RACF Overview

- Located at Brookhaven National Laboratory on Long Island, NY
- Provides full service computing mainly for the two RHIC experiments — STAR, PHENIX — and for ATLAS (US Tier1), along with some smaller groups: LSST, Daya Bay, DUNE, EIC, etc.
 - RHIC Run 17 (STAR, 255 GeV polarized p-p) in progress
- RACF is the main component of the Scientific Data & Computing Center (SDCC) within the lab’s Computational Science Initiative (CSI)
 - Other components include two new HPC clusters supporting research in LQCD, NSLS2, Biology, CFN, etc.
- Looking to hire add’l manpower — if interested please talk to Eric Lançon or Tony Wong
New Data Center Update

• Includes CSI office space already in use

• SDCC operational target is FY22

Phase I: 60% Space Plan, 3.6 MW

• CD-1 milestone approval received on April 17th
Institutional Cluster (IC)

- The first HPC cluster available to the entire BNL community
 - Operational since January 4, 2017
- 108 compute nodes
 - Dual Xeon Broadwell (E5-2695v4) CPU’s with 36 physical cores
 - Two NVidia K80 GPU’s
 - 1.8 TB SAS drive + 180 GB SSD for temporary local storage
 - 256 GB RAM
- Non-blocking Infiniband EDR interconnect
- 1 PB of GPFS storage with up to 24 GB/s connectivity
Institutional Cluster (IC)

- Have fixed initial problems encountered with hardware failures, GPU performance issues, and support
- Currently ~120 registered users
- Cluster utilization approaching 95%
- Uptime nearly 100% over past three months
- Expansion under active discussion
 - Extent to be determined by expected demand
 - P100 instead of K80 GPU’s
KNL Cluster

• 144 Nodes

• Unlike IC, achieving stability and performance with KNL has required significant dedicated effort
 • See William Strecker-Kellogg’s talk on Wednesday for details

• Experimenting with different workloads (ATLAS, LQCD, accelerator physics, etc)
 • LQCD cluster to be purchased this Fall - KNL or GPU-based configurations being considered
Network Reconfiguration

- "Science Core" network - 2x30 Tbps switching capacity
 - Initial connection to NSLS-II @ 4x40GbE
- Investigating migration to 25/50/100 GbE switching infrastructure (from 10/40/100 GbE)
- US Atlas Tier-1 facility successfully migrated outside of the BNL campus
 - Motivated by need to support IPV6 and evolving DOE cybersecurity requirements
 - Careful preparation ensured smooth migration that was transparent to ATLAS users
 - Remainder of the facility to migrate in CY2017
Tier-1 dCache & FTS Upgrade

- dCache currently managing 14.5 PB of unique data
- Upgraded in March from version 2.10 to 3.0.11
 - RHEL 6.x to 7.3; PostgreSQL 9.3 to 9.6
 - Support RFC VOMS proxy; improved SRM/NFS performance
- Some upgrade issues
 - High memory usage on admin node
 - XRootD front-end memory leak required version upgrade 4.4 to 4.6.0
- IPv6 dual stack now fully operational
- Testing new features of GridFTP door to support Globus Online (thanks to Paul Millar)
- Will be testing integration with Ceph as well as new replication manager
HPSS

• Upgraded to 7.4.3 in November
• ~90 PB on 65K tapes
• STAR now uses LTO-7 for both Raw and DST; ATLAS migrating to LTO-7 in mid-May
• Converting Phenix Raw from LTO-4 (800 GB/cartridge) to LTO-7 (6TB/cartridge)
 • Due to the large capacity of LTO-7, we are making 2 copies of these Raw data (mitigate risk of loss due to heavy access)
Tier-1 Staging Performance

- During ATLAS reprocessing campaign, BNL dCache staging limit (concurrent transfers) increased from 3k to 30k, reaching 1GB/s staging rate from HPSS
- dCache v3 allows non-blocking staging requests to be sent to HPSS — expect higher staging rate with much less system load in the future
ATLAS AFS Phaseout

- **ATLAS Tier-1 jobs no longer using AFS**
 - CVMFS was already providing access to software releases and related files for ATLAS jobs at BNL
 - CVMFS Stratum Zero service created to host frequently used job files, including file transfer clients that were hosted in AFS
- Remaining AFS functionality being replaced by a multi-tiered solution based around CVMFS — phase out remaining dependencies this year
 - New CVMFS repo will cater to US ATLAS facility sites, with read-only access to files customized and collected specifically for US ATLAS job requests
 - Current CVMFS Stratum One service will continue to serve OSG and WLCG sites, with the additional functionality of hosting the new BNL repository
 - Writeable AFS functionality to be replaced by an ownCloud based, Ceph-backed, distributed storage solution (see Hiro Ito’s BNL Box talk on Wed.)
CEPH Cluster

• Major Ceph cluster migration started in March
 • Installing new CephFS cluster as a storage backend for BNL Box
 • 60 x 8 TB SAS HDD JBOD arrays
 • Currently 3.8 PB raw/1.3 PB usable; 7.5 PB/2.5 PB by end of 2017
 • First Ceph cluster at RACF deployed entirely on new hardware w/o HW RAID
 • Repurposing “old” ATLAS Ceph cluster (1.2 PB/0.4 PB) as ATLAS "test" cluster (new OSD nodes, upgraded public network layout)
 • Replacing storage backend of ATLAS “new” cluster with newly retired dCache storage — will be 5.7 PB/1.9 PB once the process is finished
• Targeting Ceph 11.2.x (Kraken) on RHEL7 for all 3 clusters — currently Ceph 9.2.1 (Infernalis)
• Migration will require two reassignments of 'cephgw.usatlas.bnl.gov' alias used by ATLAS Event Service — expected in May.
 • Current plan assumes no need to preserve content of 'atlas*' buckets during migration sequence
Linux Farm

• New ATLAS Systems brought online this month (identical to last reported purchase)
 • 48 new Dell R430 systems
 • 2 Broadwell E5-2690v4 2.6 GHz CPUs (56 logical cores total)
 • 128 GB DDR4 2400 MHz RAM
 • 4 3.5" 2 TB 7200 RPM 6Gbps SATA drives
• RACF total now 59K cores
• Considering migration of RHIC hosts to SL7 before the next run (late Fall)
Monitoring

• Rolling out `collectd` deployment
 • Evaluated diamond, but process-per-metric too cumbersome
 • `collectd` easy, low resource usage, stable
• **Grafana** working out very well — deployed public and private instances
 • Per-job metrics and advanced node statistics from per-disk iops to slab cache usage
Singularity

- Linux container management software developed by LBL and SLAC
- Like Docker, LXC, etc., utilizes Linux namespaces to implement process containerization
- Developed primarily to solve the problem of HTC/HPC job mobility
 - Seamlessly redirects all I/O in and out of the container directly between environments — easy to handle MPI, X11 forwarding, etc.
- Run jobs on any Linux system, regardless of distribution or version, as long as namespaces are supported and Singularity installed
- Extremely lightweight — no associated daemons, one single package to install
- Does not support user escalation or context changes — all processes run as yourself in the container, not as root
- http://singularity.lbl.gov/

Example:

```
$ whoami
testuser
$ cat /etc/redhat-release
Scientific Linux release 7.2 (Nitrogen)
acas1801:~$ singularity shell /images/atlas_sl6.img
Singularity: Invoking an interactive shell within container...

Singularity.atlas_sl6.img> cat /etc/redhat-release
Scientific Linux release 6.8 (Carbon)
Singularity.atlas_sl6.img> whoami
testuser
```
Singularity

• ATLAS SL6 test container for our environment created with necessary bindmounts (pnfs etc.)
 • Working to make this available via our CVMFS Stratum Zero server.
• Have set up a test SL7 system which forces execution of jobs in the ATLAS SL6 container via HTCondor's USER_JOB_WRAPPER configuration parameter
 • Demonstrated successful execution of HammerCloud jobs within the container
• In the process of expanding the test to ~30 hosts, and creating a new test Panda queue for real ATLAS jobs — update expected at Fall HEPiX
Many thanks to John DeStefano, Chris Hollowell, Hiro Ito, Shigeki Misawa, Jason Smith, Will Strecker-Kellogg, Tony Wong, David Yu, Alex Zaytsev and Xin Zhao for contributing the content of this presentation.