Discussion and Aspects of Vector-Boson p_T Spectrum.

Frank Tackmann

Deutsches Elektronen-Synchrotron

W Boson Mass Workshop Mainz, February 09-10, 2017

< 67 ►

Introduction.

< 🗗 >

- Theory uncertainties for $Z p_T$ spectrum cannot compete with per-mille experimental precision (at least not anytime soon)
- At sub-percent level many things matter (and which we normally like to sweep under the rug)

"Calibrating" W predictions with Z data

One way to think about it

$$\frac{\mathrm{d}\sigma(W)}{\mathrm{d}p_T} = \left[\frac{\mathrm{d}\sigma(W)/\mathrm{d}p_T}{\mathrm{d}\sigma(Z)/\mathrm{d}p_T}\right]_{\mathrm{theory}} \times \left[\frac{\mathrm{d}\sigma(Z)}{\mathrm{d}p_T}\right]_{\mathrm{measured}}$$

- Another way: Use common theory framework and tune to fit Z data
 - Tuning Pythia to Z data improves description for Z but not automatically prediction for W
 - Still relies on how well Pythia predicts the ratio (and not just for p_T spectrum but ultimately multi-differentially)

Frank Tackmann (DESY)

Discussion & Aspects of V pT Spectrum

- Theory uncertainties for *Z p*_{*T*} spectrum cannot compete with per-mille experimental precision (at least not anytime soon)
- At sub-percent level many things matter (and which we normally like to sweep under the rug)

"Calibrating" W predictions with Z data

- \Rightarrow *Either way*, correlations of theory uncertainties between $d\sigma(W)/dp_T$ and $d\sigma(Z)/dp_T$ are crucial
 - Correlations (only) come from common sources of uncertainties
 - In principle straightforward for parametric uncertainties (PDFs)
 - More tricky for theory uncertainties but also not impossible:
 E.g. try to probe (largely) independent perturbative effects/series by independent scale variations

The p_T Spectrum.

Spectrum transitions between different kinematic regimes

- Precise prediction requires consistent treatment of theory uncertainties across differential spectrum
 - quite nontrivial because it requires nontrivial correlations, which are not going to be captured by simple factor-2 scale variations

Perturbative Structure - Singular vs. Nonsingular.

Consider both differential and cumulative distribution

• Define scaling variable $au\equiv p_T^2/Q^2$ and $\sigma(au^{
m cut})=\int^{ au=t}{
m d} aurac{{
m d}\sigma}{{
m d} au}$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \sum_{k} \alpha_{s}^{k} \left\{ c_{k,-1}\delta(\tau) + \sum_{n=0}^{2k-1} c_{kn} \left[\frac{\mathrm{ln}^{n}\tau}{\tau} \right]_{+} + f_{k}^{\mathrm{nons}}(\tau) \right\}$$
$$\tau(\tau^{\mathrm{cut}}) = \sum_{k} \alpha_{s}^{k} \left\{ c_{k,-1} + \sum_{n=0}^{2k-1} c_{kn} \frac{\mathrm{ln}^{n+1}\tau^{\mathrm{cut}}}{n+1} + F_{k}^{\mathrm{nons}}(\tau^{\mathrm{cut}}) \right\}$$
""singular" "nonsingular"

singular: leading-power terms

- to be resummed
- $c_{k,-1}$ contains k-loop virtuals (i.e. finite remainder after real-virtual cancellation)

nonsingular: power corrections

- suppressed by relative $\mathcal{O}(\tau)$
- $au f_k^{\mathrm{nons}}(au)$ and $F_k^{\mathrm{nons}}(au^{\mathrm{cut}})$ vanish for $au^{(\mathrm{cut})} o 0$

Frank Tackmann (DESY)

< **∂** >

Different Regions Require Different Theory.

Resummation region

- Spectrum at low $p_T \ll Q$ and cross section with cut $p_T^{
 m cut} \ll Q$
 - Singular dominate and must be resummed (nonsingular are power-suppressed)
 - Fixed-order by itself becomes meaningless here
 - In MC: Parton shower regime

Different Regions Require Different Theory.

Fixed-order region

- Spectrum at high $p_T \sim Q$
 - Fixed-order calculation for inclusive V+1-jet process
 - In MC: Fixed-order matrix elements
- Integral over $p_T \leq p_T^{\mathrm{cut}} \sim Q$
 - ► → inclusive Drell-Yan cross section

Different Regions Require Different Theory.

Transition region

- Experimentally often the most relevant: $p_T \sim 20 30 \, {
 m GeV}$
- While theoretically the most subtle
 - Requires consistent combination of resummation (singular) and fixed-order (nonsingular) pieces
 - In MC: This is where ME+PS matching/merging comes in

Resummation.

< 67 >

Resummation.

Singular terms of the p_T spectrum factorize into hard, collinear, and soft contributions

$$\frac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}\vec{p}_{T}} = \sigma_{0} H(Q,\mu) \int \mathrm{d}^{2}\vec{k}_{a} \,\mathrm{d}^{2}\vec{k}_{b} \,\mathrm{d}^{2}\vec{k}_{s} \\ \times B_{a}(\vec{k}_{a},\mu,\nu) B_{b}(\vec{k}_{b},\mu,\nu) \\ \times \frac{S(\vec{k}_{s},\mu,\nu)}{\delta(\vec{p}_{T}-\vec{k}_{a}-\vec{k}_{b}-\vec{k}_{s})} \int_{\mathrm{Soft}} \int_{\mathrm{Soft}$$

All-order structure of singular terms is fully determined by coupled system of differential equations (including their boundary conditions)

• in virtuality scale μ

$$\mu \frac{\mathrm{d}H(Q,\mu)}{\mathrm{d}\mu} = \gamma_H(Q,\mu) H(Q,\mu)$$
$$\mu \frac{\mathrm{d}B(\vec{p}_T,\mu,\nu)}{\mathrm{d}\mu} = \gamma_B(\mu,\nu) B(\vec{p}_T,\mu,\nu)$$
$$\mu \frac{\mathrm{d}S(\vec{p}_T,\mu,\nu)}{\mathrm{d}\mu} = \gamma_S(\mu,\nu) S(\vec{p}_T,\mu,\nu)$$

Resummation.

Singular terms of the p_T spectrum factorize into hard, collinear, and soft contributions

$$\frac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}\vec{p}_{T}} = \sigma_{0} H(Q,\mu) \int \mathrm{d}^{2}\vec{k}_{a} \,\mathrm{d}^{2}\vec{k}_{b} \,\mathrm{d}^{2}\vec{k}_{s} \\ \times B_{a}(\vec{k}_{a},\mu,\nu) B_{b}(\vec{k}_{b},\mu,\nu) \\ \times \frac{S(\vec{k}_{s},\mu,\nu)}{\delta(\vec{p}_{T}-\vec{k}_{a}-\vec{k}_{b}-\vec{k}_{s})} \int_{\mathrm{Soft}} \int_{\mathrm{Soft}$$

All-order structure of singular terms is fully determined by coupled system of differential equations (including their boundary conditions)

• and rapidity scale ν (or ζ)

$$\begin{split} \nu \frac{\mathrm{d}B(\vec{p}_T, \mu, \nu)}{\mathrm{d}\nu} &= -\frac{1}{2} \int \mathrm{d}^2 \vec{k}_T \, \gamma_\nu(\vec{k}_T, \mu) \, B(\vec{p}_T - \vec{k}_T, \mu, \nu) \\ \nu \frac{\mathrm{d}S(\vec{p}_T, \mu, \nu)}{\mathrm{d}\nu} &= \int \mathrm{d}^2 \vec{k}_T \, \gamma_\nu(\vec{k}_T, \mu) \, S(\vec{p}_T - \vec{k}_T, \mu, \nu) \\ \mu \frac{\mathrm{d}}{\mathrm{d}\mu} \gamma_\nu(\vec{k}_T, \mu) &= \nu \frac{\mathrm{d}}{\mathrm{d}\nu} \gamma_S(\mu, \nu) \delta(\vec{k}_T) = -4\Gamma_{\mathrm{cusp}}[\alpha_s(\mu)] \delta(\vec{k}_T) \end{split}$$

Resummation Orders.

Analytic resummation amounts to solving this system of differential equations

- Formal resummation accuracy is fundamentally defined by perturbative input used for anomalous dimensions and boundary conditions
 - When performed in Fourier space (as in standard CSS), solution is an exponential, and resummation orders map onto the common counting of logarithms in the exponent
 - However, counting logarithms in physical p_T space turns out to be a very slippery slope that should be avoided (and can be [see Ebert, FT '16])

	Boundary conditions	Anomalous dimensions		FO matching
	(singular)	$\gamma_{H,B,S, u}$	$\Gamma_{ ext{cusp}},oldsymbol{eta}$	(nonsingular)
NLL	1	1-loop	2-loop	-
NLL ^(/) +NLO	$lpha_s$	1-loop	2-loop	$lpha_s$
NNLL+NLO	$lpha_s$	2-loop	3-loop	$lpha_s$
NNLL ^(/) +NNLO	$lpha_s^2$	2-loop	3-loop	$lpha_s^2$
N ³ LL+NNLO	$lpha_s^2$	3-loop	4-loop	$lpha_s^2$
$N^{3}LL^{(\prime)}+N^{3}LO$	$lpha_s^3$	3-loop	4-loop	$lpha_s^3$

Perturbative Accuracy (Oversimplified).

Terms in the cross section that are reproduced at some resummation order (not the definition of the order) with $\tau = p_T^2/Q^2$, $L = \ln \tau$, $L_{\rm cut} = \ln \tau^{\rm cut}$

$$\frac{\sigma(\tau^{\text{cut}})}{\sigma_B} = \frac{1}{1} \qquad \text{LO}$$

$$+ \alpha_s \left[\frac{c_{11}}{2} L_{\text{cut}}^2 + c_{10} L_{\text{cut}} + c_{1,-1} + F_1^{\text{nons}}(\tau^{\text{cut}}) \right] \qquad \text{NLO}$$

$$+ \alpha_s^2 \left[\vdots + \vdots + \vdots + \vdots + \vdots \right]$$

$$\frac{1}{\sigma_B} \frac{d\sigma}{d\tau} = \alpha_s / \tau \left[c_{11}L + c_{10} + \tau f_1^{\text{nons}}(\tau) \right] \qquad \text{LO}_1$$

$$+ \alpha_s^2 / \tau \left[c_{23}L^3 + c_{22}L^2 + c_{21}L + c_{20} + \tau f_2^{\text{nons}}(\tau) \right] \qquad \text{NLO}_1$$

$$+ \alpha_s^3 / \tau \left[\vdots + \vdots + \vdots + \vdots \right]$$

• Lowest perturbative accuracy at all p_T requires (N)LL+LO₁

- Provided by LO ME+PS, also plain Pythia (has full ME for first emission)
- LO is naturally part of LL and so automatically included

Frank Tackmann (DESY)

Discussion & Aspects of V pT Spectrum

2017-02-09 7 / 19

Perturbative Accuracy (Oversimplified).

Terms in the cross section that are reproduced at some resummation order (not the definition of the order) with $\tau = p_T^2/Q^2$, $L = \ln \tau$, $L_{\rm cut} = \ln \tau^{\rm cut}$

$$\frac{\sigma(\tau^{\text{cut}})}{\sigma_B} = \frac{1}{1} \qquad \text{LO}$$

$$+ \alpha_s \left[\frac{c_{11}}{2} L_{\text{cut}}^2 + c_{10} L_{\text{cut}} + c_{1,-1} + F_1^{\text{nons}}(\tau^{\text{cut}}) \right] \qquad \text{NLO}$$

$$+ \alpha_s^2 \left[\vdots + \vdots + \vdots + \vdots + \vdots \right]$$

$$\frac{1}{\sigma_B} \frac{d\sigma}{d\tau} = \alpha_s / \tau \left[c_{11}L + c_{10} + \tau f_1^{\text{nons}}(\tau) \right] \qquad \text{LO}_1$$

$$+ \alpha_s^2 / \tau \left[c_{23}L^3 + c_{22}L^2 + c_{21}L + c_{20} + \tau f_2^{\text{nons}}(\tau) \right] \qquad \text{NLO}_1$$

$$+ \alpha_s^3 / \tau \left[\vdots + \vdots + \vdots + \vdots \right]$$

• NLO+PS matching (MC@NLO, POWHEG) adds full NLO to $\sigma(\tau^{cut})$

- Improves accuracy for $\sigma(au^{
 m cut} \sim 1)$ (incl. cross section) to NLO
- Does not automatically improve formal accuracy of spectrum beyond ME+PS

Perturbative Accuracy (Oversimplified).

Terms in the cross section that are reproduced at some resummation order (not the definition of the order) with $\tau = p_T^2/Q^2$, $L = \ln \tau$, $L_{\rm cut} = \ln \tau^{\rm cut}$

$$\begin{aligned} \frac{\sigma(\tau^{\text{cut}})}{\sigma_B} &= 1 & \text{LL NLL NLL' NNLL} \\ &+ \alpha_s \left[\begin{array}{c} \frac{c_{11}}{2} L_{\text{cut}}^2 + c_{10} L_{\text{cut}} + c_{1,-1} + F_1^{\text{nons}}(\tau^{\text{cut}}) \right] & \text{NLO} \\ &+ \alpha_s^2 \left[\begin{array}{c} \vdots &+ \vdots &+ \vdots &+ \vdots \\ \frac{1}{\sigma_B} \frac{\mathrm{d}\sigma}{\mathrm{d}\tau} &= \alpha_s / \tau \left[\begin{array}{c} c_{11} L + c_{10} + \tau f_1^{\text{nons}}(\tau) \right] & \text{LO}_1 \\ &+ \alpha_s^2 / \tau \left[\begin{array}{c} c_{23} L^3 + c_{22} L^2 + c_{21} L + c_{20} + \tau f_2^{\text{nons}}(\tau) \right] & \text{NLO}_1 \\ &+ \alpha_s^3 / \tau \left[\begin{array}{c} \vdots &+ \vdots &+ \vdots &+ \vdots \\ &+ \vdots &+ \vdots &+ \vdots \end{array} \right] \end{aligned}$$

- NLL' and NNLL fully incorporate 1-loop virtuals (c_{1,-1}) into resummation and therefore naturally match to NLO
- Similarly NNLL' and N³LL incorporate 2-loop virtuals and match to NNLQ

Frank Tackmann (DESY)

Discussion & Aspects of V pT Spectrum

Variety of Approaches/Implementations.

[Collins, Soper, Sterman], [Balazs, Nadolsky, Yuan], [Bozzi, Catani, de Florian, Ferrera, Grazzini], [Becher, Luebbert, Neubert, Wilhelm], [Neill, Rothstein, Vaidya], [D'Alesio, Echevarria, Idilbi, Melis, Scimemi, Vladimirov], [...]

- Differences are mainly in precise choice of
 - Boundary conditions to the solution (starting point of the evolution)
 - Precise choice of how resummation is turned off (endpoint of the evolution)
 - Various approximations along the way
- These choices determine the actual form of logarithms that are being resummed
 - Canonical Fourier (b) space: $\ln(bm_Z)$
 - Modified b space: $\ln(1 + bQ)$
 - Canonical p_T space: $\ln(p_T/m_Z)$
 - p_T space with profile scales: $\ln(\mu_T(p_T)/\mu_H)$
 - ► ..
 - Can matter for numerical results and perturbative uncertainties/precision
- In the end, precision is given by the size of the perturbative uncertainties, only if they are estimated to that purpose (e.g. to cover the all-order result)

It is not automagically a theory uncertainty!

(日)

It is an easy way to obtain (slightly) different expansions for the same quantity

$$\epsilon = \alpha_s(\mu) \quad \rightarrow \quad \sigma = c_0 + \epsilon c_1 + \epsilon^2 c_2 + \cdots$$

 $\tilde{\epsilon} = \alpha_s(\tilde{\mu}) \quad \rightarrow \quad \sigma = c_0 + \tilde{\epsilon} \tilde{c}_1 + \tilde{\epsilon}^2 \tilde{c}_2 + \cdots$

• The full result is the same and independent of the choice of ϵ vs. $\tilde{\epsilon}$

- We only know the first few orders, which do depend on the choice
- Comparing both expansions *might* provide a way to estimate the typical size of the missing + · · · terms, but it also *might not*
- μ (or ε) is not a physical quantity that has an uncertainty that is being propagated (unlike physical parameters like quark masses, PDFs, etc.)
 - A priori, scale variations do not imply anything about correlations, e.g., among different processes
 - Asymmetric variations have no meaning in terms of uncertainties

Interlude: So What is a Scale Variation?

It is an easy way to obtain (slightly) different expansions for the same quantity

$$\epsilon = \alpha_s(\mu) \quad \rightarrow \quad \sigma = c_0 + \epsilon c_1 + \epsilon^2 c_2 + \cdots$$

 $\tilde{\epsilon} = \alpha_s(\tilde{\mu}) \quad \rightarrow \quad \sigma = c_0 + \tilde{\epsilon} \tilde{c}_1 + \tilde{\epsilon}^2 \tilde{c}_2 + \cdots$

Extra care is required for differential spectra

- Additional reasons why they might not capture uncertainty
 - Resummation scales often have quadratic dependence from double logs
 - Scale variations can cross each other or the central result at some point in the spectrum
- A priori, estimate uncertainty at given point in the spectrum
 - Uncertainties at nearby points are clearly strongly correlated
 - Do not imply or encode long-range correlations across spectrum (i.e. between different kinematic regions)

Resummation Precision.

- Current perturbative uncertainties at NNLL'+NNLO are ~ 5-10%
- N³LL has recently become available 100 [Li, Zhu '16; Vladimirov '16]
 - Expect some (but not huge) improvement
- More substantial improvement can be expected at N³LL'
 - Requires 3-loop *p_T* beam function (TMD PDF) (not easy ...)
 - Hard to imagine that it will realistically get below 2%

[Catani, de Florian, Ferrera, Grazzini '15]

• Compare: Thrust spectrum in $e^+e^- \rightarrow q\bar{q}$ at $Q = m_Z$ has $\simeq 2\%$ precision at N³LL'+N³LO

Known Unknowns.

< 67 ►

Resummation for W/Z Ratio.

Most ingredients are the same, so expect substantial cancellations, but

- At higher order intrinsic differences between W and Z start to appear
 - Vector and axial currents differ by singlet terms starting at NNLL' They are often neglected since tiny in inclusive cross section
 - Gluon PDF can have different relative contributions to sea-quark vs. valence-quark beam functions so different flavor mix can leave remnants
- $Q = m_W < Q = m_Z$ causes the p_T spectra to be slightly shifted already for dominant valence-quark partonic channels
 - Induces a shape in W/Z ratio sensitive to exact peak position and shape
 - Analytic resummations are (mostly) in b space and only indirectly get the resummed p_T spectrum by Fourier-transforming the resummed b-spectrum
 - In contrast, p_T-ordered parton shower is much closer to performing the resummation directly in physical p_T space [Monni, Re, Torrielli '16; Ebert, FT '16]
 - Unclear to what extent different resummation approaches could induce a small bias that would normally be irrelevant but get amplified in ratio (I wouldn't think so but wouldn't be surprised either)

\Rightarrow At sub-% level precision would really require a dedicated analysis

< 67 >

$$d\sigma^{\rm FO}(\mu_{\rm FO}) = \underline{d\sigma^{\rm sing}(\mu_{\rm FO})} + d\sigma^{\rm nons}(\mu_{\rm FO})$$
$$\Rightarrow d\sigma = d\sigma^{\rm resum} + d\sigma^{\rm nons}(\mu_{\rm FO})$$

- Analytic resummation only captures leading-power singular terms
- Power-suppressed nonsingular terms are added in fixed order
 - They also contain large logarithms ($au=p_T^2/Q^2$)

$$au rac{\mathrm{d}\sigma^{\mathrm{nons}}}{\mathrm{d} au} \sim au ig[lpha_s(1+\ln au) + lpha_s^2(-1) + \ln au + \ln^2 au + \ln^3 au) + \cdots ig] + \mathcal{O}(au^2)$$

e.g. for $au = 0.01$ $\sim lpha_s^2(0.01 + 0.05 + 0.21) + 0.98)$

- Relative to resummed singular they are actually only power-suppressed if they are being resummed as well
- *p_T* resummation at subleading power is much more complicated and currently not available even at LL (but it is not impossible either)

Frank Tackmann (DESY)

Discussion & Aspects of V pT Spectrum

2017-02-09 13 / 19

Power Corrections.

Explicit calculation of $\alpha_s \ln$ and $\alpha_s^2 \ln^3$ next-to-leading power terms

(for (beam)thrust but general conclusions also apply to p_T) [Moult, Rothen, Stewart, FT, Zhu '16]

- New channels appear at subleading power (e.g. soft quarks) that have no leading-power analog
 - Different color structure already at LL: C_F^2 vs. $T_F(C_F + C_A)$
 - Multiplying nonsingular by leading-power Sudakov exponent is not correct even at LL
- Numerically important type of contribution are "kinematic" power corrections that depend on PDF derivatives $x f'_a(x)$
 - Become less likely to cancel in W/Z ratio
 - Might in fact be captured reasonably well in Pythia due to it enforcing momentum conservation at each splitting

\Rightarrow Warrants a dedicated analysis

Nonperturbative Effects.

Nonperturbative corrections can be treated in field theory based on singular factorization theorem

- In principle there are flavor-independent and flavor-dependent effects (though the latter are often neglected)
 - Cause few-% uncertainty at $p_T = 5 \text{ GeV}$, quickly increase below that
 - Should at least partially cancel in W/Z ratio
- For $\Lambda^2_{
 m QCD} \ll p_T^2$ (peak and above)
 - ► Can be expanded in powers of $\Lambda^2_{QCD}/p_T^2 \sim \Lambda^2_{QCD}b^2$ and parametrized by nonperturbative coefficients of first correction
 - For Typically done in b space, but equivalently possible in physical p_T space
 - Parameters can be fitted from DY data, including low-energy data [see e.g. Echevarria, Idilbi, Kang, Vitev '14; Su, Isaacson, C-P Yuan, F Yuan '14; D'Alesio, Echevarria, Melis, Scimemi '14; ...]
- For $\Lambda^2_{
 m QCD} \sim p_T^2$ (below peak)
 - Requires full shape of nonperturbative TMDPDF
- In Pythia modelled primarily through primordial/intrinsic k_T (flavor-blind)
 - Also nontrivial interplay with ISR shower parameters (cutoff, $\alpha_s^{\rm ISR}$)
- \Rightarrow More work needed to draw firm conclusions for W/Z ratio

< 🗇 >

Massive Quark Effects.

(→ see talk by Daniel tomorrow) "Secondary" mass effects

 q_{7}

Multi-scale problem with several possible scale hierarchies

- $m_b \simeq 5 \, {
 m GeV}$ is right around peak so p_T distribution sweeps through different regimes
 - $ightarrow \Lambda_{
 m QCD} \ll m_b \ll p_T \ll Q$
 - $\blacktriangleright \ \Lambda_{\rm QCD} \ll m_b \sim p_T \ll Q$
 - $\blacktriangleright \Lambda_{
 m QCD} \ll p_T \ll m_b \ll Q$
- Massless (5FS) treatment only applies in the first case $\Lambda_{
 m OCD}$
- Mass effects enter at NNLL' for $b\bar{b}
 ightarrow Z$ and at NLL' for $c\bar{s}
 ightarrow W$
- \Rightarrow Expect few-% level effects, primary do not cancel in W/Z ratio

< **(7**)

Many studies on QED/EW and mixed QCD-QED/EW effects (→ see previous talk by Stefan and talks tomorrow by Zbigniew, Fulvio, Scott)

I'm not actually aware of a dedicated study of QED effects in analytic resummed calculations (could just be my own ignorance)

- All resummation ingredients (boundary conditions, anomalous dimensions) receive corrections from soft and collinear photon radiation
 - Relative parametric size of $\mathcal{O}(\alpha_{\rm em}/\alpha_s) \sim \mathcal{O}(\%)$
 - Effects will clearly not drop out of W/Z ratio
- QCD+QED shower in Pythia presumably captures this? (again my ignorance ...)
- ⇒ Should be straightforward to evaluate/incorporate (certainly when one ignores initial-final-state interference)

PDFs and α_s .

PDFs: Not much for me to say

 $(\rightarrow$ see talks by Jan and Sergey tomorrow)

- $\sim 2\%$ uncertainty at low p_T , mostly affect normalization and not shape
- \Rightarrow Physical parameters so in principle straightforward to take into account correlations for W/Z ratio

To be aware of: $lpha_s(m_Z)$

- p_T tail is $\sim \alpha_s$ and α_s also appears in resummation
- Various extractions clearly favor much lower values than PDG average
 - In particular thrust in e⁺e⁻ with high resummation
- Changing $lpha_s(m_Z) = 0.118
 ightarrow 0.114$ has $\sim 5\%$ effect on p_T spectrum
- \Rightarrow Should drop out of W/Z ratio (and also easy to propagate through)

	Uncertainty or size	Analytic resummation	Pythia	Leftover effect on W/Z
Singular resummation	5-10%	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	\checkmark	$\lesssim\%$ (?)
Power corrections	few %	(×)	(√)?	?
Nonperturbative	few %	(√)	(√)	?
Massive quarks	few $\%$ (?)	$ imes$ ($ ightarrow$ \checkmark)	?	few % (?)
QED	$\lesssim\%$ (?)	×	√ (?)	$\lesssim\%$ (?)
PDFs	2%	\checkmark	\checkmark	\checkmark
$lpha_s(m_Z)$	up to 5%??	\checkmark	\checkmark	\checkmark

- Most ? could be addressed (some just mean that I don't know ...)
- Though it is a bit unsettling it is not unbelievable that in the end plain Pythia currently seems to describe the W/Z ratio best
 - Question of the uncertainty when used as prediction remains

< 67 >