
KNL Experience at BNL
Omnipath, KNL, and Slurm from an admin

perspective

W. Strecker-Kellogg
A. Zaytsev
C. Caramarcu
T. Wong

HEPiX Spring 2017
Budapest

Timeline / Overview

1. Fall 2016-BNL acquires KNL machine
2. Winter 16/17-debugging hardware issues
3. February - March 2017, debugging performance & stability
4. April 2017-"beta" status, converging on final configuration

● 142-node KNL cluster deployed in RACF/SDCC data center since 2016Q4:
○ Single Intel Xeon Phi CPU 7230: 64 physical / 256 logical cores @ 1.3 GHz

■ (1.5 GHz maximum in turbo mode) per node
○ Dual Intel Omni-Path PCIe x16 HFI cards (non-blocking 200 Gbps)
○ Two level fat-tree single fabric Intel OPA interconnect system built out of 8x spine (core) + 14x

leaf (edge) 48-port Intel Omni-Path switches
■ Bisection (unidirectional) bandwidth for compute nodes alone is about 14 Tbps = 1.7

TB/s
■ All the OPA uplinks are done with passive copper cables (630 uplinks total in 5 racks)

2

● Manycore architecture
● On-die vs. Coprocessor
● 4xHT/core, AVX512 (F, CDI, ERI, PFI subsets)

○ Advanced prefetch instruction extensions

● Requires significant code optimizations
○ Vectorization
○ NUMA--depending on memory mode (next slide)

● 2d-Mesh Interconnect on Die
○ MCDRAM off die

● 64 physical cores @ 1.3 GHz(base) / 1.5 GHz (max turbo), 256 threads
● Software: Intel Compiler and memkind library, others...

Knight's Landing Architecture

3

Memory Modes

16 GB MCDRAM Modes

● 3-D Stacked DRAM
○ Allowing much higher-bandwidth

(multi-channel) access from cores

● Operating Modes
○ Flat

■ Single address space
■ Visible to kernel, 2 NUMA

Nodes
○ Cache

■ MCDRAM acts as extended
cache

■ Invisible to OS
○ Hybrid

■ Carve out x% as cache, (1-x)
as usable

● All-to-All
○ Addresses hashed uniformly across

processor grid

● Quadrant
○ Split die into 4, hash into same

quadrant
■ Sacrifices homogeneity for

improved latency & bandwidth

● Sub-NUMA Clustering (SNC)
○ Quadrants exposed as numa nodes

with cost matrix
○ Fastest if used correctly
○ NUMA optimization needed in code

Memory Access Modes

4

OmniPath (OPA) Interconnect

● OPA can be considered as a direct rival of the Mellanox 4X EDR IB
technology (ConnectX-4 product line) with the following features giving the
OPA a competitive edge:

○ Better price/performance due to the significant cost reduction on the client side (HFI cards)
○ Slightly better endpoint-to-endpoint latency
○ Higher achievable MPI message rate (for small messages and applications that can efficiently

utilize such a high message rate)
○ Higher maximum number of ports on a single non-modular switch (48 vs 36 of EDR IB)
○ Additional transport / congestion control features both in hardware and software stack (Fabric

Manager) that should be particularly useful for the HPC storage systems such as GPFS and
Lustre

○ More fabric survivability features (partial deactivation/slowdown of the problematic uplinks is
supported)

○ Software stack is fully integrated with Intel Performance Scaled Messaging 2 (PSM2) library
(Intel provided MPI builds and OPA specific benchmarks in particular)

5

Intel Cluster Bandwidth Benchmarks

On pre-production
Xeon-based test
cluster from Intel

6

Intel Cluster Latency Benchmarks

On pre-production
test cluster from
Intel

7

OPA Performance Limitations

● Kernel Driver (hfi1) implementation "feature"
● The current version of the driver is implemented in such a way that limits the maximum

combined bandwidth achievable through a single client side OPA port (or a set of ports for the
multi-rail installations) for the MPI jobs utilizing a low number of ranks per compute node.

○ Bottleneck is maximum compute power of a single physical core on the client
■ Not an issue on Xeon-based systems where 1 core is sufficient to drive full bandwidth
■ One MPI rank on KNL core with max turbo is unable to drive a single OPA interface (2

are sufficient)
● Means 4 ranks / node to drive both OPA interfaces

○ Intel is aware of this problem; significantly impairs the bandwidth-limited scientific applications
requiring maximum unidirectional bandwidth between compute nodes, such many LatticeQCD
codes

○ Pure software problem; solution from intel is expected Q3-4 2017
○ A workaround for certain kinds of LQCD codes is already developed and contributed to the

Grid library https://github.com/paboyle/Grid by P. Boyle (School of Physics and Astronomy,
University of Edinburgh).

8

https://github.com/paboyle/Grid

LQCD Solution

1. 4 MPI Ranks per Node
a. First tried monkey-patching MPI to intercept local calls and replacing with
b. Using POSIX Shared Memory calls for communication, eliminates a second memcpy()

operation between same-node ranks

2. Communities other than LQCD are eagerly awaiting a fix from Intel
3. Affects only KNL-only nodes with OPA

Node 1

r0

r1

r2

r3

Node 2

r0

r1

r2

r3

POSIX
Shared
Memory

MPI

9

Fabric Manager

● OPA Fabric Manager on managed switches

○ The Fabric Manager (FM) on the switches are only capable of scaling up to 128 client
interfaces in the fabric (which is significantly lower than the Subnet Manager scalability limit of
648 compute nodes of the Mellanox 4X EDR IB managed switches), which prompts the need
for a dedicated Fabric Manager nodes

○ Additional cost and OPA ports on the fabric must be reserved for these FM nodes in all
clusters with more than 128 client interfaces in the fabric

● Issue using the redundant pair of Fabric Managers in the dual-rail
single-fabric fat-tree OPA fabric with non-default subnet prefix values

○ The easy workaround is to stay with the default prefix and disable the MPI false alarm warning
messages about the single physical fabric being a requirement for such a configuration

10

GPFS Integration (OPA/IB Gateway)

● GPFS Storage exists for Institutional Cluster (IC)
○ Infiniband connected storage, RDMA
○ Access only through IB fabric

● Integration with OPA fabric
○ 3 nodes acting as gateway

■ Load balancing between them via route configuration
○ Each 2xOPA, 4xIB, forwarding between
○ Many sysctl and other tweaks for performance tuning
○ Single Node performance

■ 1.2 GB/s single thread seq. reads, 1.4 GB/s single thread seq. Writes
■ 5.5 GB/s of aggregate unidirectional I/O bandwidth in multiple threads

○ Aggregate Performance
■ About 20GB/s through gateways
■ Less than GPFS storage capability

● A good thing for now, given primary use is IC cluster

11

12

*see A. Zaytsev CHEP 2016 Talk

Hardware Maintenance Experience

● Initial assembly of cluster identified a few CPUs needing replacing, done in
November 2016

● Delayed shipping of additional switches. Rewiring fabric after cable tray
switch and still awaiting final cable runs

● Deployment of BIOS updates to current version in December 2016
○ BIOS Version

■ S72C610.86B.01.01.0231.101420161754
○ BMC Firmware

■ Op Code 0.28.10202, Boot Code 00.07
○ ME Firmware Version

■ 03.01.03.018
○ SDR Version

■ SDR Package 1.22

13

Stability and Performance Under Various Kernels

● Image shipped with system was RHEL7.2 kernel from Nov 2015
○ Kernel-3.10.0-327.el7.x86_64.rpm
○ IntelOPA-Basic.RHEL72-x86_64.10.3.0.0.81
○ xppsl-1.5.0
○ Performs as expected

● Our RHEL7.2+ image with Sept. 2016 kernel
○ Kernel-3.10.0-327.36.1.el7.x86_64.rpm
○ 10-20% single-node performance reduction!

● Vanilla 4.8.10 kernel w/ RHEL specfile
○ Same 10-20% single-node performance reduction

● RHEL7.3 image (current)
○ Performance back to where stakeholders expect
○ kernel -3.10.0-514.16.1.el7.x86_64
○ IntelOPA-Basic.RHEL73-x86_64.10.3.1.0.22
○ xppsl-1.5.1

14

Building and Provisioning

● Intel hfi1 driver and OPA software available in tarballs from intel.com
● Tarballs contain packages, but also a 15kloc perl ./INSTALL script

○ Intel says: "do not extract RPMs yourself"

● Ugly puppet installation (alternative was from kickstart)
○ exec[download-tarball] { creates=>dir notify=>Exec[install] }, exec[install] { refreshonly=>true }

● First puppet run can take 40+ minutes (yum 1 pkg at a time!)
○ Single threaded tooling, ~1GHz CPU, like running a Pentium III

● Multi-stage run, puppet creates IPoIB interfaces and updates hfi1
○ Reboot, then GPFS can start (uses IPoIB)

15

Single Node Job Performance

A = 3.10.0-327
C = 3.10.0-327.36
B = 3.10.0-514.16.1 <-- current

16

Thanks to C. Lehner for
benchmark data

Multi-Node Job Performance

Most recent (7.3) configuration

Good weak-scaling (scale problem size with job size) of LQCD Grid code

● 16 nodes: 300 Gflops/s/node
● 32 nodes: 300 Gflops/s/node
● 64 nodes: 280 Gflops/s/node
● 128 nodes: 250 Gflops/s/node

17

Thanks to C. Lehner for
benchmark data

Stability and Mode Switching Issue

● Switching cache modes dynamically is supported with Slurm (see here)
○ Automatically runs BIOS syscfg util to switch and reboots into job

■ Issue ensuring Slurm starts after GPFS is really available
○ Manually switching to fit queue is not being considered as too manpower-intensive

● However...
○ Our tests showed about 1/2 of rebooted nodes would be unstable
○ After discussions with Intel:

"If you don't powercycle between mode switches you get garbage"

● Well...
● But... BIOS Update that fixes this issue is due out soonTM

○ Hopefully in a few weeks

18

https://slurm.schedmd.com/intel_knl.html

Benchmarking Other Applications

ATLAS Code

● Identical sample jobs, separate work
directories, finished on >98% of nodes

a. Scratch space on GPFS
● Job processes 4k events in ~18 hours

a. Avg: 1084.6 min

19

HS06 Basic

● 64 proc -> 208 HS
● 256 proc -> 320 HS

Vectorization x86_64 HS06

● GCC 5.3.0 on SL7 auto-vectorization:
-march=knl -mavx512f -mavx512cd -mavx512er

-mavx512pf

○ 64-bit on Broadwell, +10%
● 64 proc -> 315 HS (+50%)
● 256 proc -> 451 HS (+40%)

Node Index

M
in

ut
es

KNL Slurm Monitoring

● Custom Scripts dumping data to our graphite instance,
displaying with Grafana

● Monitors Slurm cluster & queue state and per-allocation
and per-user data

● Gathering done via simple script using both pyslurm
bindings and screen-scraping the CLI tools

● Welcome discussion of LQCD-wide monitoring
(Fifemon-like)

20

Grafana Status Page

21

Conclusions

US LQCD group purchasing new cluster this Fall

Considering KNL, GPU (Pascal), or Skylake-based machines

Machine is finally reliably producing scientific results

Took more effort than expected to get there

For unoptimized code, Broadwell HS06/$ is 1.5x KNL

● Simple auto-vectorization gets to parity

22

Thank You!
Questions? Comments?

HEPiX Spring 2017
Budapest

23

