
SYSTEM	TESTING	SERVICE
DEVELOPMENTS	USING

EOS	+	CTA	USE	CASE
	from	IT	STorage	group	Julien	Leduc CERN

mailto:julien.leduc@cern.ch
http://www.cern.ch/


DATA	ARCHIVING	AT	CERN
Ad	aeternum	storage
7	tape	libraries,	83	tape	drives,	20k	tapes
Current	use:	180	PB
Current	capacity:	0.6	EB
Exponentially	growing



DATA	ARCHIVING	AT	CERN
EVOLUTION

EOS	+	tapes...
EOS	is	CERN	strategic	storage	platform
tape	is	the	strategic	long	term	archive	medium

EOS	+	tapes	=	♥
You	just	met	CTA:	CERN	Tape	Archive



CTA	+	EOS	DEVELOPMENTS
Tightly	coupled	software	⇒	tightly	coupled

developments

Extensive	and	systematic	testing	is	paramount	to	limit
regressions



CASTOR	INTEGRATION	TEST
Easy	situation:
all	components	are	within	one	git	repository
Puppet	deploys	development	instances	on	VMs
Limited	external	dependencies	per	instance:	1
database,	1	virtual	tape	library



CASTOR	INTEGRATION	TESTS
But	several	issues	with	VM/Puppet	approach:
deploying	a	developer	instance	from	scratch
takes	loooonnng	time...
code	changes	in	CASTOR	often	require	Puppet
manifest	change
real	tape	hardware	tests	are	way	further	down
the	road	in	separate	hostgroups,	environments...
which	implies	ad	hoc	developer	tests...



Dev	environment Dev	tests

VMs VMs

VMs VMs VMs

VMs

Prod	master

PMs PMs

PMs PMs PMs

PMs

Prod	QA

PMs PMs

PMs PMs PMs

PMs



CTA+EOS	INTEGRATION	TESTS
Complex	situation:

2	distinct	software	projects
More	external	dependencies	per	instance:	1
database,	1	virtual	tape	library,	1	objectstore



CTA+EOS	INTEGRATION	TESTS
How	to	fix	everything?
I	am	lazy	and	impatient
no	manual	operation	→	CI
make	it	fast

Must	allow	similarly	easy	beta	testing
deployments	for	administrators/users	(simple
and	bulletproof)
Must	allow	tests	on	real	tape	hardware.



CTA	CI
Implemented	in	CERN	Gitlab	instance

Build	software:	CTA	RPMs	available	as	artifacts
Build	and	publish	a	generic	Docker	image	in	gitlab
registry
Contains	all	required	versioned	RPMs	for
instantiation	(built	artifacts,	EOS,	XROOTD)

Run	system	tests	in	custom	kubernetes	cluster





A	COMMON	REFERENCE
INFRASTRUCTURE



BASIC	KUBERNETES	CONCEPTS
NAMESPACE	1:	subnet	10.0.1.x

CONFIGURATIONs

Config
1

SERVICE	1

SERVICE	2

SERVICEs

POD	1

POD2

POD3

PODs

NAMESPACE	2:	subnet	10.0.2.x

SERVICE	1

SERVICE	2

SERVICEs

POD	1

POD2

PODs

kubernetes	CLUSTER

PV2
label:	local



KUBERNETES	RESOURCES
System	tests	on	dedicated	kubernetes	clusters

One	Puppet	deployed	kubernetes	cluster	per
developer	on	a	single	VM
Kubernetes	resources	per	cluster:
1	Oracle	database	(+	unlimited	sqlite	accounts)
1	Ceph	objectstore	(+	unlimited	local
objectstores)
10	Virtual	tape	libraries:	2	tape	drives,	10	tapes



INSTANTIATING	A	TEST
Create	k8	Namespace
Instantiate	all	Services	in	the	namespace
Consumable	resources	are	implemented	as
Persistent	Volumes
Issue	a	Persistent	Volume	Claim	with	selector
Instantiate	associated	ConfigMaps	in	the
Namespace

Instantiate	all	the	Pods	with	their	associated
containers	to	implement	all	the	services
Wait	for	all	the	pods	to	be	ready



NAMESPACE

CONFIGURATIONs

Object
Store

Data
Base

Tape
Library

ctafrontend

ctaeos

kdc

SERVICEs

SYSTEM	TEST

setup	EOS	WFE
xrdcp	file	->	ctaeos
-	is	it	on	tape?
remove	EOS	disk	copy
retrieve	from	CTA
-	is	is	back	in	EOS?

GITLAB

CTA	frontend

CTA	EOS

CTA	CLI

tape	srv

KDC

PODs

INSTANTIATING	A	TEST



REAL	TAPE	DRIVE	TESTS
Deploy	Puppet	manifest	on	real	hardware
Add	physical	tape	library	resources	in	hiera
Increase	timeouts	for	system	tests

We	can	deploy	the	same	kubernetes	instance	on	real
tape	hardware	and	run	exactly	the	same	system	tests.



THE	END
Very	powerful	approach	addresses	and	federates	all
our	use	cases
Fast,	flexible,	isolated	and	self	contained	in	software
repository
Reproducible	development	environment	that	allows
regression	tests

TO	DO
Write	more	system	tests
Evaluate	possible	production	use	☺






