Electroweak Corrections to W/Z Production

Stefan Dittmaier

Albert-Ludwigs-Universität Freiburg

Contents

Introduction

Electroweak corrections to W production

Combination of QCD and EW corrections

Parton-shower-improved predictions

Conclusions

Introduction

 ${\it M}_{\rm W}$ measurements @ Tevatron and LHC

- $\mathsf{CDF:} \quad 80.387 \,\mathrm{GeV} \pm 19 \,\mathrm{MeV}$
 - **D0:** $80.375 \,\text{GeV} \pm 23 \,\text{MeV}$
- ATLAS: $80.370 \,\mathrm{GeV} \pm 19 \,\mathrm{MeV}$

a) transverse W-boson mass

from fits to distributions in

b) transverse lepton momentum $p_{\mathrm{T},l}$

Sensitivity to $M_{\rm W}$ via Jacobian peaks from ${\rm W}$ resonance at

Physikalisches Institut

 $M_{\mathrm{T},l\nu} \sim M_{\mathrm{W}}$ $p_{\mathrm{T},l} \sim M_{\mathrm{W}}/2$

 \Rightarrow Reduction of $\Delta M_{\rm W}$ requires high theoretical precision in W resonance region !

Spirit of this talk

- review EW corrections to single-W/Z production processes
- particular focus to resonance regions EW corrections: $\Delta M_{W}^{EW} \sim 100(50) \,\text{MeV}$ for bare (dressed) leptons
- emphasize recent developments
- set the stage for a discussion of EW issues / uncertainties

Decay channel	W –	$\rightarrow e\nu$	$W \to \mu \nu$		
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	
$\delta m_W \; [{ m MeV}]$					
FSR (real)	< 0.1	< 0.1	< 0.1	< 0.1	
Pure weak and IFI corrections	3.3	2.5	3.5	2.5	
FSR (pair production)	3.6	0.8	4.4	0.8	
Total	4.9	2.6	5.6	2.6	

ATLAS-CONF-2016-113:

Electroweak corrections to W production

SM predictions for W/Z production:

NNLO QCD (differential)	Melnikov, Petriello '06; Catani et al. '09; Gavin et al. '10,'12
QCD resummations / parton showers	Arnold, Kauffman '91; Balazs et al. '95; R.K.Ellis et al. '97; Qiu, Zhang '00; Kulesza et al. '01,'02;
NLO EW (+ h.o. improvements)	Baur et al. '97–'04; Brein et al. '99; S.D., Krämer '01 Zykunov '01,'05; Arbuzov et al. '05,'06; Carloni Calame et al. '06,'07; Brensing et al. '07 S.D., Huber '09
NLO QCD/EW POWHEG matching	Bernaciak, Wackeroth '12; Barze et al. '12,'13; Mück, Oymanns '16
NNLO QCD + parton shower	Hoeche et al. '14; Karlberg et al. '14
$\mathcal{O}(\alpha \alpha_{\mathrm{s}})$ corrs. near resonances	S.D., Huss, Schwinn '14,'15
Theoretical uncertainties in $M_{\rm W}$ determination	Carloni Calame et al. '16

Ingredients of the NLO EW calculation

Loop corrections:

Field-theoretical requirement:

gauge-invariant description of resonance with higher-order corrections

Break-ups of the EW corrections:

• Near resonance: pole expansion separates production and decay

Initial-State (IS) corr.

Final-State (FS) corr.

Non-fact. IS-FS corr.

Note:

- Splitting possible both for W and Z production
- splitting only meaningful near resonance
- Separation of photonic corrections:
 - not meaningful for W production
 - \hookrightarrow only leading-log part of photonic corrections unique
 - meaningful and useful for Z production
 - \hookrightarrow 4 gauge-independent parts at NLO:
 - photonic FS corrs. $\propto Q_\ell^2$, IS corrs. $\propto Q_q^2$, IS–FS corrs. $\propto Q_q Q_\ell$
 - purely weak corrections

Transverse-mass distribution for W production

Features of $M_{T,\nu l}$:

- stability wrt QCD corrs./uncertainties (insensitive to jet recoil)

Corrections:

- QCD corrections quite flat near resonance
- EW corrections distort resonance shape

Transverse-mass distribution for W production

Features of $M_{T,\nu l}$:

- stability wrt QCD corrs./uncertainties (insensitive to jet recoil)

Break-up of the EW correction:

- Pole Approximation
 = IS + FS + non-fact, IS-FS
- resonance distortion merely due to factorizable FS correction
- factorizable IS and non-fact. corrections flat (and even negligible)

Transverse-momentum distribution for $\operatorname{W}\nolimits$ production

Features of $p_{T,l}$:

- stability wrt detector effects
- sensitive to QCD effects/modelling/uncertainties

Corrections:

- QCD corrections huge above resonance (jet recoil)
- EW corrections distort resonance shape as well

Transverse-momentum distribution for $\operatorname{W}\nolimits$ production

Features of $p_{T,l}$:

- stability wrt detector effects
- sensitive to QCD effects/modelling/uncertainties

Break-up of the EW corrections:

- PA works well near resonance
- factorizable FS corrs. distort resonance shape
- factorizable IS corrs. overwhelmed by QCD
- non-fact. corrs. flat and negligible

Carloni Calame et al. '16

$pp ightarrow W^+$, $\sqrt{s} = 14~{ m TeV}$	$M_{ m W}$ shifts (MeV)				_
Templates accuracy: LO	$W^+ \to \mu^+ \nu$		$W^+ ightarrow e^+ u$ (bare)		e)
Pseudo-data accuracy	M_T	p_T^ℓ	M_T	p_T^ℓ	Difference is
HORACE only FSR-LL at $\mathcal{O}(lpha)$	-94±1	-104±1	-204±1	-230±2	multi- γ effect beyond NLL FSR
HORACE FSR-LL	-89±1	-97±1	-179±1	-195±1	
HORACE NLO-EW with QED shower	-90±1	-94±1	-177±1	-190±2	
HORACE FSR-LL + Pairs	-94±1	-102±1	-182±2	-199±1	
PHOTOS FSR-LL	-92±1	-100±2	-182±1	-199±2	

Carloni Calame et al. '16

$pp ightarrow W^+$, $\sqrt{s} = 14~{ m TeV}$		$M_{ m W}$ s	_		
Templates accuracy: LO	$W^+ \to \mu^+ \nu$		$W^+ ightarrow e^+ u$ (bare)		e)
Pseudo-data accuracy	M_T	p_T^ℓ	M_T	p_T^ℓ	Difference is
HORACE only FSR-LL at $\mathcal{O}(lpha)$	-94±1	-104±1	-204±1	-230±2	
HORACE FSR-LL	-89±1	-97±1	-179±1	-195±1	
HORACE NLO-EW with QED shower	-90±1	-94±1	-177±1	-190±2	NLO EW - FSR LL
HORACE FSR-LL + Pairs	-94±1	-102±1	-182±2	-199±1	
PHOTOS FSR-LL	-92±1	-100±2	-182±1	-199±2	

Carloni Calame et al. '16

$pp ightarrow W^+$, $\sqrt{s} = 14~{ m TeV}$		$M_{ m W}$ s	-		
Templates accuracy: LO	$W^+ \to \mu^+ \nu$		$W^+ ightarrow e^+ u$ (bare))
Pseudo-data accuracy	M_T	p_T^ℓ	M_T	p_T^ℓ	Difference is
HORACE only FSR-LL at $\mathcal{O}(lpha)$	-94±1	-104±1	-204±1	-230±2	
HORACE FSR-LL	-89±1	-97±1	-179±1	-195±1	
HORACE NLO-EW with QED shower	-90±1	-94±1	-177±1	-190±2	
HORACE FSR-LL + Pairs	-94±1	-102±1	-182±2	-199±1	lepton-pair correction
PHOTOS FSR-LL	-92±1	-100±2	-182±1	-199±2	_

Carloni Calame et al. '16

$pp ightarrow W^+$, $\sqrt{s} = 14~{ m TeV}$	$M_{ m W}$ shifts (MeV)				-
Templates accuracy: LO	$W^+ \to \mu^+ \nu$		$W^+ ightarrow e^+ u$ (bare		
Pseudo-data accuracy	M_T	p_T^ℓ	M_T	p_T^ℓ	Difference is
HORACE only FSR-LL at $\mathcal{O}(lpha)$	-94±1	-104±1	-204±1	-230±2	
HORACE FSR-LL	-89±1	-97±1	-179±1	-195±1	
HORACE NLO-EW with QED shower	-90±1	-94±1	-177±1	-190±2	
HORACE FSR-LL + Pairs	-94±1	-102±1	-182±2	-199±1	
Рнотоs FSR-LL	-92±1	-100±2	-182±1	-199±2	\sim FSR LL uncertainty $\sim 3{\rm MeV}$

Combination of QCD and EW corrections

Combination of QCD and EW corrections to inclusive W/Z production

Issue unambiguously fixed only by calculating the 2-loop $\mathcal{O}(\alpha \alpha_s)$ corrections, until then rely on approximations and estimate the uncertainties:

Balossini et al. '09 (HORACE)

 \hookrightarrow limits precision in $M_{\rm W}$ measurement

Dominant $\mathcal{O}(\alpha \alpha_s)$ corrections calculated for resonance region S.D., Huss, Schwinn '14,'15

Full calculation in progress in various groups ...

$\mathcal{O}(\alpha \alpha_{\rm s})$ corrections in pole approximation $_{\rm S.D.,\ Huss,\ Schwinn\ '14,'15}$

 \hookrightarrow take only leading (=resonant) contributions in expansion about resonance poles

Factorizable contributions:

Non-factorizable contributions:

Physikalisches Institu

(only virtual contributions indicated)

- not yet known, but no significant resonance distortion expected
- no PDFs with $\mathcal{O}(\alpha \alpha_{\rm s})$ corrections
- only $V l \overline{l}'$ counterterm contributions
- calculated \rightarrow very small, uniform correction
- significant resonance distortions from FSR
- calculated and compared to leading-log parton shower approach

(only virtual contributions indicated)

- could induce shape distortions
- \bullet calculated \rightarrow phenomenologically negligible

Initial–final factorizable $\mathcal{O}(\alpha \alpha_{\rm s})$ corrections

Initial–final factorizable $\mathcal{O}(\alpha \alpha_s)$ corrections S.D., Huss, Schwinn '15

(γ recombination applied, "dressed leptons")

Naive factorization works!

Naive factorization deteriorates for $p_{{\rm T},\mu^+}\gtrsim M_{\rm W}/2$

Important issues:

W production:

- comparison of $\delta_{\alpha_s \alpha}^{\text{ini-fin}}$ with MC approach $d\sigma_{\alpha_s} \otimes (\gamma \text{ shower})$
- estimate shifts in $M_{
 m W}$ by $\delta^{
 m ini-fin}_{lpha_{
 m s}lpha}$

Initial–final factorizable $\mathcal{O}(\alpha \alpha_s)$ corrections S.D., Huss, Schwinn '15

W production:

(γ recombination applied, "dressed leptons")

Two QED FSR leading-log approaches:

- QED structure-function:
- QED parton-shower PHOTOS

Barberio, van Eijk, Was

Estimated shift $\Delta M_W^{\alpha_s \alpha}$:fixed orderPOWHEG-V2two-rad (Carloni Calame et al. '16)bare μ $-14 \,\mathrm{MeV}$ $-16.0 \pm 3 \,\mathrm{MeV}$ good agreement!dressed leptons $-4 \,\mathrm{MeV}$?

"Differential factorization" works!

Parton-shower-improved predictions

Impact of QCD corrections on QED parton showers:

Carloni Calame et al. '16

 $QED FSR = QED_{PS} / LO, HORACE$

QED FSR + mixed QCD-QED = $QCD_{NLOPS} \otimes QED_{PS} / QCD_{NLOPS}$, POWHEG-V2

Note: $(NLO QCD + PS) \otimes QED PS misses$ $(NLO QCD + PS) \otimes (non-FSR NLO EW)$

← improved by POWHEG-V2two-rad (see also Mück, Oymanns '16)

NLO EW PS matching - Resonance improvement necessary!

Carloni Calame et al. '16; Mück, Oymanns '16

Impact of EW matching without resonance improvement:

Effect of resonance improvement:

WG report CERN-LPCC-2016-002 [1606.02330]

Mück, Oymanns '16

Missing resonance improvement leads to artefacts of $\sim 0.5-1\%$ in M_T distribution!

Improved results based on (NLO QCD + PS) \otimes (NLO EW + PS)

Carloni Calame et al. '16

QED FSR + mixed QED-QCD = QCD_{NLOPS} \otimes QED_{PS} / QCD_{NLOPS}

 $\label{eq:QEDFSR} \mbox{ + mixed EW-QCD } \mbox{ = QCD}_{\rm NLOPS} \otimes \mbox{ EW}_{\rm NLOPS} \mbox{ / QCD}_{\rm NLOPS}, \mbox{ Powheg-v2two-rad}$

EW shifts on $M_{\rm W}$ by NLO-PS-matched corrections wrt LO predictions

Carloni Calame et al. '16

$pp ightarrow W^+$, $\sqrt{s} = 14~{ m TeV}$	$M_{ m W}$ shifts (MeV)				
Templates accuracy: NLO-QCD+QCD $_{\mathrm{PS}}$		$W^+ o \mu^+ \nu$		$W^+ ightarrow e^+ u$ (dres)	
Pseudodata accuracy	QED FSR	M_T	p_T^ℓ	M_T	p_T^ℓ
NLO-QCD+(QCD+QED) $_{\rm PS}$	Ργτηια	-95.2±0.6	-400±3	-38.0±0.6	-149±2
NLO-QCD+(QCD+QED) $_{\mathrm{PS}}$	Рнотоз	-88.0±0.6	-368±2	-38.4±0.6	-150±3
$NLO\text{-}(QCD\text{+}EW)\text{+}(QCD\text{+}QED)_{\mathrm{PS}}\text{two-rad}$	Ρυτηία	-89.0±0.6	-371±3	-38.8±0.6	-157±3
$NLO\text{-}(QCD\text{+}EW)\text{+}(QCD\text{+}QED)_{\mathrm{PS}}\text{two-rad}$	Рнотоз	-88.6±0.6	-370±3	-39.2±0.6	-159±2

• Impact of QCD corrs. on EW shift $\Delta M_{\rm W}$:

 $\sim 1 \,\mathrm{MeV}$ in M_T , but some $100 \,\mathrm{MeV}$ in p_T^ℓ

• PHOTOS shower closer to full NLO EW than PYTHIA shower

 $\hookrightarrow\,$ use $\ensuremath{\mathsf{Pythia}}$ shower only with full NLO EW

• updated version POWHEG-v2two-rad should be used (changes in $\Delta M_{\rm W}$ by $\sim 5-10$ MeV in M_T)

 \hookrightarrow estimated accuracy in $\Delta M_{\rm W}$: $\sim 1-2 \,{\rm MeV}$

Note: Extraction of $\Delta M_{W}^{\alpha_{s}\alpha} = -16 \text{ MeV}$ induced by mixed QCD–EW corrs. requires several runs with different setups.

Conclusions

$M_{\rm W}$ determination @ LHC

- recent ATLAS measurement catches up with Tevatron result ($\Delta M_{\rm W} = 19 \,\mathrm{MeV}$)
- promises $M_{
 m W}$ with accuracy $\Delta M_{
 m W} \lesssim 10 \, {
 m MeV}$

Precision calculations for Drell-Yan physics

- NNLO QCD + NLO EW + QCD resummations etc. known
- dominant $\mathcal{O}(\alpha \alpha_{\rm s})$ correction near resonances
- POWHEG matching for NLO QCD+EW
 QCD+QED PS
 public tool: POWHEG-v2two-rad

Open issues / room for improvement

- general-purpose MC generator with state-of-the-art QCD and EW corrections
- full $\mathcal{O}(\alpha \alpha_{\rm s})$ correction

$M_{\rm W}$ determination @ LHC

- recent ATLAS measurement catches up with Tevatron result ($\Delta M_{\rm W} = 19 \,\mathrm{MeV}$)
- promises $M_{
 m W}$ with accuracy $\Delta M_{
 m W} \lesssim 10 \, {
 m MeV}$

Precision calculations for Drell-Yan physics

- NNLO QCD + NLO EW + QCD resummations etc. known
- dominant $\mathcal{O}(\alpha \alpha_{\rm s})$ correction near resonances
- POWHEG matching for NLO QCD+EW
 QCD+QED PS
 public tool: POWHEG-v2two-rad

Open issues / room for improvement

- general-purpose MC generator with state-of-the-art QCD and EW corrections
- full $\mathcal{O}(\alpha \alpha_{\rm s})$ correction

"In football as in watchmaking, talent and elegance mean nothing without rigour and precision." particle theory [Lionel Messi]

Backup slides

EW corrections to Z production

Invariant-mass distribution for Z production

Reference process for $M_{\rm W}$ measurement

Corrections:

- QCD corrections quite flat near resonance
- EW corrections distort resonance shape

Invariant-mass distribution for \mathbf{Z} production

Reference process for $M_{\rm W}$ measurement

Break-up of the EW corrections:

- PA reproduces EW corr near resonance
- resonance distortion merely due to factorizable FS correction
- factorizable IS and non-fact. corrections flat (and even negligible)

Isolation of NLO weak corrections to M_{ll} distribution in Z production

- photonic corrections deliver major effect!
 - \diamond large radiative tail for $M_{ll} \lesssim M_Z$ from photonic final-state radiation
 - ◇ photon recombination (=dressed leptons) reduces FSR corrs. drastically (cancellation of large mass-singular corrections ∝ ($\alpha \ln m_\ell$)ⁿ a la KLN)
- weak corrections only moderate $\sim O(1\%)$ at $M_{ll} \sim M_Z$

EW corrections beyond NLO to M_{ll} distribution in Z production

- multi-photon emission significant in resonance region
- higher-order weak corrs. ($\Delta \alpha$, $\Delta' rho$) negligible at $M_{ll} \sim M_Z$
- $q\gamma/\gamma\gamma$ channels negligible at $M_{ll} \sim M_Z$

Initial–final factorizable $O(\alpha \alpha_s)$ corrections S.D., Huss, Schwinn '15

Z production: (no γ recombination applied, "bare leptons")

"naive factorization"

versus

"differential factorization"

Naive factorization fails !

Differential factorization works!

FSR off leptons

Collinear final-state radiation (FSR) off leptons

Leading logarithmic effect is universal:

$$\sigma_{\rm LL,FSR} = \int \underbrace{\mathrm{d}\sigma^{\rm LO}(k_l)}_{\text{hard scattering}} \int_0^1 \mathrm{d}z \quad \underbrace{\Gamma_{\ell\ell}^{\rm LL}(z,Q^2)}_{\text{leading-log structure}} \Theta_{\rm cut}(zk_l)$$

function, Q =typ. scale

 k_{ℓ}

- $\Gamma_{\ell\ell}^{\text{LL}}(z,Q^2)$ known to $\mathcal{O}(\alpha^5)$ + soft exponentiation, equivalent description by QED parton showers
- $\mathcal{O}(\alpha)$ approximation: $\Gamma_{\ell\ell}^{\mathrm{LL},1}(z,Q^2) = \frac{\alpha(0)}{2\pi} \left[\ln\left(\frac{Q^2}{m_\ell^2}\right) 1 \right] \left(\frac{1+z^2}{1-z}\right)$
 - Alternative approach: QED parton shower
 - \hookrightarrow advantage: photons described with finite p_{T} and definite multiplicity

Impact on predictions:

- log-enhanced corrections for "bare" leptons (muons) \rightarrow large radiative tails
- KLN theorem: mass-singular FSR effects cancel if $(\ell \gamma)$ system is inclusive (full integration over z)
- full FSR not universal, in general not even separable from other EW corrections

Higher-order photonic corrections:

Multi- γ effects (beyond NLO!) relevant near resonance, logarithmic approximations by structure-functions and parton showers in good agreement

 \hookrightarrow uncertainties can be estimated by scale variations

More on mixed QCD–EW corrections

Comparison of EW corrections to W+jet and single (jet-inclusive) W production

 $\,\hookrightarrow\,$ argument for factorization QCD \times EW if EW corrections coincide

Physikalisches Institut

Comparison of EW corrections to W+jet and single (jet-inclusive) W production

 $\hookrightarrow\,$ argument for factorization QCD $\times \text{EW}$ if EW corrections coincide

Physikalisches Institut

Stefan Dittmaier, Electroweak Corrections to W/Z Production V

Full $\mathcal{O}(\alpha \alpha_{\rm s})$ corrections versus naive factorization

NLO QCD and EW corrections:

$$\sigma^{\mathrm{NLO}_{\mathrm{s}}} \equiv \sigma^{\mathrm{LO}} \underbrace{\left(1 + \delta_{\alpha_{\mathrm{s}}}\right)}_{=K_{\mathrm{QCD}}^{\mathrm{NLO}}} = \sigma^{0} + \sigma^{\mathrm{LO}} \underbrace{\left(\frac{\sigma^{\mathrm{LO}} - \sigma^{0}}{\sigma^{\mathrm{LO}}} + \delta_{\alpha_{\mathrm{s}}}\right)}_{\equiv \delta_{\alpha_{\mathrm{s}}}'},$$

 $\Delta \sigma^{\text{NLO}_{ew}} = \sigma^0 \, \delta_{\alpha}, \qquad \sigma^0 = \text{LO contribution with NLO PDFs}$

 $\mathcal{O}(\alpha \alpha_{\rm s})$ -corrected cross section:

$$\sigma^{\mathrm{NNLO}_{\mathrm{s}\otimes\mathrm{ew}}} = \sigma^{\mathrm{NLO}_{\mathrm{s}}} + \Delta \sigma^{\mathrm{NLO}_{\mathrm{ew}}} + \underbrace{\Delta \sigma^{\mathrm{NNLO}_{\mathrm{s}\otimes\mathrm{ew}}}_{\mathrm{ini-fin}}}_{=\sigma^{\mathrm{LO}}\,\delta^{\mathrm{ini-fin}}_{\alpha_{\mathrm{s}}\alpha}}$$

Naive factorization @ $\mathcal{O}(\alpha \alpha_s)$:

 $\sigma_{\text{naive fact}}^{\text{NNLO}_{s\otimes ew}} = \sigma^{\text{NLO}_{s}}(1+\delta_{\alpha}) = \sigma^{\text{LO}}(1+\delta_{\alpha_{s}})(1+\delta_{\alpha})$

\Rightarrow Comparison of relative corrections:

$$\frac{\sigma^{\mathrm{NNLO}_{\mathrm{s}\otimes\mathrm{ew}}} - \sigma^{\mathrm{NNLO}_{\mathrm{s}\otimes\mathrm{ew}}}_{\mathrm{naive fact}}}{\sigma^{\mathrm{LO}}} = \delta^{\mathrm{ini-fin}}_{\alpha_{\mathrm{s}}\alpha} - \delta'_{\alpha_{\mathrm{s}}} \frac{\delta_{\alpha}}{\delta_{\alpha}}$$

Unstable particles in QFT

Problem of unstable particles:

description of resonances requires resummation of propagator corrections → mixing of perturbative orders potentially violates gauge invariance

 $\Sigma(p^2)={\rm renormalized}$ self-energy, $\ m={\rm ren.}\mbox{ mass}$

stable particle: $\operatorname{Im}\{\Sigma(p^2)\} = 0 \text{ at } p^2 \sim m^2$

 \hookrightarrow propagator pole for real value of p^2 , renormalization condition for physical mass m: $\Sigma(m^2) = 0$

unstable particle: $\operatorname{Im}\{\Sigma(p^2)\} \neq 0 \text{ at } p^2 \sim m^2$

 \hookrightarrow location μ^2 of propagator pole is complex, possible definition of mass *M* and width Γ : $\mu^2 = M^2 - iM\Gamma$

Commonly used mass/width definitions:

• "on-shell mass/width"
$$M_{OS}/\Gamma_{OS}$$
: $M_{OS}^2 - m^2 + \operatorname{Re}\{\Sigma(M_{OS}^2)\} \stackrel{!}{=} 0$
 $\hookrightarrow G^{\phi\phi}(p) \xrightarrow{p^2 \to M_{OS}^2} \frac{1}{(p^2 - M_{OS}^2)(1 + \operatorname{Re}\{\Sigma'(M_{OS}^2)\}) + i\operatorname{Im}\{\Sigma(p^2)\}}$
comparison with form of Breit–Wigner resonance $\frac{R_{OS}}{p^2 - m^2 + im\Gamma}$
yields: $M_{OS}\Gamma_{OS} \equiv \operatorname{Im}\{\Sigma(M_{OS}^2)\} / (1 + \operatorname{Re}\{\Sigma'(M_{OS}^2)\}), \qquad \Sigma'(p^2) \equiv \frac{\partial\Sigma(p^2)}{\partial p^2}$
• "pole mass/width" M/Γ : $\mu^2 - m^2 + \Sigma(\mu^2) \stackrel{!}{=} 0$
complex pole position: $\mu^2 \equiv M^2 - iM\Gamma$
 $\hookrightarrow G^{\phi\phi}(p) \xrightarrow{p^2 \to \mu^2} \frac{1}{(p^2 - \mu^2)[1 + \Sigma'(\mu^2)]} = \frac{R}{p^2 - M^2 + iM\Gamma}$

Note: $\mu =$ gauge independent for any particle (pole location is property of *S*-matrix) $M_{OS} =$ gauge dependent at 2-loop order Sirlin '91; Stuart '91; Gambino, Grassi '99; Grassi, Kniehl, Sirlin '01

Relation between "on-shell" and "pole" definitions:

Subtraction of defining equations yields:

Physikalisches Institut

$$M_{\rm OS}^2 + {\rm Re}\{\Sigma(M_{\rm OS}^2)\} = M^2 - iM\Gamma + \Sigma(M^2 - iM\Gamma)$$

Equation can be uniquely solved via recursion in powers of coupling α :

ansatz:
$$M_{OS}^2 = M^2 + c_1 \alpha^1 + c_2 \alpha^2 + \dots$$

 $M_{OS} \Gamma_{OS} = M \Gamma + d_2 \alpha^2 + d_3 \alpha^3 + \dots$, $c_i, d_i = \text{real}$
counting in α : $M_{OS}, M = \mathcal{O}(\alpha^0), \quad \Gamma_{OS}, \Gamma, \Sigma(p^2) = \mathcal{O}(\alpha^1)$

Result:

$$M_{OS}^{2} = M^{2} + \operatorname{Im}\{\Sigma(M^{2})\} \operatorname{Im}\{\Sigma'(M^{2})\} + \mathcal{O}(\alpha^{3})$$
$$M_{OS}\Gamma_{OS} = M\Gamma + \operatorname{Im}\{\Sigma(M^{2})\} \operatorname{Im}\{\Sigma'(M^{2})\}^{2}$$
$$+ \frac{1}{2} \operatorname{Im}\{\Sigma(M^{2})\}^{2} \operatorname{Im}\{\Sigma''(M^{2})\} + \mathcal{O}(\alpha^{4})$$

i.e. $\{M_{OS}, \Gamma_{OS}\} = \{M, \Gamma\} + \text{gauge-dependent 2-loop corrections}$

Important examples: W and Z bosons

In good approximation: $W \to f\bar{f}', \quad Z \to f\bar{f}$ with masses fermions f, f'so that: $\operatorname{Im}\{\Sigma_{\mathrm{T}}^{\mathrm{V}}(p^2)\} = p^2 \times \frac{\Gamma_{\mathrm{V}}}{M_{\mathrm{V}}} \theta(p^2), \quad \mathrm{V} = \mathrm{W}, \mathrm{Z}$ $\hookrightarrow M_{\mathrm{OS}}^2 = M^2 + \Gamma^2 + \mathcal{O}(\alpha^3) \qquad M_{\mathrm{OS}}\Gamma_{\mathrm{OS}} = M\Gamma + \frac{\Gamma^3}{M} + \mathcal{O}(\alpha^4)$

In terms of measured numbers:

W boson: $M_{\rm W} \approx 80 \,{\rm GeV}$, $\Gamma_{\rm W} \approx 2.1 \,{\rm GeV}$ $\hookrightarrow M_{\rm W,OS} - M_{\rm W,pole} \approx 28 \,{\rm MeV}$ Z boson: $M_Z \approx 91 \,{\rm GeV}$, $\Gamma_Z \approx 2.5 \,{\rm GeV}$ $\hookrightarrow M_{\rm Z,OS} - M_{\rm Z,pole} \approx 34 \,{\rm MeV}$ Exp. accuracy: $\Delta M_{\rm W,exp} = 29 \,{\rm MeV}$, $\Delta M_{\rm Z,exp} = 2.1 \,{\rm MeV}$

 \hookrightarrow Difference in definitions phenomenologically important !

Example of W and Z bosons continued:

Approximation of massless decay fermions:

$$\Gamma_{\rm V,OS}(p^2) = \Gamma_{\rm V,OS} \times \frac{p^2}{M_{\rm V,OS}^2} \theta(p^2), \qquad {\rm V} = {\rm W}, {\rm Z}$$

Fit of W/Z resonance shapes to experimental data:

• ansatz
$$\left| \frac{R'}{p^2 - m'^2 + i\gamma' p^2/m'} \right|^2$$
 yields: $m' = M_{V,OS}$, $\gamma' = \Gamma_{V,OS}$
• ansatz $\left| \frac{R}{p^2 - m^2 + i\gamma m} \right|^2$ yields: $m = M_{V,pole}$, $\gamma = \Gamma_{V,pole}$

Note: the two forms are equivalent:

$$R = \frac{R'}{1 + i\gamma'/m'}, \quad m^2 = \frac{{m'}^2}{1 + {\gamma'}^2/{m'}^2}, \quad m\gamma = \frac{m'\gamma'}{1 + {\gamma'}^2/{m'}^2}$$

 $\hookrightarrow\,$ consistent with relation between "on-shell" and "pole" definitions !

