The Scheduling Strategy and Experience of IHEP HTCondor Cluster

Shi, Jingyan (shijy@ihep.ac.cn)

On behalf of scheduling group of Computing Center, IHEP
The Migration to HTCondor

- **Motivation**
 - PBS had been used at IHEP for more than 10 years
 - Limited Scalability and growing resources and users
 - ~10,000+ job slots and 20,000+ jobs: Performance bottleneck

- **Migration to HTCondor: Better performance and active community**

- **Migration step by step with risk control**
 - Jan, 2015: ~ 1,100 CPU cores
 - May, 2016: ~ 3,500 CPU cores
 - Dec, 2016: ~ 11,000 CPU cores
Current Status

- **Architecture**
 - 28 submitting nodes
 - 2 scheduler machine (local cluster, virtual cluster)
 - 2 central manager (local cluster, virtual cluster)
 - ~ 10,000 physical CPU cores + an elastic number of virtual slots

- **Jobs**
 - Avg 100,000 jobs/day;
 - 60,000 jobs in queue at peak time
 - Serial and single-core jobs
Outline

1. Migration to HTCondor
2. Scheduling Policy to HTCondor
3. Works Designed and Developed
4. Problems We Met
5. Summary and Future Work
Resource Divided at PBS Cluster

- Several HEP experiments supported
 - BES, Daya Bay, Juno, Lhaaso, HXMT etc.
 - Resources are funded and dedicated for different experiments
- No resource sharing among experiments
- 55 jobs queues with group permission limits set at PBS

- Low resource utility
 - Coexistence busy queues and free resources

![Graphs showing BES and Daya Bay resource usage](image)
Scheduling Strategy at HTCondor Cluster

- **Resource sharing**
 - Break the resource separation
 - Busy groups can occupy more resource from the resource of idle groups

- **Fairness guarantee**
 - Peak computing requirements from different experiments usually happened at different time periods
 - Jobs from idle groups have high priority
 - The more resource the experiment contributes to share, the more its jobs can be scheduled to run
Resource Sharing at HTCondor

- Based on job slots (mainly CPU cores)
- As a first step, resources are partially shared
- Some exclusive resources are kept by experiments own
 - Only run jobs from the resource owner
- Sharing resource pool
 - Resource contributed by all experiments
 - Slot can accept for jobs from all experiments
 - At least 20% slots are shared by each experiment
 - encourage experiments to share more resources

HTCondor Cluster Sharing Policy

- JUNO, 888
- DYB, 1188
- CMS, 544
- ATLAS, 576

The exclusive and shared slots of different groups
Fairness and Priority

- **Scheduling preference**
 - Jobs prefers to run on exclusive slots of its own experiment
 - The shared slots are kept for busy experiments

- **Experiment quota**
 - Users from the experiment are in the same Linux group
 - The initial group quota is set to the amount of real resources from experiments
 - The quota can be exceeded if there are idle slots in the sharing pool

- **Group priority and User priority**
 - Group priority is correlated to the group quota and the group slots occupancy
 - User Priority is effective inside the same group users
Outline

1. Migration to HTCondor
2. Scheduling Policy to HTCondor
3. Works Designed and Developed
4. Problems We Met
5. Summary and Future Work
Central Controller

- The central control of groups, users and work nodes
 - All information is collected and saved into Central Database
 - Necessary information is updated and published to relative services
 - Work nodes update its configuration via httpd periodically
Error Detection and Recovery

- Health status of all workers are collected from monitoring system and saved into Central Database
- Central controller updates work noworkers’ attributes automatically
The Toolkit: hep_job

Motivation

- Smooth migration from PBS to HTCondor for users
- Simplify users’ work
- Help to achieve our scheduling strategy

Implementation

- Base on python API of HTCondor
- Integrated with IHEP computing platform
- Server name, group name
- Several Jobs template according the experiments requirements
Job Monitoring

- Queueing and running statistics
 - The overall clusters
 - Each group/experiment
- The exclusive and sharing resource statistics
- Nagios and Ganglia
Global Accounting

- Detailed accounting to each group and each user
- Weighting slots with slow/fast CPU, Memory, Disk, etc.
Put All Together

Central Controller System

HTCondor

Dynamic Configuration

Sharing Policy

Accounting

Monitoring

Hepjob

commands

jobs

negotiator
collector

schedd

startd

Interface to cc accounting

nagios
/web page

http

http

user group

http

http

Put All Together

Central Controller System

HTCondor

Dynamic Configuration

Sharing Policy

Accounting

Monitoring

Hepjob

commands

jobs

negotiator
collector

schedd

startd

Interface to cc accounting

nagios
/web page
Outline

1. Migration to HTCondor
2. Scheduling Policy to HTCondor
3. Works Designed and Developed
4. Problems We Met
5. Summary and Future Work
Problems We Met – dishonest user

- Claimed with other group member to obtain more job slots
- Running sshd daemon at work nodes
 - ssh to work nodes without password
 - run big MPI task from login node secretly
 - occupied more cpu cores than the slots declared in job
- How to deal with
 - Add group priority check at wrapper of work nodes
 - Zombie process check deployed at work nodes to kill the process which does not belong to jobs running on the work node
Problem We Met – job hung

- Sched daemon can not be connected in a short time suddenly
- Jobs are hung and re-queued unexpectedly
- Reason:
 - Default open file limit: 1024
- How to deal with
 - Increase the system limit
 - Restart sched process

03/10/17 17:56:47 (pid:1105883) Started shadow for job 7339826.0 on slot1@bws0472.ihep.ac.cn <192.168.57.232:6795?addrs=192.168.57.232-6795> for physics.mahl, (shadow pid = 3809619)
03/11/17 01:50:56 (pid:1105883) ERROR: Child pid 3809619 appears hung! Killing it hard.
03/11/17 01:50:56 (pid:1105883) Shadow pid 3809619 successfully killed because it was hung.
03/11/17 01:50:56 (pid:1105883) Shadow pid 3809619 for job 7339826.0 exited with status 4
03/11/17 01:50:56 (pid:1105883) ERROR: Shadow exited with job exception code!
Problems We Met – sched owner changed

- The owner of “condor_sched” changed from condor to normal user
- Reason:
 - Disk mounted at Sched server inaccessible
- How to deal with:
 - Disk check added and report to monitoring
 - Version upgrade consideration
Outline

1. Migration to HTCondor
2. Scheduling Policy to HTCondor
3. Works Designed and Developed
4. Problems We Met
5. Summary and Future Work
Summary and Future Work

• Summary
 • The resource utility has been significantly improved with the resource sharing policy
 • We implemented a number of tools to enhance the system interaction and robustness

• Future work
 • Automatically tuning the resource sharing ratio according to the overloads of each group
 • The integration of Job Monitoring and Central Controller
 • HTCondor sites union
Thank you!

Question?