

The Scheduling Strategy and Experience of IHEP HTCondor Cluster

Shi, Jingyan (shijy@ihep.ac.cn)

On behalf of scheduling group of Computing Center, IHEP

Migration to HTCondor

Scheduling Policy to HTCondor

What We have Done

Problems We Met

The Migration to HTCondor

- Motivation
 - PBS had been used at IHEP for more than 10 years
 - Limited Scalability and growing resources and users
 - ~10,000+ job slots and 20,000+ jobs: Performance bottleneck
- Migration to HTCondor: Better performance and active community
- Migration step by step with risk control
 - Jan, 2015 : ~ 1,100 CPU cores
 - May, 2016: ~ 3,500 CPU cores
 - Dec, 2016: ~ 11,000 CPU cores

Current Status

Architecture

- 28 submitting nodes
- 2 scheduler machine (local cluster, virtual cluster)
- 2 central manager (local cluster, virtual cluster)
- ~ 10,000 physical CPU cores + an elastic number of virtual slots

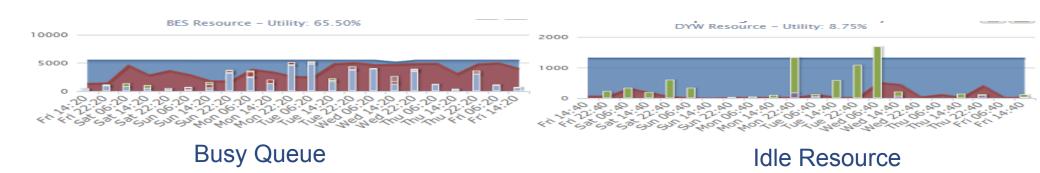
Jobs

- Avg 100,000 jobs/day;
- 60,000 jobs in queue at peak time
- Serial and single-core jobs

Migration to HTCondor

Scheduling Policy to HTCondor

What We have Done


Problems We Met

Resource Divided at PBS Cluster

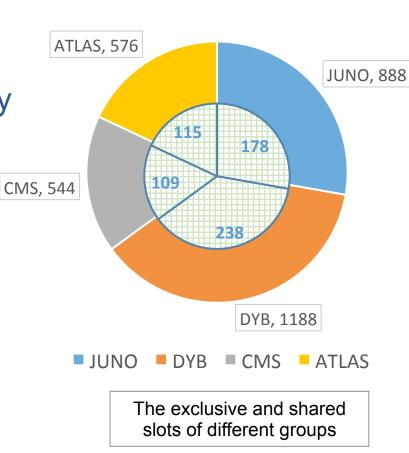
- Several HEP experiments supported
 - BES, Daya Bay, Juno, Lhaaso, HXMT etc.
 - Resources are funded and dedicated for different experiments
 - No resource sharing among experiments
 - 55 jobs queues with group permission limits set at PBS
- Low resource utilization rate
 - Coexistence busy queues and idle resources

Scheduling Strategy at HTCondor Cluster

Resource sharing

- Break the resource separation
- Busy groups(experiments) can occupy more resource from the resource of idle groups

Fairness guarantee


- Peak computing requirements from different experiment usually happened at different time period
- Jobs from idle group have high priority
- The more resource the experiment contributes to share, the more its jobs can be scheduled to run

Resource Sharing at HTCondor

- Based on job slots (mainly CPU cores)
- As a first step, resources are partially shared
- Some exclusive resources are kept by experiments own
 - Only run jobs from the resource owner
- Sharing resource pool
 - Resource contributed by all experiments
 - Slot can accept for jobs of all experiments
 - At least 20% slots are shared by each experiment
 - encourage experiments to share more resources

HTCondor Cluster Sharing Policy

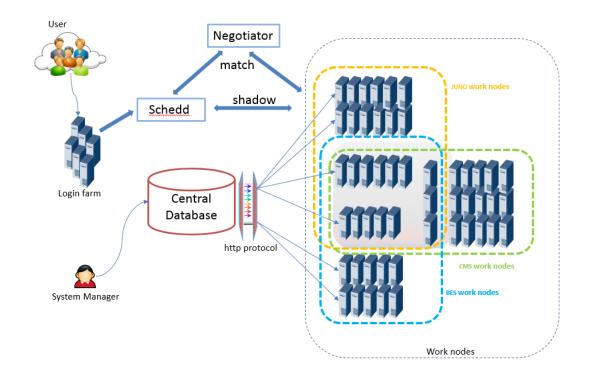
Fairness and Priority

- Scheduling preference
 - Jobs prefers to run on exclusive slots of its own experiment
 - The shared slots are kept for busy experiments
- Experiemnt quota
 - Users from the experiment are in the same linux group
 - The initial group quota is set to the amount of real resources from experiments
 - The quota can be exceeded if there are idle slots in the sharing pool
- Group priority and User priority
 - Group priority is correlated to the group quota and the group slots occupancy
 - User Priority is effective inside same group users

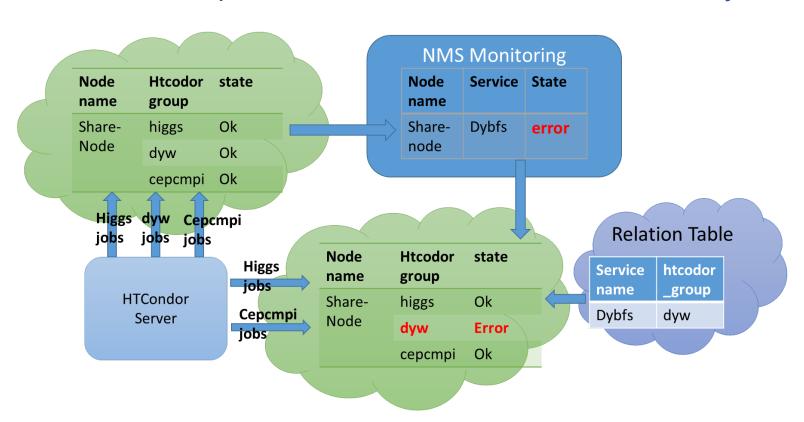
Migration to HTCondor

Scheduling Policy to HTCondor

What We have Done


Problems We Met

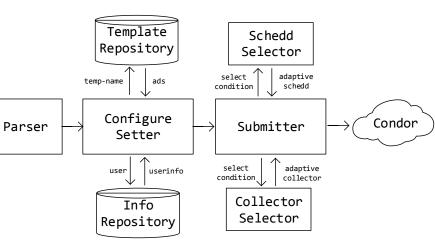
Central Controller


- The central control of groups, users and work nodes
 - All information is collected and saved into Central Database
 - Necessary information is updated and published to relative services
 - Work nodes update its configuration via httpd periodically

Error Detection and Recovery

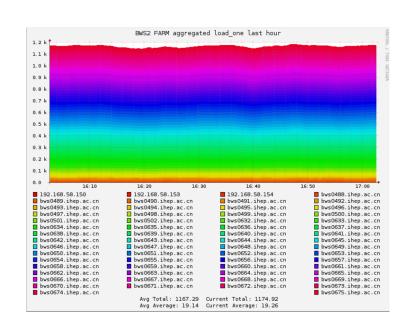
- Health status of all workers are collected from monitoring system and saved into Central Database
- Central controller updates workers' attributes automatically

The Toolkit: hep_job

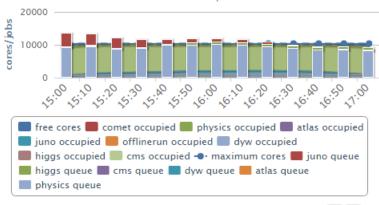


Motivation

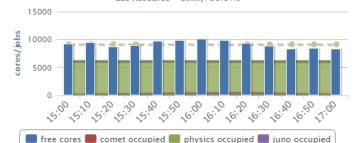
Smooth migration from PBS to HTCondor for users


Command

- Simplify users' work
- Help to achieve our scheduling strategy
- Implementation
 - Base on python API of HTCondor
 - Integrated with IHEP computing platform
 - Server name, group name
 - Several Jobs template according the experiments requirements


Job Monitoring

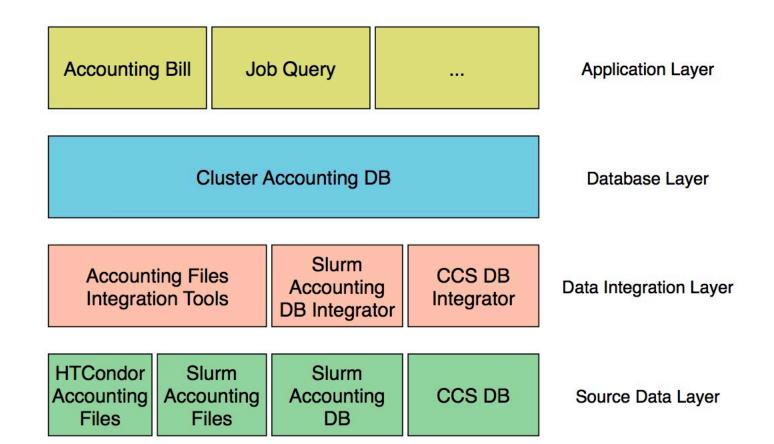
- Queueing and running statistics
 - The overall clusters
 - Each group/experiment
- The exclusive and sharing resource statistics
- Nagios and Ganglia


Computing Resource Utility ALL Resource - Utility: 94.49%

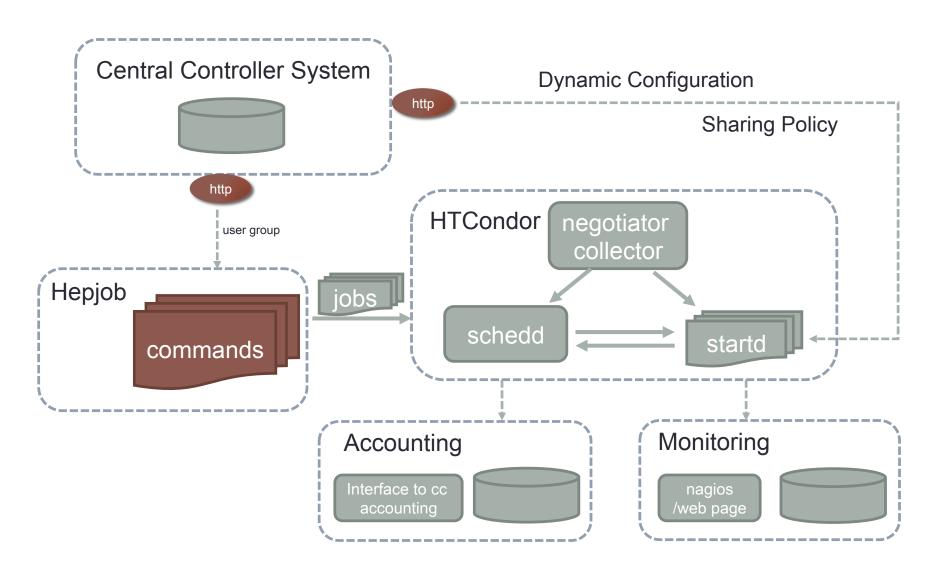
Computing Resource Utility BES Resource - Utility: 99.01%

Status Summary For All Host Groups

offlinerun occupied dvw occupied higgs occupied


cms occupied -- maximum cores physics queue

Global Accounting



- Detailed accounting to each group and each user
- Weighting slots with slow/fast CPU, Memory, Disk, etc.

Put All Together

Migration to HTCondor

Scheduling Policy to HTCondor

Works Designed and Developed

Problems We Met

Problems We Met – dishonest user

- Claimed as a group member which he does not belong to
 - To obtain more job slots with the fake group priority
- Running sshd daemon at work nods
 - ssh to work nodes without password
 - run big MPI task from login node secretly
 - occupied more cpu cores than the slots declaimed in job
- How to deal with
 - Add group priority check at wrapper of work nodes
 - Zombie process check deployed at work nodes to kill the process which does not belong to jobs running on the work node

Problem We Met – job hung

- Sched daemon can not be connected in a short time suddenly
- Jobs are hung and re-queued unexpectedly
- Reason:
 - Default open file limit: 1024
- How to deal with
 - Increase the system limit
 - Restart sched process

03/10/17 17:56:47 (pid:1105883) Started shadow for job 7339826.0 on slot1@bws0472.ihep.ac.cn <192.168.57.232:6795?addrs=192.168.57.232-6795> for physics.mahl, (shadow pid = 3809619) 03/11/17 01:50:56 (pid:1105883) ERROR: Child pid 3809619 appears hung! Killing it hard. 03/11/17 01:50:56 (pid:1105883) Shadow pid 3809619 successfully killed because it was hung. 03/11/17 01:50:56 (pid:1105883) Shadow pid 3809619 for job 7339826.0 exited with status 4 03/11/17 01:50:56 (pid:1105883) ERROR: Shadow exited with job exception code!

Problems We Met – sched owner changed

- The owner of "condor_sched" changed from condor to normal user
- Reason:
 - Disk mounted at Sched server inaccessible
- How to deal with:
 - Disk check added and report to monitoring
 - Version upgrade consideration

Migration to HTCondor

Scheduling Policy to HTCondor

What We have Done

Problems We Met

Summary and Future Work

Summary

- The resource utilization has been significantly improved with the resource sharing policy
- We implemented a number of tools to enhance the system interaction and robustness

Future work

- Automatically tuning the resource sharing ratio according to the overloads of each group
 - The integration of Job Monitoring and Central Controller
- HTCondor sites union

Thank you!

Question?