transform in the same
way under the T ′ symmetry, our model is free of discrete
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center of the group, generated by the elements E and , there are other abelian subgroups:

Z3, Z4 and Z6. In particular, there is a Z4 subgroup here denoted by GS, generated by the
element TST 2 and a Z3 subgroup here called GT , generated by the element T . As we will

see GS and GT are of great importance for the structure of our model. Realizations of S
and T for 2, 2′, 2′ ′ and 3 can be found in the appendix A and are taken from [13].

The multiplication rules of the representations are as follows:

1a ⊗ rb = rb ⊗ 1a = ra+b for r = 1, 2

1a ⊗ 3 = 3 ⊗ 1a = 3
2a ⊗ 2b = 3 ⊕ 1a+b

2a ⊗ 3 = 3 ⊗ 2a = 2 ⊕ 2′ ⊕ 2′′

3 ⊗ 3 = 3 ⊕ 3 ⊕ 1 ⊕ 1′ ⊕ 1′′

(6)

where a, b = 0,±1 and we have denoted 10 ≡ 1, 11 ≡ 1′, 1−1 ≡ 1′′ and similarly for
the doublet representations. On the right-hand-side the sum a + b is modulo 3. The

Clebsch-Gordan coefficients for the decomposition of product representations are shown
in the appendix A and were already calculated in [13]. Further synonyms of T ′ are Type
24/13 [17] and SL2(F3) [15].

3 Outline of the model

In this section we introduce our model and we illustrate its main features. We choose the
model to be supersymmetric, which would help us when discussing the vacuum selection
and the symmetry breaking pattern of T ′. The model is required to be invariant under a

flavour symmetry group F = T ′ ⊗ Z3 ⊗ U(1)FN . The group factor T ′ is the one responsi-
ble for the TB lepton mixing. The group T ′ is unable to produce all the necessary mass

suppressions for the fermions of the first and second generations. These suppressions orig-
inate in part from a spontaneously broken U(1)FN , according to the original FN proposal.
Finally, the Z3 factor helps in keeping separate the contributions to neutrino masses and

to charged fermion masses, and it is an important ingredient in the vacuum alignment
analysis. The fields of the model, together with their transformation properties under the

flavour group, are listed in Table 2.

Field l ec µc τ c Dq Dc
u Dc

d q3 tc bc hu,d ϕT ϕS ξ, ξ̃ η ξ′′

T ′ 3 1 1′′ 1′ 2′′ 2′′ 2′′ 1 1 1 1 3 3 1 2′ 1′′

Z3 ω ω2 ω2 ω2 ω ω2 ω2 ω ω2 ω2 1 1 ω ω 1 1

U(1)FN 0 2n n 0 0 n 0 0 0 0 0 0 0 0 0 0

Table 2: The transformation rules of the fields under the symmetries associated to the groups T ′, Z3 and
U(1)FN . We denote Dq = (q1, q2)t where q1 = (u, d)t and q2 = (c, s)t are the electroweak SU(2)-doublets of
the first two generations, Dc

u = (uc, cc)t and Dc
d = (dc, sc)t. Dq, Dc

u and Dc
d are doublets of T ′. q3 = (t, b)t

is the electroweak SU(2)-doublet of the third generation. q3, tc and bc are all singlets under T ′.
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complexity cannot be avoided 
by different basis choice



A Novel Origin of CP Violation

• Conventionally:

• Explicit CP violation: complex Yukawa couplings

• Spontaneous CP violation: complex Higgs VEVs

★ complex CG coefficients in T′  ⇒ explicit CP violation

• real Yukawa couplings, real Higgs VEVs

• CP violation in both quark and lepton sectors determined by 
complex CG coefficients 

• no additional parameters needed ⇒ extremely predictive model!!
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Tri-bimaximal Neutrino Mixing

• fermion charge assignments:

• SM Higgs ~ singlet under T′

• operator for neutrino masses: 

• two scalar (flavon) fields for neutrino sector: 

• product rules:

z = x5 + ix6

z → z + 1, z → z + γ, γ = eiπ/3

z → −z

(z1, z2, z3, z4) = (1/2, (1 + γ)/2, γ/2, 0)

3⊗ 3 = 3⊕ 3⊕ 1⊕ 1′ ⊕ 1′′

1

z = x5 + ix6

z → z + 1, z → z + γ, γ = eiπ/3

z → −z

(z1, z2, z3, z4) = (1/2, (1 + γ)/2, γ/2, 0)

3⊗ 3 = 3⊕ 3⊕ 1⊕ 1′ ⊕ 1′′

HHLL

Λ




"1
"2
"3





L

∼ 3, eR ∼ 1, µR ∼ 1′, τR ∼ 1′′

ξ ∼ 3, η ∼ 1

1

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1

Λ2
ytsH5T3Taψζ +

1

Λ2
ycH5TaTaφ

2 +
1

Λ3
yuH5TaTaφ

′3 (4)

LTF =
1

Λ2
ybH

′
5FT3φζ +

1

Λ3

[

ys∆45FTaφψN + ydH
′
5FTaφ

2ψ′

]

(5)

LFF =
1

MxΛ

[

λ1H5H5F F ξ + λ2H5H5F Fη

]

, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈

ξ
〉

= ξ0Λ











1

1

1











,
〈

φ′
〉

= φ′
0Λ











1

1

1











, (7)

(d)T −→ GT :
〈

φ
〉

= φ0Λ











1

0

0











,
〈

ψ
〉

= ψ0Λ





1

0



 (8)

(d)T −→ nothing :
〈

ψ′
〉

= ψ′
0Λ





1

1



 (9)

(d)T −→ GS :
〈

ζ
〉

= ζ0Λ,
〈

N
〉

= N0Λ (10)

(d)T − invariant :
〈

η
〉

= uΛ (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [10],

TST 2 =
1

3











−1 2 2

2 −1 2

2 2 −1











, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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Tri-bimaximal Neutrino Mixing

• neutrino masses:  triplet Higgs contribution

• neutrino masses: singlet contribution 

• Resulting mass matrix:

under which the transformation properties of various fields are summarized in Table I, the above

Lagrangian is the most general one. Here the operators that couple to H5T3T3 are not shown in the

above Lagrangian as their contributions can be absorbed into a redefinition of the coupling constant

yt. In addition, we neglect the operator H5FT3ζψψ′ in LTF since its contribution is negligible.

Also not shown are those that contribute to LFF which can be absorbed into a redefinition of the

parameter u and φ0. Note that in principle, viable phenomenology may still be obtained when

more operators are allowed, The additional discrete symmetry that is needed in that case would be

smaller. Nevertheless, more Yukawa coupling constants will be present and the model would not

be as predictive. The Z12 × Z ′
12 symmetry also forbids proton and other nucleon decay operators

to very high orders; it is likely this symmetry might be linked to orbifold compactification in extra

dimensions. Note that, the Z12 × Z ′
12 symmetry also separates the neutrino and charged fermion

sectors, so that the neutrinos only couple to the GTST2 breaking sector. Furthermore, it allows the

45-dim Higgs, ∆45, to appear only in the operator shown above, and thus is crucial for obtaining

the Georgi-Jarlskog (GJ) relations.

The interactions in Lν give the following neutrino mass matrix [3], which is invariant under

GTST2 [9],

Mν =
λv2

Mx





2ξ0 + u −ξ0 −ξ0

−ξ0 2ξ0 u− ξ0

−ξ0 u− ξ0 2ξ0




, (13)

and we have absorbed the Yukawa coupling constants by rescaling the VEV’s. This mass matrix

Mν is form diagonalizable, i.e. the orthogonal matrix that diagonzlizes it does not depend on the

eigenvalues. Its diagonal form is,

V T
ν MνVν = diag(u + 3ξ0, u, −u + 3ξ0)

v2
u

Mx
, (14)

where the diagonalization matrix Vν is the tri-bimaximal mixing matrix, Vν = UTBM given in Eq. 2.

This tri-bimaximal mixing pattern and the mass eigenvalues in the neutrino sector are thus the

same as in all previous analyses in models based on A4 and (d)T , which has been shown to be

consistent with experimental data.

The down type quark and charged lepton masses are generated by LTF . Because the renormal-

izable operator H5FT3 is forbidden by the (d)T symmetry, the generation of b quark mass requires

the breaking of (d)T , which naturally explains the hierarchy between mt and mb. The b quark mass,

and thus the τ mass, is generated upon the breaking of (d)T → GT and (d)T → GS. As mb and mτ

are generated by the same operator, H5FT3φζ, we obtain the successful b− τ unification relation.
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I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =





√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2

−
√

1/6 1/
√

3 1/
√

2




, (2)

which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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9 Appendix B

In this appendix we discuss the subleading terms of the superpotential wd and how they

correct the VEV alignment. We work along the lines of the appendix B of [6].
The VEVs are shifted from the values
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where the corrections δvT i, δvS i, δvi, δũ and δu′ ′ are independent of each other. Note
that there also might be a correction to the VEV u, but we do not have to indicate this
explicitly by the addition of a term δu, since u is undetermined at tree-level anyway.

We change the notation in eq. (31) a bit by defining

g3 ≡ 3 g̃2
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4 and g8 ≡ i g̃2
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such that the VEVs read
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Form diagonalizable: 
-- no adjustable parameters
-- neutrino mixing from CG coefficients!
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Tri-bimaximal Neutrino Mixing

• charged lepton sector -- non-GUT models

• operators for charged fermion masses:

• scalar sector: flavon triplet for charged lepton sector

• resulting charged lepton mass matrix: diagonal

• leptonic mixing matrix = tri-bimaximal

• in our model:  SU(5) GUT ⇒ corrections from charged lepton sector
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where the corrections δvT i, δvS i, δvi, δũ and δu′ ′ are independent of each other. Note
that there also might be a correction to the VEV u, but we do not have to indicate this
explicitly by the addition of a term δu, since u is undetermined at tree-level anyway.

We change the notation in eq. (31) a bit by defining

g3 ≡ 3 g̃2
3 , g4 ≡ −g̃2

4 and g8 ≡ i g̃2
8

such that the VEVs read

vS =
g̃4

3 g̃3
u , vT =

Mη

g9
and v1 =

1√
3 g̃8 g9

√

2 g M2
η + 3 g9 M Mη

where we have chosen the “+” sign for the VEV v1. Apart from the subleading terms

which are already presented in [6] we get 17 other invariants which involve at least one of
the new fields η1,2, ξ′ ′, η0

1,2 and ξ′ 0:

∆wd 2 =
1

Λ

(

18
∑

i=14

ti I
T
i +

15
∑

i=13

si I
S
i + x4 IX

4 +
4

∑

i=1

ni I
N
i +

4
∑

i=1

yi I
Y
i

)

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1

Λ2
ytsH5T3Taψζ +

1

Λ2
ycH5TaTaφ

2 +
1

Λ3
yuH5TaTaφ

′3 (4)

LTF =
1

Λ2
ybH

′
5FT3φζ +

1

Λ3

[

ys∆45FTaφψN + ydH
′
5FTaφ

2ψ′

]

(5)

LFF =
1

MxΛ

[

λ1H5H5F F ξ + λ2H5H5F Fη

]

, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈

ξ
〉

= ξ0Λ











1

1

1











,
〈

φ′
〉

= φ′
0Λ











1

1

1











, (7)

(d)T −→ GT :
〈

φ
〉

= φ0Λ











1

0

0











,
〈

ψ
〉

= ψ0Λ





1

0



 (8)

(d)T −→ nothing :
〈

ψ′
〉

= ψ′
0Λ





1

1



 (9)

(d)T −→ GS :
〈

ζ
〉

= ζ0Λ,
〈

N
〉

= N0Λ (10)

(d)T − invariant :
〈

η
〉

= uΛ (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [10],

TST 2 =
1

3











−1 2 2

2 −1 2

2 2 −1











, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

z = x5 + ix6

z → z + 1, z → z + γ, γ = eiπ/3

z → −z

(z1, z2, z3, z4) = (1/2, (1 + γ)/2, γ/2, 0)

3⊗ 3 = 3⊕ 3⊕ 1⊕ 1′ ⊕ 1′′

HHLL

M

(
〈ξ〉
Λ

+
〈η〉
Λ

)




$1
$2
$3





L

∼ 3, eR ∼ 1, µR ∼ 1′′, τR ∼ 1′

ξ ∼ 3, η ∼ 1

($φ)1eR(1) + ($φ)1′µR(1′′) + ($φ)1′′τR(1′)

φ ∼ 3

m1 −m3 = 2m2

∆m2
atm > 0

Vν = UMNS

1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

1
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2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

m1 = u0 + 3ξ0

m2 = u0

m3 = −u0 + 3ξ0

∆m2
atm ≡ |m3|2 − |m2|2 = −12u0ξ0

∆m2
# ≡ |m2|2 − |m1|2 = −9ξ2

0 − 6u0ξ0 (1)

VCKM = V †
u,LVd,L

VMNS = V †
e,LVν = I · UTBM = UTBM

1



The Model
• Symmetry: SU(5) x T′

• Particle Content

• additional               symmetry:   

★ predictive model: only 9 operators allowed up to at least dim-7

★ vacuum misalignment: neutrino sector vs charged fermion sector

★ mass hierarchy: lighter generation masses allowed only at higher dim

T3 Ta F H5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

the quark sector while maintaining near TBM pattern. However, in order to explain the mass

hierarchy, the model has to resort to an additional U(1) symmetry. Furthermore, a large number

of operators are present in this model, making it less predictive. Here we consider an SU(5) model

combined with (d)T symmetry, which successfully accommodates the mass hierarchy as well as the

mixing matrices in both quark and lepton sectors. With an additional Z12 × Z ′
12 symmetry, only

“good” operators are allowed up to at least dimension seven, making the model very predictive.

In addition, the mass hierarchy is naturally explained without having hierarchy in the vacuum

expectation values (VEV’s) of the scalar fields, the reason being that the mass operators for the

lighter generation are allowed to appear only at higher order compared to those for the heavy

generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand, to

obtain realistic quark sector, the third generation of the 10-dim representation transforms as a sin-

glet, so that the top quark mass is allowed by the family symmetry, while the first and the second

generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively, T3

and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5 as well as a

45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We have summarized these

quantum number assignment in Table I.

3

T3 Ta F H5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

the quark sector while maintaining near TBM pattern. However, in order to explain the mass

hierarchy, the model has to resort to an additional U(1) symmetry. Furthermore, a large number

of operators are present in this model, making it less predictive. Here we consider an SU(5) model

combined with (d)T symmetry, which successfully accommodates the mass hierarchy as well as the

mixing matrices in both quark and lepton sectors. With an additional Z12 × Z ′
12 symmetry, only

“good” operators are allowed up to at least dimension seven, making the model very predictive.

In addition, the mass hierarchy is naturally explained without having hierarchy in the vacuum

expectation values (VEV’s) of the scalar fields, the reason being that the mass operators for the

lighter generation are allowed to appear only at higher order compared to those for the heavy

generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand, to

obtain realistic quark sector, the third generation of the 10-dim representation transforms as a sin-

glet, so that the top quark mass is allowed by the family symmetry, while the first and the second

generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively, T3

and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5 as well as a

45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We have summarized these

quantum number assignment in Table I.

3

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

T3 Ta F H5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

the quark sector while maintaining near TBM pattern. However, in order to explain the mass

hierarchy, the model has to resort to an additional U(1) symmetry. Furthermore, a large number

of operators are present in this model, making it less predictive. Here we consider an SU(5) model

combined with (d)T symmetry, which successfully accommodates the mass hierarchy as well as the

mixing matrices in both quark and lepton sectors. With an additional Z12 × Z ′
12 symmetry, only

“good” operators are allowed up to at least dimension seven, making the model very predictive.

In addition, the mass hierarchy is naturally explained without having hierarchy in the vacuum

expectation values (VEV’s) of the scalar fields, the reason being that the mass operators for the

lighter generation are allowed to appear only at higher order compared to those for the heavy

generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand, to

obtain realistic quark sector, the third generation of the 10-dim representation transforms as a sin-

glet, so that the top quark mass is allowed by the family symmetry, while the first and the second

generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively, T3

and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5 as well as a

45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We have summarized these

quantum number assignment in Table I.

3

T3 Ta F H5 H ′
5

∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

in [9] generalizes the (d)T to the quark sector while maintaining near TBM pattern. However,

in order to explain the mass hierarchy, the model has to resort to an additional U(1) symmetry.

Furthermore, a large number of operators are present in this model, making it less predictive. Here

we consider an SU(5) model combined with (d)T symmetry, which successfully accommodates the

mass hierarchy as well as the mixing matrices in both quark and lepton sectors. With an additional

Z12 × Z ′
12 symmetry, only “good” operators are allowed up to at least dimension seven, making

the model very predictive. In addition, the mass hierarchy is naturally explained without having

hierarchy in the vacuum expectation values (VEV’s) of the scalar fields, the reason being that the

mass operators for the lighter generation are allowed to appear only at higher order compared to

those for the heavy generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand,

to obtain realistic quark sector, the third generation of the 10-dim representation transforms as a

singlet, so that the top quark mass is allowed by the family symmetry, while the first and the sec-

ond generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively,

T3 and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5, a 5-dim

Higgs, H ′
5
, as well as a 45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We

have summarized these quantum number assignment in Table I. It is to be noted that H5 and H ′
5

are not conjugate of each other as they have different Z12 and Z ′
12 charges.

3
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2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

1
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The Model

• Lagrangian:  only 9 operators allowed!!

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH
′
5FT3φζ +

1
Λ3

[
ys∆45FTaφψN + ydH

′
5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

T1 = φ3, T2 = φ′ 3, T3 = φ2φ′, T4 = φ′ 2φ, T5 = N3 , T6 = ζ3, T7 = φ2ζ

T8 = φ′ 2ζ, T9 = φφ′ζ, T10 = φ2N, T11 = φ′ 2N, T12 = φφ′N, T13 = ψ′ 2φ

T14 = ψ′ 2φ′, T15 = ψ2φ, T16 = ψ2φ′, T17 = ψψ′φ, T18 = ψψ′φ′, T19 = ψψ′ζ

Q1 = φ4, Q2 = φ′ 4, Q3 = φ3φ′, Q4 = φ′ 3φ, Q5 = φ2φ′ 2, Q6 = ζ2N2

Q7 = ψ4, Q8 = ψ′ 3ψ, Q9 = ψ3ψ, Q10 = ψ3ψ′, Q11 = ψ2ψ′ 2, Q12 = φ2ζN

Q13 = φ′ 2ζN, Q14 = φφ′ζN, Q15 = φ2ψψ′, Q16 = φ′ 2ψψ′, Q17 = ψψ′φφ′

V (φ,φ′,ψ,ψ′, ζ, N) =
∑

i

m2
i Bi +

∑

j

µjTj +
∑

k

ckQk

Λ: cutoff scale above which the family symmetry (d)T is exact
Mx: scale at which the lepton number violating operator is generated

2
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2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

1



Neutrino Sector

• Operators:

• Symmetry breaking:

• Resulting mass matrix:

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =





√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2

−
√

1/6 1/
√

3 1/
√

2




, (2)

which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to

2
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2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

1

The Model

• (d)T breaking:

! charged fermion sector

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1

Λ2
ytsH5T3Taψζ +

1

Λ2
ycH5TaTaφ
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.
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The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′
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(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′
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ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,
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2 φ′3
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2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0
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ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)
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1
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ytsH5T3Taψζ +
1
Λ2
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2 +

1
Λ3
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′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ
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1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ
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ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.
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where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ
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H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md
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presented in a future publication.
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corrections to TBM

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
1

Λ2
H5

[

ytsT3Taψζ

+ycTaTbφ
2

]

+
1

Λ3
yuH5TaTbφ

′3 , (4)

−LTF =
1

Λ2
ybH

′
5
FT3φζ +

1

Λ3

[

ys∆45FTaφψN

+ydH5
′FTaφ

2ψ′

]

, (5)

−LFF =
1

ΛMX

[

λ1H5H5FF ξ + λ2H5H5FFη

]

, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,

〈ξ〉 =





1
1
1



 ξ0Λ , 〈φ′〉 =





1
1
1



 φ′
0Λ , (7)

〈φ〉 =





0
0
1



φ0Λ , 〈ψ〉 =

(

1
0

)

ψ′
0Λ , (8)

〈ψ′〉 =

(

1
1

)

ψ′
0Λ , (9)

〈ζ〉 = ζ0Λ , 〈N〉 = N0Λ , 〈η〉 = u0Λ . (10)

Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

− LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
respectively. The matrices Mu, Md and Me, upon the
breaking of T ′ and the electroweak symmetry, are given
in terms of seven parameters by

Mu =







iφ′3
0 (1−i

2
)φ′3

0 0

(1−i
2

)φ′3
0 φ′3

0 + (1 − i
2
)φ2

0 y′ψ0ζ0

0 y′ψ0ζ0 1






ytvu, (12)

Md =







0 (1 + i)φ0ψ′
0 0

−(1 − i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0






ydvdφ0 , (13)

Me =







0 −(1 − i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0






ydvdφ0 ,

(14)

which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,

V †
u,RMuVu,L = diag(mu, mc, mt) and V †

d,RMdVd,L =
diag(md, ms, mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
This gives the following weak charged current interaction
in the mass eigenstates of the fermions,

Lcc =
g

2
√

2

[

Wµ
+((x, t)J−

µ ((x, t) + Wµ
−((x, t)J+

µ ((x, t)

]

,

J−
µ = (u′, c′, t

′
)LγµVCKM







d′

s′

b′







L

. (15)

The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =







2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0







λv2

Mx
, (16)
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The Model

• (d)T breaking:

! charged fermion sector
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and
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√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
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√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
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√
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H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.

6

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference
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where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.
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control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
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breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =
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2 φ′3
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1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0
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ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !
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md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα
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md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
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(d)T − invariant :
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= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3
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2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
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mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
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md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√
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relative phase α depends upon the coupling constants. Even though θd
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.
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The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0
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ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

The Lagrangian of the model is given as follows,
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.
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where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,
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where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2
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, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
1

Λ2
H5

[

ytsT3Taψζ

+ycTaTbφ
2

]

+
1

Λ3
yuH5TaTbφ

′3 , (4)

−LTF =
1

Λ2
ybH

′
5
FT3φζ +

1

Λ3

[

ys∆45FTaφψN

+ydH5
′FTaφ

2ψ′

]

, (5)

−LFF =
1

ΛMX

[

λ1H5H5FF ξ + λ2H5H5FFη

]

, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,

〈ξ〉 =





1
1
1



 ξ0Λ , 〈φ′〉 =





1
1
1



 φ′
0Λ , (7)

〈φ〉 =





0
0
1



φ0Λ , 〈ψ〉 =

(

1
0

)

ψ′
0Λ , (8)

〈ψ′〉 =

(

1
1

)

ψ′
0Λ , (9)

〈ζ〉 = ζ0Λ , 〈N〉 = N0Λ , 〈η〉 = u0Λ . (10)

Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

− LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
respectively. The matrices Mu, Md and Me, upon the
breaking of T ′ and the electroweak symmetry, are given
in terms of seven parameters by
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which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,

V †
u,RMuVu,L = diag(mu, mc, mt) and V †

d,RMdVd,L =
diag(md, ms, mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
This gives the following weak charged current interaction
in the mass eigenstates of the fermions,
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√
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+((x, t)J−
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J−
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′
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L
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The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =
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only vector representations involved
⇒ all CG are real

⇒ Majorana phases either 0 or π 

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.
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]

, (5)

−LFF =
1

ΛMX

[
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which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,
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Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

− LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
respectively. The matrices Mu, Md and Me, upon the
breaking of T ′ and the electroweak symmetry, are given
in terms of seven parameters by

Mu =
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which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,

V †
u,RMuVu,L = diag(mu, mc, mt) and V †

d,RMdVd,L =
diag(md, ms, mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
This gives the following weak charged current interaction
in the mass eigenstates of the fermions,
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,
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The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =
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which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,
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u,RMuVu,L = diag(mu, mc, mt) and V †

d,RMdVd,L =
diag(md, ms, mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
This gives the following weak charged current interaction
in the mass eigenstates of the fermions,

Lcc =
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Wµ
+((x, t)J−

µ ((x, t) + Wµ
−((x, t)J+

µ ((x, t)

]

,
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The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =







2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0







λv2

Mx
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3

which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(#x, t) = αO(#x, t) + α∗
O

†(#x, t) , (19)

where O(#x, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(#x, t)
CP−→ O

†(−#x, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(#x, t)
T−→ O(#x,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=







ig 1−i
2

g 0
1−i
2

g g + (1 − i
2
)h k

0 k 1






, (25)

Md, MT
e

ybvdφ0ζ0
=







0 (1 + i)b 0

−(1 − i)b (1,−3)c 0

b b 1






, (26)

With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb & θ4.7

c : θ2.7

c : 1, mu : mc : mt & θ8

c : θ3.2

c : 1,
with θc &

√

md/ms & 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 & mb/mt & 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,







0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o

0.0317e−i7.33o

0.999






. (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg

(

−VtdV ∗
tb

VudV ∗
ub

)

= 114o , (29)

γ ≡ arg

(

−VudV ∗
ub

VcdV ∗
cb

)

= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45 × 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have

Form diagonalizable: 
-- no adjustable parameters
-- neutrino mixing from CG coefficients!

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1

Λ2
ytsH5T3Taψζ +

1

Λ2
ycH5TaTaφ

2 +
1

Λ3
yuH5TaTaφ

′3 (4)

LTF =
1

Λ2
ybH

′
5FT3φζ +

1

Λ3

[

ys∆45FTaφψN + ydH
′
5FTaφ

2ψ′

]

(5)

LFF =
1

MxΛ

[

λ1H5H5F F ξ + λ2H5H5F Fη

]

, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈

ξ
〉

= ξ0Λ











1

1

1











,
〈

φ′
〉

= φ′
0Λ











1

1

1











, (7)

(d)T −→ GT :
〈

φ
〉

= φ0Λ











1

0

0











,
〈

ψ
〉

= ψ0Λ





1

0



 (8)

(d)T −→ nothing :
〈

ψ′
〉

= ψ′
0Λ





1

1



 (9)

(d)T −→ GS :
〈

ζ
〉

= ζ0Λ,
〈

N
〉

= N0Λ (10)

(d)T − invariant :
〈

η
〉

= uΛ (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [10],

TST 2 =
1

3











−1 2 2

2 −1 2

2 2 −1











, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

z = x5 + ix6

z → z + 1, z → z + γ, γ = eiπ/3

z → −z

(z1, z2, z3, z4) = (1/2, (1 + γ)/2, γ/2, 0)

3⊗ 3 = 3⊕ 3⊕ 1⊕ 1′ ⊕ 1′′

HHLL

M

(
〈ξ〉
Λ

+
〈η〉
Λ

)




$1
$2
$3





L

∼ 3, eR ∼ 1, µR ∼ 1′, τR ∼ 1′′

ξ ∼ 3, η ∼ 1

($φ)1eR(1) + ($φ)1′′µR(1′) + ($φ)1′τR(1′)

1



Up Quark Sector
• Operators:

• top mass: allowed by T′

• lighter family acquire masses thru operators with higher dimensionality

➡ dynamical origin of mass hierarchy

• symmetry breaking:

• Mass matrix:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides
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2 φ′3

0 0
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2 φ′3

0 φ′3
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ytvu , (17)
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ycyt.
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12 !

√
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√
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√
mu/mc

∣∣ ∼
√

md/ms, where the
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λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)
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〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-
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3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.
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allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
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where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,
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fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)
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3
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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dim-6

dim-7

no contributions to 
elements involving 

1st family; true to all 
levels 
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1−i
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VCKM =

T ′ → GTST 2 :

T ′ − invariant:
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The Model

• (d)T breaking:

! charged fermion sector
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where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈

ξ
〉

= ξ0Λ











1

1

1











,
〈

φ′
〉

= φ′
0Λ











1

1

1











, (7)

(d)T −→ GT :
〈

φ
〉

= φ0Λ











1

0

0











,
〈

ψ
〉

= ψ0Λ





1

0



 (8)

(d)T −→ nothing :
〈

ψ′
〉

= ψ′
0Λ





1

1



 (9)

(d)T −→ GS :
〈

ζ
〉

= ζ0Λ,
〈

N
〉

= N0Λ (10)

(d)T − invariant :
〈

η
〉

= uΛ (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [10],

TST 2 =
1

3











−1 2 2

2 −1 2

2 2 −1











, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.

6

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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corrections to TBM

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.

6

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH
′
5FT3φζ +

1
Λ3

[
ys∆45FTaφψN + ydH

′
5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
1

Λ2
H5

[

ytsT3Taψζ

+ycTaTbφ
2

]

+
1

Λ3
yuH5TaTbφ

′3 , (4)

−LTF =
1

Λ2
ybH

′
5
FT3φζ +

1

Λ3

[

ys∆45FTaφψN

+ydH5
′FTaφ

2ψ′

]

, (5)

−LFF =
1

ΛMX

[

λ1H5H5FF ξ + λ2H5H5FFη

]

, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,

〈ξ〉 =





1
1
1



 ξ0Λ , 〈φ′〉 =





1
1
1



 φ′
0Λ , (7)

〈φ〉 =





0
0
1



φ0Λ , 〈ψ〉 =

(

1
0

)

ψ′
0Λ , (8)

〈ψ′〉 =

(

1
1

)

ψ′
0Λ , (9)

〈ζ〉 = ζ0Λ , 〈N〉 = N0Λ , 〈η〉 = u0Λ . (10)

Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

− LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
respectively. The matrices Mu, Md and Me, upon the
breaking of T ′ and the electroweak symmetry, are given
in terms of seven parameters by

Mu =







iφ′3
0 (1−i

2
)φ′3

0 0

(1−i
2

)φ′3
0 φ′3

0 + (1 − i
2
)φ2

0 y′ψ0ζ0

0 y′ψ0ζ0 1






ytvu, (12)

Md =







0 (1 + i)φ0ψ′
0 0

−(1 − i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0






ydvdφ0 , (13)

Me =







0 −(1 − i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0






ydvdφ0 ,

(14)

which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,

V †
u,RMuVu,L = diag(mu, mc, mt) and V †

d,RMdVd,L =
diag(md, ms, mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
This gives the following weak charged current interaction
in the mass eigenstates of the fermions,

Lcc =
g

2
√

2

[

Wµ
+((x, t)J−

µ ((x, t) + Wµ
−((x, t)J+

µ ((x, t)

]

,

J−
µ = (u′, c′, t

′
)LγµVCKM







d′

s′

b′







L

. (15)

The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =







2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0







λv2

Mx
, (16)

19

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

1

both vector and spinorial  
reps involved
     ⇒ complex CG



Down Quark Sector

• operators:

• generation of b-quark mass ⇒ breaking of  T′ ⇒ dynamical origin for 

hierarchy between mb and mt 

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• at MGUT:   Georgi-Jarlskog relations

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′
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ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator
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0 φ′3
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0 y′ψ0ζ0
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where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/
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12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
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√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
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breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,
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where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα
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md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
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The Model

• (d)T breaking:

! charged fermion sector
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2
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
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√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
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H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.

6
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where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.
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control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
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1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
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2)φ2
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where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
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Cabibbo angle, θc, is therefore given by θc !
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relative phase α depends upon the coupling constants. Even though θd
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.
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The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,
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where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
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1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
1

Λ2
H5

[

ytsT3Taψζ

+ycTaTbφ
2

]

+
1

Λ3
yuH5TaTbφ

′3 , (4)

−LTF =
1

Λ2
ybH

′
5
FT3φζ +

1

Λ3

[

ys∆45FTaφψN

+ydH5
′FTaφ

2ψ′

]

, (5)

−LFF =
1

ΛMX

[

λ1H5H5FF ξ + λ2H5H5FFη

]

, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,

〈ξ〉 =





1
1
1



 ξ0Λ , 〈φ′〉 =





1
1
1



 φ′
0Λ , (7)

〈φ〉 =





0
0
1



φ0Λ , 〈ψ〉 =

(

1
0

)

ψ′
0Λ , (8)

〈ψ′〉 =

(

1
1

)

ψ′
0Λ , (9)

〈ζ〉 = ζ0Λ , 〈N〉 = N0Λ , 〈η〉 = u0Λ . (10)

Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

− LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
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2
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2
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2
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CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.
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g

2
√

2

[

Wµ
+((x, t)J−

µ ((x, t) + Wµ
−((x, t)J+

µ ((x, t)

]
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J−
µ = (u′, c′, t

′
)LγµVCKM







d′

s′

b′







L

. (15)

The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =







2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0







λv2

Mx
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The Model

• (d)T breaking:

! charged fermion sector

The Lagrangian of the model is given as follows,
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, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈

ξ
〉

= ξ0Λ











1

1

1











,
〈

φ′
〉

= φ′
0Λ











1

1

1











, (7)

(d)T −→ GT :
〈

φ
〉

= φ0Λ











1

0

0











,
〈

ψ
〉

= ψ0Λ





1

0



 (8)

(d)T −→ nothing :
〈

ψ′
〉

= ψ′
0Λ





1

1



 (9)

(d)T −→ GS :
〈

ζ
〉

= ζ0Λ,
〈

N
〉

= N0Λ (10)

(d)T − invariant :
〈

η
〉

= uΛ (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [10],

TST 2 =
1

3











−1 2 2

2 −1 2

2 2 −1











, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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6

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
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Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally
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(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH
′
5FT3φζ +

1
Λ3

[
ys∆45FTaφψN + ydH

′
5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-
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TST 2 =
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, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉
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1

1

1




,

〈
φ′〉 = φ′
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1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
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 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.

6

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

The Lagrangian of the model is given as follows,
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LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)
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1

MxΛ

[
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]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
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= ξ0Λ





1

1

1
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〈
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0Λ





1

1

1




, (7)
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〉
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0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.
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allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
1

Λ2
H5

[

ytsT3Taψζ

+ycTaTbφ
2

]

+
1

Λ3
yuH5TaTbφ

′3 , (4)

−LTF =
1

Λ2
ybH

′
5
FT3φζ +

1

Λ3

[

ys∆45FTaφψN

+ydH5
′FTaφ

2ψ′

]

, (5)

−LFF =
1

ΛMX

[

λ1H5H5FF ξ + λ2H5H5FFη

]

, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,

〈ξ〉 =





1
1
1



 ξ0Λ , 〈φ′〉 =





1
1
1



 φ′
0Λ , (7)

〈φ〉 =





0
0
1



φ0Λ , 〈ψ〉 =

(

1
0

)

ψ′
0Λ , (8)

〈ψ′〉 =

(

1
1

)

ψ′
0Λ , (9)

〈ζ〉 = ζ0Λ , 〈N〉 = N0Λ , 〈η〉 = u0Λ . (10)

Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

− LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
respectively. The matrices Mu, Md and Me, upon the
breaking of T ′ and the electroweak symmetry, are given
in terms of seven parameters by

Mu =







iφ′3
0 (1−i

2
)φ′3

0 0

(1−i
2

)φ′3
0 φ′3

0 + (1 − i
2
)φ2

0 y′ψ0ζ0

0 y′ψ0ζ0 1






ytvu, (12)

Md =







0 (1 + i)φ0ψ′
0 0

−(1 − i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0






ydvdφ0 , (13)

Me =







0 −(1 − i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0






ydvdφ0 ,

(14)

which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,

V †
u,RMuVu,L = diag(mu, mc, mt) and V †

d,RMdVd,L =
diag(md, ms, mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
This gives the following weak charged current interaction
in the mass eigenstates of the fermions,

Lcc =
g

2
√

2

[

Wµ
+((x, t)J−

µ ((x, t) + Wµ
−((x, t)J+

µ ((x, t)

]

,

J−
µ = (u′, c′, t

′
)LγµVCKM







d′

s′

b′







L

. (15)

The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =







2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0







λv2

Mx
, (16)
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2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

1
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(
1−i
2
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VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

1
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(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

1

The Model

• (d)T breaking:

! charged fermion sector

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1

Λ2
ytsH5T3Taψζ +

1

Λ2
ycH5TaTaφ

2 +
1

Λ3
yuH5TaTaφ

′3 (4)

LTF =
1

Λ2
ybH

′
5FT3φζ +

1

Λ3

[

ys∆45FTaφψN + ydH
′
5FTaφ

2ψ′

]

(5)

LFF =
1

MxΛ

[

λ1H5H5F F ξ + λ2H5H5F Fη

]

, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈

ξ
〉

= ξ0Λ











1

1

1











,
〈

φ′
〉

= φ′
0Λ











1

1

1











, (7)

(d)T −→ GT :
〈

φ
〉

= φ0Λ











1

0

0











,
〈

ψ
〉

= ψ0Λ





1

0



 (8)

(d)T −→ nothing :
〈

ψ′
〉

= ψ′
0Λ





1

1



 (9)

(d)T −→ GS :
〈

ζ
〉

= ζ0Λ,
〈

N
〉

= N0Λ (10)

(d)T − invariant :
〈

η
〉

= uΛ (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [10],

TST 2 =
1

3











−1 2 2

2 −1 2

2 2 −1











, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation
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presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

19

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

1

2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :

1

The Model

• (d)T breaking:

! charged fermion sector
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.

6
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1
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,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation
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presented in a future publication.
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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corrections to TBM

Down Quark Sector

• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

! dynamical origin of mass hierarchy

• symmetry breaking:

• mass matrix:

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
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ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
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〈
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, (7)
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〈
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〉
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(d)T −→ nothing :
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 (9)

(d)T −→ GS :
〈
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= ζ0,
〈
N
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= N0 (10)

(d)T − invariant :
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= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H5FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H5FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5 ↔ ∆45.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ $ 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

in the down quark sector, which then leads to corrections to the tri-bimaximal mixing pattern.
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control. Note that there is no correction to Md, e given above at least to the order of dim-7.
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The Lagrangian of the model is given as follows,
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, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be
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LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH
′
5FT3φζ +

1
Λ3

[
ys∆45FTaφψN + ydH

′
5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

corrections to TBM

2

T3 Ta F H5 H ′
5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Field content of our model. The Z12 charges are
given in terms of the parameter ω = eiπ/6.

gauge anomalies automatically [12, 13]. In addition to
the SU(5)×T ′ symmetry, we further impose a Z12×Z ′

12

symmetry. Due to the Z12×Z ′
12 symmetry, only nine op-

erators are allowed in our model up to mass dimension-7
in the Yukawa sector. The discrete symmetries of our
model allow the lighter generation masses to arise only
at higher mass dimensionality, and thus providing a dy-
namical origin of the mass hierarchy.

The Lagrangian of the Yukawa sector of the model is
given by,

LYuk = LTT + LTF + LFF + h.c. , (3)

−LTT = ytH5T3T3 +
1

Λ2
H5

[

ytsT3Taψζ

+ycTaTbφ
2

]

+
1

Λ3
yuH5TaTbφ

′3 , (4)

−LTF =
1

Λ2
ybH

′
5
FT3φζ +

1

Λ3

[

ys∆45FTaφψN

+ydH5
′FTaφ

2ψ′

]

, (5)

−LFF =
1

ΛMX

[

λ1H5H5FF ξ + λ2H5H5FFη

]

, (6)

which is invariant under SU(5) × T ′ and it is CP non-
invariant. Here the parameter Λ is the cutoff scale of
the T ′ symmetry while MX is the scale where lepton
number violating operators are generated. Note that all
Yukawa coupling constants, yx, in the Lagrangian are
real parameters. The T ′ flavon fields acquire vacuum
expectation values along the following direction,

〈ξ〉 =





1
1
1



 ξ0Λ , 〈φ′〉 =





1
1
1



 φ′
0Λ , (7)

〈φ〉 =





0
0
1



φ0Λ , 〈ψ〉 =

(

1
0

)

ψ′
0Λ , (8)

〈ψ′〉 =

(

1
1

)

ψ′
0Λ , (9)

〈ζ〉 = ζ0Λ , 〈N〉 = N0Λ , 〈η〉 = u0Λ . (10)

Note that all the expectation values are real.
In terms of the T ′ and SU(5) component fields, the

above Lagrangian gives the following Yukawa interactions

for the charged fermions in the weak charged current in-
teraction eigenstates,

− LYuk ⊃ UR,i(Mu)ijQL,j + DR,i(Md)ijQL,j

+ER,i(Me)ij'L,j + h.c. , (11)

where QL denotes the quark doublets while UR and DR

denotes the iso-singet up- and down-type quarks, with
i and j being the generation indices. Similarly, 'L and
ER denote the iso-doublet and singlet charged leptons,
respectively. The matrices Mu, Md and Me, upon the
breaking of T ′ and the electroweak symmetry, are given
in terms of seven parameters by

Mu =







iφ′3
0 (1−i

2
)φ′3

0 0

(1−i
2

)φ′3
0 φ′3

0 + (1 − i
2
)φ2

0 y′ψ0ζ0

0 y′ψ0ζ0 1






ytvu, (12)

Md =







0 (1 + i)φ0ψ′
0 0

−(1 − i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0






ydvdφ0 , (13)

Me =







0 −(1 − i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0






ydvdφ0 ,

(14)

which manifest the SU(5) relation, Md = MT
e , except for

the factor of −3 in the (22) entry of Me, due to the SU(5)
CG coefficient through the coupling to ∆45. In addition
to this −3 factor, the Georgi-Jarlskog (GJ) relations also
require Me,d being non-diagonal, leading to corrections to
the TBM pattern [9]. Note that the complex coefficients
in the above mass matrices arise entirely from the CG
coefficients of the T ′ group theory. More precisely, these
complex CG coefficients appear in couplings that involve
the doublet representations of T ′.

The mass matrices Mu,d are diagonalized by,

V †
u,RMuVu,L = diag(mu, mc, mt) and V †

d,RMdVd,L =
diag(md, ms, mb), where the mass eigenvalues on the
right-hand side of the equations are real and positive.
This gives the following weak charged current interaction
in the mass eigenstates of the fermions,

Lcc =
g

2
√

2

[

Wµ
+((x, t)J−

µ ((x, t) + Wµ
−((x, t)J+

µ ((x, t)

]

,

J−
µ = (u′, c′, t

′
)LγµVCKM







d′

s′

b′







L

. (15)

The complex mass matrices Mu,d lead to a complex quark

mixing matrix, VCKM = V †
u,LVd,L.

The interactions in LFF lead to the following neutrino
mass matrix,

Mν =







2ξ0 + u0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + u0

−ξ0 −ξ0 + u0 2ξ0







λv2

Mx
, (16)
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2
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iα1β1
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2 =
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1
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(
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)
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complex T’ CG

mb ! mτ

1

SU(5) CG for GJ relations



Quark and Lepton Mixing Matrices

• CKM mixing matrix:

• MNS matrix:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

Vcb
Vub

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7

UMNS = V †
e,LUTBM =




1 −θc/3 ∗

θc/3 1 ∗
∗ ∗ 1









√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2
−

√
1/6 1/

√
3 1/

√
2





(1)

1

angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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leptonic Dirac CP phase ⇐ complex CGnew QLC relation!
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⇒ corrections to TBM related to θc
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on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 " 0 .
(49)




0.838 0.542 0.0583e−i227o

−0.385− 0.0345ei227o

0.594− 0.0224ei227o

0.705
0.384− 0.0346ei227o −0.592− 0.0224ei227o

0.707



 (50)

→ |UMNS | =




0.838 0.542 0.0583
0.362 0.610 0.705
0.408 0.577 0.707



 (51)

J! = −0.00967 (52)

Charged lepton diagonalization matrix:



0.997ei177o

0.0823ei131o

1.31× 10−5e−i45o

0.0823ei41.8o

0.997ei176o

0.000149e−i3.58o

1.14× 10−6 0.000149 1



 (53)

sin2 2θatm = 1, tan2 θ" = 0.419, |Ue3| = 0.0583 (54)

tan2 θ" " tan2 θ",TBM +
1
2
θc cos δ (55)
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lepton mixing quark mixing

parameter Best-fit value 3σ range
θ12 33.2o 28.7o − 38.1o

θ23 45o 35.7o − 55.6o

θ13 2.6o 0− 12.5o

parameter Best-fit value 3σ range
θc 12.88o 12.75o − 13.01o

θq
23 2.36o 2.25o − 2.48o

θq
13 0.21o 0.17o − 0.25o
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θq
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θ12 + θc = 45o

1

quark-lepton complementarity relation

quark-lepton unification?

RG effects:   Δθc ~ θc4

MSSM:      normal hierarchy Δθ12 < 0.1o
Schmidt & Smirnov, ‘06

Motivate measurements of neutrino mixing angles to at least the 
accuracy of the measured quark mixing angles

Raidal, ‘04; Smirnov & 
Minakata, ’04

more generally:

“Usual” Quark-Lepton Complementarity 

5

! Large mixings
from CL and ! sectors?

Example: "23
l = "12

! = #/4, perturbations from CL sector

(can be connected with textures)  (Niehage, Winter, 2008)

! Another example: QLC+Flavor symmetries
lead e.g. to     

Modern QLC scenarios do not have an exact factor k=1 there (depends on model)
(e.g. Plentinger, Seidl, Winter, 2008; see also: Frampton, Matsuzaki, 2008)

Some other examples

"23 ~ #/4 + ("13)
2/2"23 ~ #/4 – ("13)

2/2

" "13 > 0.1, $CP ~ 0" "13 > 0.1, $CP ~ #

"12 ~ #/4 – "13 cos $CP"12 ~ #/4 + "13 cos $CP

"13
l dominates"12

l dominates

$CP and

octant

discriminate

these 

examples!

k as performance indicator 

for QLC models
k

Plentinger, Seidl, Winter, 08; Frampton, Matsuzaki, 08; 
King 05; King Antusch, 05



Numerical Results
• Experimentally:

• Model Parameters: (RG corrections included)

• RG corrections from MGUT to Mz:

• mass ratios not renormalized

• mixing parameters:

angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged
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7  parameters in 
charged fermion 

sector

UPMNS =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1








1 0 0
0 eiα21/2 0
0 0 eiα31/2



 (1)

∆m2
31 = (2.40+0.24

−0.22)× 10−3 eV2, ∆m2
21 = (7.65+0.46

−0.40)× 10−5 eV2

sin2 θ23 = 0.5+0.14
−0.12, sin2 θ12 = 0.304+0.044

−0.032, sin2 θ13 = 0.01(≤ 0.040)

sin2 θ13 = 0.01+0.016
−0.011 (1σ)

S =
1
3




−1 2ω 2ω2

2ω2 −1 2ω
2ω 2ω2 −1





Z3 : GT

Z4 : GS , GTST 2

tan2 θ" $ tan2 θ",TBM −
1
2
θc cos δ

Mu =




ig 1−i

2 g 0
1−i
2 g g + (1− i

2 )h k
0 k 1



 ytvu

h ≡ φ2
0 = 0.0053

1

3

which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(#x, t) = αO(#x, t) + α∗
O

†(#x, t) , (19)

where O(#x, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(#x, t)
CP−→ O

†(−#x, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(#x, t)
T−→ O(#x,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=







ig 1−i
2

g 0
1−i
2

g g + (1 − i
2
)h k

0 k 1






, (25)

Md, MT
e

ybvdφ0ζ0
=







0 (1 + i)b 0

−(1 − i)b (1,−3)c 0

b b 1






, (26)

With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb & θ4.7

c : θ2.7

c : 1, mu : mc : mt & θ8

c : θ3.2

c : 1,
with θc &

√

md/ms & 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 & mb/mt & 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,







0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o

0.0317e−i7.33o

0.999






. (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg

(

−VtdV ∗
tb

VudV ∗
ub

)

= 114o , (29)

γ ≡ arg

(

−VudV ∗
ub

VcdV ∗
cb

)

= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45 × 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have

30

Results from CKMFitter (Moriond 2009) at 3σ are

A = 0.767− 0.841 (11)
λ = 0.2227− 0.2277 (12)
ρ = 0.087− 0.212 (13)
η = 0.307− 0.389 (14)
J = (2.69− 3.37)× 10−5 (15)

The three angles of the unitarity triangle:

α = 76o − 110o (direct meas.) , (16)
β = 20.1o − 30.2o (meas. not in the fit) , (17)
γ = 18o − 130o (dir. meas.) . (18)

And the 3σ allowed range for the CKM matrix elements are

|Vud| = 0.974 (19)
|Vus| = 0.2227− 0.2277 (20)
|Vub| = 0.0031− 0.00395 (measurement not in the fit) (21)
|Vcd| = 0.2226− 0.2276 (22)
|Vcs| = 0.9735 (23)
|Vcb| = 0.0388− 0.0464 (measurement not in the fit) (24)
|Vtd| = 0.00795− 0.00915 (25)
|Vts| = 0.0385− 0.0415 (26)
|Vtb| = 0.999 (27)

With the following input parameters,

b ≡ φ0ψ
′
0/ζ0 = 0.00304 (28)

c ≡ ψ0N0/ζ0 = −0.0172 (29)
k ≡ y′ψ0ζ0 = −0.0266 (30)
h ≡ φ2

0 = 0.00426 (31)
g ≡ φ′30 = 0.0000145 (32)

Making use of these parameters, the complex CKM matrix is,



0.974e−i25.4o

0.227ei23.1o

0.00412ei166o

0.227ei123o

0.973e−i8.24o

0.0412ei180o

0.00718ei99.7o

0.0408e−i7.28o

0.999



 . (33)

The predictions of our model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg
(
−VcdV ∗

cb

VtdV ∗
tb

)
= 23.6o, sin 2β = 0.734 , (34)

2

α ≡ arg
(
−VtdV ∗

tb

VudV ∗
ub

)
= 110o , (35)

γ ≡ arg
(
−VudV ∗

ub

VcdV ∗
cb

)
= δq = 45.6o , (36)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 2.69× 10−5 , (37)

A = 0.798 (38)
ρ = 0.299 (39)
η = 0.306 (40)

The mass ratios within the same sectors do not have RG corrections. With
the parameters chosen, we get

md : ms : mb = θ4.6
c : θ2.7

c : 1 , (41)
mu : mc : mt = θ7.5

c : θ3.7
c : 1 . (42)

Eq. 43 agree with Rosner et al (with θc $ 0.23), which gives

md : ms : mb = θ4.7
c : θ2.7

c : 1 , (43)

In Eq. 42, mc agrees with Rosner et al, while both mu and mc agree with
Fusaoka et al (hep-ph/9712201, PRD57, 3986, 1998), which has, at Mz,

mu : mc : mt = (0.0000142− 0.0000164) : (0.00318− 0.00436) : 1 (44)
$ θ7.5

c : θ3.7
c : 1 . (45)

The complex CKM matrix can be rewritten in the Standard Form by re-
defining the quark fields through two diagonal phase matrices:

Vckm →




e−iα1 0 0

0 e−iα2 0
0 0 e−iα3





·




0.974e−i25.4o

0.227ei23.1o

0.00412ei166o

0.227ei123o

0.973e−i8.24o

0.0412ei180o

0.00718ei99.7o

0.0408e−i7.28o

0.999



 ·




e−iβ1 0 0

0 e−iβ2 0
0 0 1





=




0.974 0.227 0.00412e−i45.6o

−0.227− 0.000164ei45.6o

0.974− 0.0000384ei45.6o

0.0411
0.00932− 0.00401ei45.6o −0.0400− 0.000935ei45.6o

1



 ,

(46)

with
α1 = 211.6o, α2 = 180o, α3 = 0, β1 = 123o, β2 = 171.5o . (47)

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 $ 0 .
(48)
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The RG corrections for various quark mixing parameters and CP violation
measures are given as follows: (see e.g. RRR paper)

16π2 d|Vij |
dt

= −3c

2
(h2

t + h2
b)|Vij | , for (i, j) = (13, 31, 23, 32) , (1)

d|V12|
dt

= O(λ4) , (2)

16π2 d|JCP |
dt

= −3c(h2
t + h2

b)|Jcp| , (3)

16π2 dA

dt
= −3c

2
(h2

t + h2
b)A , (4)

dλ

dt
" 0 , (5)

dρ

dt
=

dη

dt
= 0 . (6)

Here t = ln(µ/µ0) with µ being the running energy scale. The parameter c = 2/3
for MSSM.

Analytically, the solutions to the RG equations are,

Q(Mx)
Q(MZ

= ξ , Q = A, Vij , (ij) = (13, 31, 23, 32) (7)

Jcp(Mx)
Jcp(Mz)

= ξ2 , (8)

where
ξ = (Mx/Mz)−h2

t /(16π2) . (9)

With ht = 1, Mx = 2 × 1016 GeV, Mz = 91.2 GeV, the parameter ξ which
characterizes the size of the RG corrections is

ξ " 0.811 . (10)
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which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBMMνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)

v2
u

MX
,

≡ diag(m1,m2,m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me,mµ,mτ ), leads to a complex
VPMNS = V †

e,LUTBM (see below).
CPT Invariance and CP Violation.—Even though the

complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U†
Rγ0MuQL)† = QLM†

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(#x, t) = αO(#x, t) + α∗O†(#x, t) , (19)

where O(#x, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(#x, t) CP−→ O†(−#x, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(#x, t) T−→ O(#x,−t) , α
T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM†
uUR

CPT−→ QLM†
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=




ig 1−i

2 g 0
1−i
2 g g + (1− i

2 )h k

0 k 1



 , (25)

Md, MT
e

ybvdφ0ζ0
=




0 (1 + i)b 0

−(1− i)b (1,−3)c 0
b b 1



 , (26)

With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′30 =

−9 × 10−6, the following mass ratios are obtained, md :
ms : mb & θ4.7

c : θ2.7
c : 1, mu : mc : mt & θ8

c : θ3.2
c : 1,

with θc &
√

md/ms & 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 & mb/mt & 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,




0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o

0.0317e−i7.33o

0.999



 . (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg
(
−VcdV ∗

cb

VtdV ∗
tb

)
= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg
(
−VtdV ∗

tb

VudV ∗
ub

)
= 114o , (29)

γ ≡ arg
(
−VudV ∗

ub

VcdV ∗
cb

)
= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45× 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have
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2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1

3 =





(
1−i
2

)
(α1β2 + α2β1)
iα1β1

α2β2





2⊗ 3 = 2⊕ 2′ ⊕ 2′′

2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

1

31

predicting:
 9 masses, 3 mixing angles, 1 CP Phase;

agree with exp within 3σ

Results from CKMFitter (Moriond 2009) at 3σ are

A = 0.767− 0.841 (11)
λ = 0.2227− 0.2277 (12)
ρ = 0.087− 0.212 (13)
η = 0.307− 0.389 (14)
J = (2.69− 3.37)× 10−5 (15)

The three angles of the unitarity triangle:

α = 76o − 110o (direct meas.) , (16)
β = 20.1o − 30.2o (meas. not in the fit) , (17)
γ = 18o − 130o (dir. meas.) . (18)

And the 3σ allowed range for the CKM matrix elements are

|Vud| = 0.974 (19)
|Vus| = 0.2227− 0.2277 (20)
|Vub| = 0.0031− 0.00395 (measurement not in the fit) (21)
|Vcd| = 0.2226− 0.2276 (22)
|Vcs| = 0.9735 (23)
|Vcb| = 0.0388− 0.0464 (measurement not in the fit) (24)
|Vtd| = 0.00795− 0.00915 (25)
|Vts| = 0.0385− 0.0415 (26)
|Vtb| = 0.999 (27)

With the following input parameters,

b ≡ φ0ψ
′
0/ζ0 = 0.00304 (28)

c ≡ ψ0N0/ζ0 = −0.0172 (29)
k ≡ y′ψ0ζ0 = −0.0266 (30)
h ≡ φ2

0 = 0.00426 (31)
g ≡ φ′30 = 0.0000145 (32)

Making use of these parameters, the complex CKM matrix is,



0.974e−i25.4o

0.227ei23.1o

0.00412ei166o

0.227ei123o

0.973e−i8.24o

0.0412ei180o

0.00718ei99.7o

0.0408e−i7.28o

0.999



 . (33)

The predictions of our model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg
(
−VcdV ∗

cb

VtdV ∗
tb

)
= 23.6o, sin 2β = 0.734 , (34)

2α ≡ arg
(
−VtdV ∗

tb

VudV ∗
ub

)
= 110o , (35)

γ ≡ arg
(
−VudV ∗

ub

VcdV ∗
cb

)
= δq = 45.6o , (36)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 2.69× 10−5 , (37)

A = 0.798 (38)
ρ = 0.299 (39)
η = 0.306 (40)

The mass ratios within the same sectors do not have RG corrections. With
the parameters chosen, we get

md : ms : mb = θ4.6
c : θ2.7

c : 1 , (41)
mu : mc : mt = θ7.5

c : θ3.7
c : 1 . (42)

Eq. 43 agree with Rosner et al (with θc $ 0.23), which gives

md : ms : mb = θ4.7
c : θ2.7

c : 1 , (43)

In Eq. 42, mc agrees with Rosner et al, while both mu and mc agree with
Fusaoka et al (hep-ph/9712201, PRD57, 3986, 1998), which has, at Mz,

mu : mc : mt = (0.0000142− 0.0000164) : (0.00318− 0.00436) : 1 (44)
$ θ7.5

c : θ3.7
c : 1 . (45)

The complex CKM matrix can be rewritten in the Standard Form by re-
defining the quark fields through two diagonal phase matrices:

Vckm →




e−iα1 0 0

0 e−iα2 0
0 0 e−iα3





·




0.974e−i25.4o

0.227ei23.1o

0.00412ei166o

0.227ei123o

0.973e−i8.24o

0.0412ei180o

0.00718ei99.7o

0.0408e−i7.28o

0.999



 ·




e−iβ1 0 0

0 e−iβ2 0
0 0 1





=




0.974 0.227 0.00412e−i45.6o

−0.227− 0.000164ei45.6o

0.974− 0.0000384ei45.6o

0.0411
0.00932− 0.00401ei45.6o −0.0400− 0.000935ei45.6o

1



 ,

(46)

with
α1 = 211.6o, α2 = 180o, α3 = 0, β1 = 123o, β2 = 171.5o . (47)

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 $ 0 .
(48)
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(46)

with
α1 = 211.6o, α2 = 180o, α3 = 0, β1 = 123o, β2 = 171.5o . (47)

and

|VCKM | =




0.974 0.227 0.00412
0.227 0.973 0.0412

0.00718 0.0408 0.999



 (48)
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• MNS Matrix:

• neutrino masses: using best fit values for ∆m2  

• Majorana phases

2  parameters in 
neutrino sector

prediction for Dirac CP phase:  δ = 227 degrees

Note that these predictions do NOT depend on u0 and ξ0
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λ = 0.225, A = 0.637, ρ = 0.280 and η = 0.280. These
values are in agreement with current experimental re-
sults [16].

As a result of the GJ relations, our model predicts the
sum rule [9, 17] between the solar neutrino mixing angle
and the Cabibbo angle in the quark sector,

tan2 θ! ! tan2 θ!,TBM −
1

2
θc cos δ! . (32)

In addition, our model predicts θ13 ∼ θc/3
√

2. Numeri-
cally, the diagonalization matrix for the charged leptons
is,







0.997ei177o

0.08ei132o

1.2 × 10−5e−i45o

0.08ei41.9o

0.997ei177o

1.40 × 10−4e−i3.47o

10−6 1.4 × 10−4 1






. (33)

This leads to small deviation from the TBM pattern, giv-
ing

VPMNS =







0.837e−i179o

0.544e−i173o

0.0566ei138o

0.364e−i3.86o

0.609e−i173o

0.705ei3.45o

0.408ei180o

0.577 0.707






,

(34)
which gives sin2 θatm = 1, tan2 θ! = 0.422 and |Ue3| =
0.0566. The two VEV’s, u0 = −0.0593 and ξ0 = 0.0369,
give ∆m2

atm = 2.4 × 10−3 eV2 and ∆m2
! = 8.0 ×

10−5 eV2. As the three masses are given in terms of
two VEV’s, there exists a mass sum rule, m1 − m3 =
2m2, leading to normal mass hierarchy, ∆m2

atm > 0 [9].
The leptonic Jarlskog is predicted to be J! = −0.0094,
and equivalently, this gives a Dirac CP phase, δ! =
−46.9o in the standard parametrization. With such δ!,
the correction from the charged lepton sector can ac-
count for the difference between the TBM prediction and
the current best fit value for θ!. Our model predicts
(m1, m2, m3) = (0.0156,−0.0179, 0.0514) eV, with Ma-
jorana phases α21 = π and α31 = 0.

Our model has nine input parameters, predicting a to-
tal of twenty-two physical quantities: 12 masses, 6 mix-
ing angles, 2 Dirac CP violating phases and 2 Majorana
phases.

Conclusion.—We propose the complex group theoreti-
cal CG coefficients as a novel origin of CP violation. This
is manifest in our model based on SU(5) combined with
the double tetrahedral group, T ′. Due to the presence
of the doublet representations in T ′, there exist complex
CG coefficients, leading to explicit CP violation in the
model, while having real Yukawa couplings and scalar
VEVs. The predicted CP violation measures in the quark
sector are consistent with the current experimental data.
The leptonic Dirac CP violating phase is predicted to
be δ! ∼ −47o, which may be relevant for generating the
cosmological matter asymmetry.
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atm = 2.4 × 10−3 eV2 and ∆m2
! = 8.0 ×

10−5 eV2. As the three masses are given in terms of
two VEV’s, there exists a mass sum rule, m1 − m3 =
2m2, leading to normal mass hierarchy, ∆m2

atm > 0 [9].
The leptonic Jarlskog is predicted to be J! = −0.0094,
and equivalently, this gives a Dirac CP phase, δ! =
−46.9o in the standard parametrization. With such δ!,
the correction from the charged lepton sector can ac-
count for the difference between the TBM prediction and
the current best fit value for θ!. Our model predicts
(m1, m2, m3) = (0.0156,−0.0179, 0.0514) eV, with Ma-
jorana phases α21 = π and α31 = 0.

Our model has nine input parameters, predicting a to-
tal of twenty-two physical quantities: 12 masses, 6 mix-
ing angles, 2 Dirac CP violating phases and 2 Majorana
phases.

Conclusion.—We propose the complex group theoreti-
cal CG coefficients as a novel origin of CP violation. This
is manifest in our model based on SU(5) combined with
the double tetrahedral group, T ′. Due to the presence
of the doublet representations in T ′, there exist complex
CG coefficients, leading to explicit CP violation in the
model, while having real Yukawa couplings and scalar
VEVs. The predicted CP violation measures in the quark
sector are consistent with the current experimental data.
The leptonic Dirac CP violating phase is predicted to
be δ! ∼ −47o, which may be relevant for generating the
cosmological matter asymmetry.
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predicting:  3 masses, 
3 mixing angles, 3 CP Phases;

both θsol & θatm agree with exp
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Neutrino Mass Sum Rule

• sum rule among three neutrino masses:

• the mass eigenvalues: 

• leads to sum rule

z = x5 + ix6

z → z + 1, z → z + γ, γ = eiπ/3

z → −z

(z1, z2, z3, z4) = (1/2, (1 + γ)/2, γ/2, 0)

3⊗ 3 = 3⊕ 3⊕ 1⊕ 1′ ⊕ 1′′

HHLL

M

(
〈ξ〉
Λ

+
〈η〉
Λ

)




$1
$2
$3





L

∼ 3, eR ∼ 1, µR ∼ 1′′, τR ∼ 1′

ξ ∼ 3, η ∼ 1

($φ)1eR(1) + ($φ)1′µR(1′′) + ($φ)1′′τR(1′)

φ ∼ 3

m1 −m3 = 2m2

1

On mass constraint m1 −m3 = 2m2:

The VEV’s u0 and ξ0 are complex. Let’s define the relative phase between
them as θ and rewrite the three masses as

m1 = u0 + 3ξ0e
iθ (1)

m2 = u0 (2)

m3 = −u0 + 3ξ0e
iθ (3)

(note that I have absorbed the factor v2
u/Λ into u0 and ξ0). The masses are

thus determined by three real parameters, ξ0, u0 and θ. Then

|m1|2 = u2
0 + 9ξ2

0 − 6u0ξ0 cos θ (4)

|m2|2 = u2
0 (5)

|m3|2 = u2
0 + 9ξ2

0 + 6u0ξ0 cos θ (6)

The two mass squared differences are

∆m2
atm ≡ |m3|2 − |m1|2 = −12u0ξ0 cos θ (7)

∆m2
! ≡ |m2|2 − |m1|2 = −9ξ2

0 − 6u0ξ0 cos θ (8)

which leads to the sum rule

∆m2
! = −9ξ2

0 +
1

2
∆m2

atm (9)

From the fact that ∆m2
! > 0, it follows that ∆m2

atm has to be positive,
implying normal hierarchy (including near degenerate case with |m3| > |m1|)
in the atmospheric sector. It also gives the constraint

0 > cos θ > −3

2

ξ0

u0
(10)

(compare Altarelli statement in hep-ph/0512103 on p12.)
We can of course chose another set of three parameters, ∆m2

atm, r ≡
∆m2

!/∆m2
atm and θ. The absolute values of the VEV’s are then given by

ξ0 =
1

3

√

(
1

2
− r)∆m2

atm (11)

u0 = − 1

4 cos θ

√√√√∆m2
atm

(1
2 − r)

(12)

1
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atm > 0

1

normal hierarchy 
predicted!!
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2⊗ 2 = 2′ ⊗ 2′′ = 2′′ ⊗ 2′ = 3⊕ 1
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2 =
(

(1 + i)α2β2 + α1β1

(1− i)α1β3 − α2β1

)

VCKM =

T ′ → GTST 2 :

T ′ − invariant:

T ′ → GT :

T ′ → nothing:

T ′ → GS :
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m2 = u0

m3 = −u0 + 3ξ0

1
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0 − 6u0ξ0 (1)

1

M.-C.C., K.T. Mahanthappa, 
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Neutrino Mass Sum Rule

Therefore the TB mixing of eq. (2) is reproduced, at the leading order. For the neutrino

masses we obtain:

|m1|2 =

[

−r +
1

8 cos2 ∆(1 − 2r)

]

∆m2
atm

|m2|2 =
1

8 cos2 ∆(1 − 2r)
∆m2

atm

|m3|2 =

[

1 − r +
1

8 cos2 ∆(1 − 2r)

]

∆m2
atm , (22)

where r ≡ ∆m2
sol/∆m2

atm ≡ (|m2|2 − |m1|2)/(|m3|2 − |m1|2), ∆m2
atm ≡ |m3|2 − |m1|2 and

∆ is the phase difference between the complex numbers a and b. For cos ∆ = −1, we have
a neutrino spectrum close to hierarchical:

|m3| ≈ 0.053 eV , |m1| ≈ |m2| ≈ 0.017 eV . (23)

In this case the sum of neutrino masses is about 0.087 eV. If cos ∆ is accidentally small, the

-1 -0.75 -0.5 -0.25
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0.05

0.1
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0.2

0.25
e
V

m1"m2"m3
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e
V
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Figure 1: On the left panel, sum of neutrino masses versus cos∆, the phase difference between a and
b. On the right panel, the lightest neutrino mass, m1 and the mass combination mee versus cos∆. To
evaluate the masses, the parameters |a| and |b| have been expressed in terms of r ≡ ∆m2

sol/∆m2
atm ≡

(|m2|2 − |m1|2)/(|m3|2 − |m1|2) and ∆m2
atm ≡ |m3|2 − |m1|2. The bands have been obtained by varying

∆m2
atm in its 3σ experimental range, 0.0020 eV ÷ 0.0032 eV. There is a negligible sensitivity to the

variations of r within its current 3 σ experimental range, and we have realized the plots by choosing
r = 0.03.

neutrino spectrum becomes degenerate. The value of |mee|, the parameter characterizing
the violation of total lepton number in neutrinoless double beta decay, is given by:

|mee|2 =

[

−
1 + 4r

9
+

1

8 cos2 ∆(1 − 2r)

]

∆m2
atm . (24)

For A4:  Altarelli et al, 2006
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Effective mass for neutrinoless double beta decay vs.

neutrino mass scale for normal and inverted hierarchy

Inverted hierarchy

is TESTABLE

Normal hierarchy is

NOT TESTABLE

from: F. Feruglio, A. Strumia, F. Vissani ('02)

Approx. degeneracy

is TESTABLE

experiment

cosmo

future
prediction in 

A4 and T′ models
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Summary

• SU(5) x T′ symmetry: 

near tri-bimaximal lepton mixing ⇔ realistic CKM matrix

• complex CG coefficients in T′: origin of CPV both in quark and 
lepton sectors

• Z12 x Z12′: only 9 parameters in Yukawa sector

★ dynamical origin of mass hierarchy (including mb vs mt)

★ forbid Higgsino-mediated proton decay

• interesting sum rules:

angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)

8

right amount to account for 
discrepancy 

between exp best fit value
and TBM prediction

leptonic Dirac CP phase:  δ = 227 degrees
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