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Who made Salt? Thomas Hatch (CTO




Why are we here?



Why is automation important?

- Data centers without automation:

- Are monotonous!
- Setting up nodes is boring.
- Are Unreliable!

- Human errors creep in.
- Do not scale!
- Upgrading 20 nodes takes all day?
- Installing 100 disks is tedious.
- Have no recovery strategy!
- Redeploying a server from bare metal often cures issues!
e
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Who is the audience?

» Raise your hand if!
- You know everything on the slides so far?
- You are a system admin?
- You are a dev-ops person?
- You are a data center manager?
- You are developer?

- You already use?

- Salt,puppet, chef, ansible?




About me

- Ceph is my 3™ distributed storage product.
- Previously, EDG SE, dCache, (Also DPM, Castor and others)

» Been working on mass deployment for years
- Packaging and automation with over 15 years experience.
- In culture of people working on this for 30+ years!
» | am a software maker

- | like admins and like to hear them complain about real stuff.

- l also like making admins life easier.




Configuration Management
Systems are similar.



Salt, Puppet, Chef, Ansible

» Configuration management tools are now common.

- Not a new idea

- Tomas Finnern gave a HEPIX talk about his new CMS at first HEPIX.
- Replacing DESY’s old CMS over 25 years ago.

+ CMS mostly do the same thing.

- Manage state transitions on many computers.

- Take booted bare OS to a production service

- Non-interactively.




CMS: Usual structure to user

- Made up of a library of reusable modules.

- Have a DSL to call the libraries

- Express dependency
- Include other DSL files.

- Express branching.

- Have meta-data about nodes.

- Can query this meta-data in the DSL.




90% of what you do with a CMS
system.



Giving nodes a role or set of roles.

- Use “top.sls” file on salt master.

base:
'artifacts™*':

- jenkins-artifacts
"jenkins*swarm*':
- hydnstrasse

- salt.roles

- jenkins-swarm
'osceph™':

- sesceph

- ceph_deploy

- 0sceph
l*l:

- hydnstrasse

- salt.roles




Placing files on node.

- Use “sls files” on salt master.

- You can also template files, and edit them.
- But lets get on with the talk!

/etc/ceph/ceph.conf:
file:
- managed
source:
# Where to get the source file will have
# to be customized to your environment
- salt://osceph/ceph.conf
- user: root
- group: root
- mode: 644
- makedirs: True




Adding packages to a node.

- Use “sls files” on salt master.

- You can also have conditionals, and the like

ceph_packages_mon:
pkg:
- 1installed
- names:
- ceph-mon
- python-ceph-cfg




Starting a service

» Usage example for an “sls file”.

- Nice way to start a service on any platform.

- Salt works out the init system

- Save you from caring if its

- systemd or
- sysVinit or openvpn.
~ even BSD init. service.running:

- enable: True




The other 10% of CMS's work

- Dependencies.
- Conditionals.

- Special modules.

- Examples:
- Cron, Apache, virtualenv, ceph, etc

- Not everything you have to do is packaged by SUSE.

- Making your own modules!

- Where this talk will start to focus on more.




Comparing Configuration
management systems.



Puppet Comparing to Salt.

» Puppet has biggest deployment base.

» Polls master server for config to apply.
- Minimized dependency on master service.

- Salt was first a remote execution service.

- Similar to mcollective.

- Puppet added mcollective much later.

- Salt added state management later.

» Puppet is ruby based while Salt is python based.




Chef comparing to Salt

» Chef has the biggest deployment base in Germany.
- Quiet mature but | find docs confusing.
- Newer than puppet.

» Chef relies on polling.
- Salt allows you to push configuration to client.

» Chef uses json for config

- Salt uses yaml.

» Chefis ruby based / Salt is python based.

| don't know chef as well as | know puppet and salt




Ansible comparing to Salt

- Ansible uses ssh rather than agents.
- Pushes commands to clients.
- Low startup costs.

- Fast growing community (Red hat now owns Ansible).
- Python based just like salt.
- Newer than puppet and chef

- Great test suite.

| don't know ansible as well as | know puppet and salt




Salt compared to other CMS.

* Youngest major player.
- Steep learning curve.

- Documentation is improving, but many components
- Event based model.

- More moving parts (beacons, mines, pillars, reactors)
» Based on Event bus.

- Events sent between




Salt : Programming your data center

» Basic usage similar to Puppet / Chef / Ansible
- Thin DSL in YAML calling modules.

- Advanced usage:
- Database integration
- Pillar (as a data source) Mine (For read write)
- Monitoring events.
- Beacons (can dynamically be started on minions)

- Event chaining,

- Reactors, Orchestration engine.




Salt overview

+ Message Queue at its core (zmq).

- Master/Slave (Minion) model.
- Agent based, Event based.

» Think of it as a framework for distributed computing.
- Extendable modules (master and minion).

- Database modules (master and minion).

- Backend can be simple jaml to full RDBMS (called pillars or mines)
- Extendable attributes (called grains).

- Events can be fired by any module.




Push Vs Pull in distributed
computing.



Puppet,Chef, CFengine are pull based.

» Minion requests from master declarative config.

- So can cache desired configuration.

Makes master off line issues trivial.

Makes intermittent connectivity failure irrelevant.

Makes overload of master simpler.

Maker error recovery simpler.

- Not the beginners way to use a computer!
- Minion nodes will converge with desired state.

- This is a major objection for people proposing push models.




Salt like Ansible is Push based.

- Push based systems require ‘master’ to be running.
» Push based systems require ‘minion’ to be listening.

» Makes scaling difficult.

- Some ‘minion’ will always be disconnected/down.

- Make reliability difficult.

- Restarting the master will require minions to reconnect.




Why Salt and Ansible at SUSE and Redhat?

» Puppet should be installed with puppet.
- Against the packaging philosophy of SUSE and Redhat

* Puppet uses Java technology.
» Chef has too steep learning curve.
- Large Customers already doing their own thing.

- Core customer bases need small scale automation

- How can | install a cluster of 5 nodes?




Why Salt and Ansible at SUSE and Redhat?

- Both are Python based companies

- Ruby modules terrible for long term support!

» Both companies don’t work at HEPIX scale

- Both companies do not yet understand push limitations.

- | have little doubt experience with containers will change this.

- Redhat and SUSE are not admin companies.

- Overly optimistic about how things break.




Salt components



Salt components : master

- Salt master
- Hosts event bus
- Controls the cluster
- Manages cluster authentication.

- Has many sub components

- We talk about this later

- Provides simple remote execution options.




Salt Formula

- Custom DSL for salt called “salt formula”
- Calls State / execution modules.

- Follows YAML syntax
- With jinja2 template engine

- Allows conditionals and looping

- Works on DSL and for delivered content.
- Gets variables from pillars and grains.

- Usejinja2 sparingly!

- When you need to do complex variable substitution use python




Salt Variables Pillars

* Yaml syntax
- Simple include syntax

- Simple to extend in python.
- But do understand that this can be blocking,.

- So a blocking request can stop the entire salt system.




Salt components : minion

- Salt minion

- Connects to the salt master
- Marked up with grains (eg ipv4 address, Operating system)
- Accepts instructions from salt master

- Can execute python scripts (custom or premade)
- As state / execution modules.
- For Grains
- So you can add your own, eg public x509 key
- For Mines

- So you can write data about node




Lets get on with Salt modules!



What is a Salt state/execution module

* CMS mostly do the same thing.
- Manage state transitions on many computers.
- Take booted bare OS to a production service

- Non-interactively.
- Have a DSL to call the libraries
- Express dependency

- Include other DSL files.

- Express branching.




Upgrading packages as an example.

- Two ways to illistrate using sls calling modules:
- State module

- Execution module;

# Upgrade with a state module # Upgrade with a execution module
upgrade: upgrade:
pkg: module.run:
- uptodate - name: pkg.upgrade




Why Execution modules?

* Run on the minion (remote node)

- Simple python methods exported to salt.

- Least abstract interface.

- Don't have to be idempotent

- But it helps.
- Very simple to develop.

- Simple to deploy
- Place file in “/srv/salt/_modules”

- Deploy to all nodes with “salt '*' saltutils.sync_all”




Execution module 'namespace’

- Giving your execution module a name.
- So your module can be called in salt DSL.

- So your module can be conditionally available.

- Eg. Only runs on one platform

- Zypper, yum, apt-get dependent on platform.

__virtualname__ = 'ceph'

def __virtual__():
if HAS_CEPH_CFG is False:
return False,
'"The %s execution module cannot be loaded: ceph_cfg unavailable.'
% (__virtualname__)
return __virtualname__




What methods are/can be exported.

» Any top level function.

- Unless starts witha '

- Eg. 'def _elephant()’
- Any method on an object

- But only when no constructor parameters in object.

- So only syntactical groupings as object created.

» Online help when you add docstrings:

def ceph_version():

return ceph_cfg.ceph_version()




Execution modules and Errors.

* No rules on output structure!
- Will be rendered as YAML to end user.

- Only way to fail is to raise exception.

- This exception is reported to end user.

- Note argument errors are swallowed by salt.

- Can make debugging a little tricky.




Logging your modules.

- Salt uses standard python logging.

- Your modules should also.

- Execution and State modules log locally.

- So you can look at the local logs.
- Default loglevel at warning.

- Can be changed on command line or in config.




Why State modules?

» More user friendly than execution modules.

- Report what was changed.

- As a series of stages each with a

- Standardized return value.
- Allows branching on Success / Failure

- Allows branching on No change.

- Have a test function.

- Only tells user what will be changed.




How are State modules different?

- Each function must match salt structure.

- Calling syntax includes context.
- Useful to allow introspection of calling.
- Never used this.
- Richer return syntax.
- {'name': name, 'result': True, 'comment' : msg, 'changes': {}}
- Allowing triggers on success.

- Allows admin to see changes

- Also see if no changes.




State models are like execution modules

- Same name space idea.

- Virtual function to enable namespace.
- Python docstrings to give end user help.
- Simple to deploy

- Place file in “/srv/salt/_states”

- Deploy to all nodes with “salt '*' saltutil.sync_all”




State modules must be idempotent

- l[dempotent
- When called again the output is the same.
- Makes the system predicable.
- So things wont break on second call.

- Makes the users life easier.

- Should not worry about recalling configuration.
- Its what admins expect of configuration management.
- So they can manage configuration drift over upgrade.

- Executions modules should be idempotent

- Thisis my opinion but is regarded as optional by salt upstream.




State modules reuse execution modules.

- State modules may call execution modules.
- This is a nice to have.
- but not essential see later

- Know the execution modules contain needed methods.

» Possible optimization (Sometimes a good idea)

- If the execution module has lots of state gathering.
- Make pure python library.
- Make execution module call library.

- Call library directly from state module.




Example : Ceph Components

- Ceph has a nice dependency hierarchy
- Keyrings (have a hierarchy of dependencies)
- MON service (depend on keys)
- OSD service (depend on mon + keys)
- RGW service (depend on osd + mon + keys)
- MDS Service (depend on osd + mon + keys)
- RBD Service (depend on osd + mon + keys)

- iSCSI Service (depend on rbd + osd + mon + keys)




Basic salt module implementation.
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Reusable Ceph module implementation.
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Testing your modules.

- Config management on cluster is hard.
- Functional tests are needed.
- Unit test only go so far in this area.
- Good to have test clusters.
- Salt has a testing framework built in.
- Have not used it much as ..
- Alternatively if your code is a thin library wrapper.

- You have all the standard python unit test options.

- py.test, nosetest, tox, python-coverage etc.



Why have execution and state modules?

» Think of execution methods as primitives.
- Best called from command line.

- Don't have to be idempotent (So simpler to make)

- But | recommend it.
- Useful for debugging.
» Think of state modules as higher level functions.
- Encapsulating logic of transformation.

- Have to be idempotent.




A few words about your API



Function arguments

- Salt supports:
- Explicit Arguments
- Name

- Defaulted Arguments

- Name='default value'

- Positional Arguments
- *Args

- Keyword arguments

- **kwargs



My Advice about API's

- We all might have opinions here.

- | like to use **kwargs when | am unsure
- Because parameters change over life time of API.

- Can catch unset parameters in code rather than API.

- And returns error clearly.

- Allows same method with many alternative parameter sets.

- | don't like defaulted arguments.
- They force order of parameters.

- Defaulting also is effected with ordering.



Python Scope

- When an sls file is processed.
- Modules are loaded.

- Module method is then executed.
- Maybe start processing another module.

- Then next method is executed.

- Scope is destroyed.

- This has caused issues for me with memoization.

- Specifically storing paths of executable in library globals.

- May cause performance issues.

- When state gathering is expensive.



Talk Summary



CMS:Take home summary.

- Configuration management is worth it.
- 90% of your work is very very easy.
- Benefits are imminence
» Most of what you want from a CMS
- Install packages on specific nodes.
- Configure files.

- Start services.



Extending Salt:Take home summary.

- Mostly you don’t need to do this!

- Salt execution and state modules
- Just python, and its easy.

- You can even wrap standard python libraries.

- You should then package them.

» All functions should be Idempotent.

- Say this again its so important!



Questions?
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