BNL Box

Hironori Ito
Brookhaven National Laboratory
Spring HEPiX, Budapest, Hungary
April, 2017
Concept

- All of us need the convenient method to transfer or access data in different systems
 - Users might need to copy their analysis scripts and the data between their workstations and central analysis farm separated by different network and firewalls
 - System administrators might need to transfer custom software packages to their systems for installations.
- In BNL RACF, AFS has been the storage of choice for moving small amount of data in/out of various systems.
- AFS limitation
 - Being phased out
 - Not really universally accessible.
 - Not easiest one to use in various platform.

- Commercial cloud storage seems to be popular among some of users and sys-admins.
 - Dropbox, Box, Amazon Cloud Drive, Google Drive, MS OneDrive, etc…
 - Advantages of commercial cloud storage
 - Already available for use
 - Easy to use. All of them provide https-based access.
 - Free (up to some level)
 - Available in various platforms.
 - Limitations
 - Size/Cost/Performance.
 - Archive
 - Not really meant to stream data
Target users

• All users of BNL
 • HEP/Nuclear physics communities
 • Sys-admins
 • Users from different science domains than HEP
 • NSLS-II (National user facility)
 • Massive data producers for many beamlines by many users.
 • Nano Center (National user facility)
 • Another large data producers.
 • Chemistry
 • Biology
 • Etc…
Target usage

• Transfer small data in & out of BNL between central interactive farms, workstations, laptops, and tablets/smart phones.
• Transfer large data in & out of BNL between detector data stores, central storage, remote storage of users.
• Access data to/from analysis computing farm
 • Copy to scratch
 • Stream data
• Archive data
• Owncloud Software
 • Clients are available in many popular platforms; Linux, Mac OS, MS Win, Android and IOS
 • Extremely easy to use.
 • Synchronize data automatically
 • NOTE: Requires the same amount of storage in local and remote storage.
 • Quota for each users
 • Users can share data

• Ceph Storage
 • Currently Infernalis. Targeting Kraken.
 • Reliability
 • CephFS
 • 3.8PB Raw -> 7.5PB by the end of 2017
 • Performance
 • 40Gbps for BNL Box
Mobile APP
Android / iOS

Laptop / Desktop App
MS Win / Mac / Linux

Worker Nodes

Request to restore the data from archive

Owncloud

Custom easy-to-use copy-command

Tape Restore Control

Custom XROOTd
Name-to-name
Translation to isolate a user to own data

dCache
HPSS Tape Archive

CephFS

XROOTd

70 YEARS OF DISCOVERY
A CENTURY OF SERVICE
WebDAV access and Sync

• Default sync app seems to synchronize data at the top rate of about 100MB/s per client. (100MB/s = 360GB/Hr = 8.6TB)
 • Sufficient for small data ~ less than TB.
 • Most users won’t need or physically have higher throughputs in their systems.
 • Spinning DiskI/O on desktop (~100MB/s).
 • Wifi N (max 300Mbps~40MB/s)
 • LAN (1Gbps=120MB/s)
 • Disks are not much larger (currently max at about 10TB)

• High demand users require higher throughput.
 • 10TB or more.
 • Owncloud supports standard WebDAV protocol
 • Easy to write a custom copy tool.
 • Easily achieve 150MB/s per single file transfer.
 • Concurrent multiple transfer of files will results in obtaining desired throughputs.
 • NOTE: Different SSL library seem to impact the observed throughput of WebDAV command. For an example, “curl” in RHEL 7 is compiled with NSS. This version of “curl” produces 1/5 of throughput of “curl” using OpenSSL.
Stream Access

• XROOTd and WebDAV can stream data
• Would like to separate the data-sync operations from the data-read access as much as reasonably possible.
• XROOTd can cleverly map user data in BNL Box in a very simple way.
 • Owncloud web URL maps a user data by https://host/owncloud/index.php/apps/files/MYDATA
 • This is different from how Owncloud physically stores user data in its storage as /base-directory/username/files/MYDATA
 • XROOTd can cleverly hide “username” of physical files by providing access by root://host/files/MYDATA
 • Courtesy of Andrew Hanushevsky from XROOTd
Archive data

- Some users would like to archive or store data in the tape system.
 - Will the data be read again?
- Difficulties
 - Efficiency
 - Read throughput
 - Reading small fraction in many different tapes will result in low throughput.
 - Seek is slow.
 - Mounting a tape is very slow.
- Must write in a particular way to produce the good read-IO.

- Rule
 - "/Tapes/" directory will be used to indicate data to be stored to the tape system.
 - Files smaller than certain size (1GB) will be tarred to produce a large file.
 - Tar files smaller than 1GB will be archived to tape only after a certain period.
 - Once files are transferred to the archival system, they will be removed from "/Tapes/" directory.
 - Reduce the usage of quota.
 - Create index or individual local catalog file to record the data in the archival system.
 - The above index will be synchronized by the owncloud to their local machine.
 - Also update the central catalog for archived data.
 - Restore requests will be made through a Web interface.
 - Data will be restored to different directory.
• Users only see their own directory.
• Users can share their data publicly or privately with password.
Using the provided app, users can decide what to sync automatically. For an example:

- Data and Tapes directories are not synchronized.
- Codes, Documents, Photos directories are synchronized automatically.

Desktop/Laptop apps are available in MS Win, Mac and Linux. The performance seems to be limited to the maximum of 100MB/s.
Conclusion

• Cloud storage could be potentially useful for data intensive scientific communities.

• BNL Box will provide our users with ability to store and access their data anywhere by the easy-to-use applications on various platforms.

• BNL Box allows the owners of the data to share with anyone without involvement of the system administrator.