Constraints from m_W in an EFT and in the pMSSM

Chris Hays, Oxford University

$$M_{\rm W}^2 \left(1 - \frac{M_{\rm W}^2}{M_{\rm Z}^2} \right) = \frac{\pi \alpha_{\rm em}}{\sqrt{2}G_{\rm F}} \frac{1}{1 - \Delta r}$$

W mass workshop Mainz, Germany 9 February 2017

Overview

First priority: measure and calculate m_W in the SM to <5 MeV

Second priority: study implications for physics beyond the SM

Discuss here two cases:

an effective field theory (EFT) and the phenomenological MSSM (pMSSM)

EFT: general framework for describing perturbative physics at a high scale

pMSSM: well-motivated class of models with TeV-scale particles

SM effective field theory

Parametrize high-scale physics in powers of inverse scale of effective operators

Equations of motion reduce number of dimension-6 operators from 76 to 59

Dimension-6 SM EFT

Operators fall into categories: (1) Four-fermion operators: 21

(2) Gluon self-interaction operators: 3

(3) Higgs and electroweak operators: 35

(SILH basis)

Bosonic CP-even		Bosonic CP-odd		Yukawa and Dipole		Vertex	
O_H	$\frac{1}{2v^2} \left[\partial_\mu (H^\dagger H) \right]^2$			$[O_e]_{ij}$	$rac{\sqrt{2m_{e_i}m_{e_j}}}{w^3}H^{\dagger}Har{\ell}_iHe_j$	$[O_{He}]_{ij}$	$\frac{i}{m^2} \bar{e}_i \gamma_\mu \bar{e}_j H^\dagger \overleftrightarrow{D_\mu} H$
O_T	$\frac{1}{2v^2} \left(H^{\dagger} \overleftrightarrow{D_{\mu}} H \right)^2$			[O]	$\frac{\sqrt{2m_{u_i}m_{u_j}}}{\sqrt{2m_{u_i}m_{u_j}}}H^{\dagger}Har{a}\cdot\widetilde{H}u$		$i = i = i = II^{\dagger} II$
O_6	$-\frac{\lambda}{n^2}(H^{\dagger}H)^3$			$[\bigcirc u]ij$	$\frac{v^3}{\sqrt{2m+m+1}}$ If Hq_1Ha_j	$[O_{Hq}]_{ij}$	$\overline{v^2} q_i \gamma_\mu q_j H $
O_g	$rac{g_s^2}{m_W^2}H^\dagger HG^a_{\mu u}G^a_{\mu u}$	\widetilde{O}_g	$rac{g_s^2}{m_W^2} H^\dagger H \widetilde{G}^a_{\mu u} G^a_{\mu u}$	$[O_d]_{ij}$	$\frac{\sqrt{2md_i md_j}}{\sqrt{2m}} H^{\dagger} H \bar{q}_i H d_j$	$[O_{Hq}']_{ij}$	$\int \frac{i}{v^2} \bar{q}_i \sigma^k \gamma_\mu q_j H^{\dagger} \sigma^k \overleftrightarrow{D_{\mu}} H$
O_{γ}	$\frac{g^{\prime 2}}{m_W^2} H^{\dagger} H B_{\mu\nu} B_{\mu\nu}$	\widetilde{O}_{γ}	$rac{g'^2}{m_W^2} H^{\dagger} H \widetilde{B}_{\mu u} B_{\mu u}$	$[O_{eW}]_{ij}$	$\frac{g}{m_W^2} \frac{\sqrt{2m_{e_i}m_{e_j}}}{v} \bar{\ell}_i \sigma^k H \sigma_{\mu\nu} e_j W^k_{\mu\nu}$	$[O_{Hy}]_{ij}$	$\frac{i}{2} \bar{u}_i \gamma_{\mu} u_i H^{\dagger} \overleftrightarrow{D_{\mu}} H$
O_W	$\frac{ig}{2m_W^2} \left(H^{\dagger} \sigma^i \overleftrightarrow{D_{\mu}} H \right) D_{\nu} W^i_{\mu\nu} $			$[O_{eB}]_{ii}$	$\frac{g'}{2} \frac{\sqrt{2m_{e_i}m_{e_j}}}{\ell_i} \bar{\ell}_i H \sigma_{\mu\nu} e_i B_{\mu\nu}$	[-]]	$\begin{array}{c} v^{2} v^{2} \mu j \mu \mu i \xrightarrow$
O_B	$\frac{ig'}{2m_{W}^2} \left(H^{\dagger} \overleftrightarrow{D_{\mu}} H \right) \partial_{\nu} B_{\mu\nu}$				$m_W^2 \frac{v}{\sqrt{2m_{u_i}m_{u_i}}} \tilde{\mu} $	$[O_{Hd}]_{ij}$	$rac{i}{v^2}d_i\gamma_\mu d_j H^{+}D_\mu H$
O_{HW}	$\frac{ig}{m_{\mu\nu}^2} \left(D_{\mu} H^{\dagger} \sigma^i D_{\nu} H \right) W^i_{\mu\nu}$	\widetilde{O}_{HW}	$\frac{ig}{m_W^2} \left(D_\mu H^\dagger \sigma^i D_\nu H \right) \widetilde{W}^i_{\mu\nu}$	$[O_{uG}]_{ij}$	$\frac{g_s}{m_W^2} \frac{\sqrt{1-j}}{\sqrt{2}} \bar{q}_i H \sigma_{\mu\nu} T^a u_j G^a_{\mu\nu}$	$[O_{Hud}]_{ij}$	$\frac{i}{2} \bar{u}_i \gamma_{\mu} d_j \tilde{H}^{\dagger} D_{\mu} H$
O_{HB}	$\frac{ig'}{m_W^2} \left(D_\mu H^\dagger D_\nu H \right) B_{\mu\nu}$	\widetilde{O}_{HB}	$rac{ig}{m_W^2} \left(D_\mu H^\dagger D_ u H ight) \widetilde{B}_{\mu u}$	$[O_{uW}]_{ij}$	$\frac{g}{m_W^2} \frac{\sqrt{2m_{u_i}m_{u_j}}}{v} \bar{q_i} \sigma^k \tilde{H} \sigma_{\mu\nu} u_j W_{\mu\nu}^k$	[1100]0	
O_{2W}	$rac{1}{m_W^2} D_\mu W^i_{\mu u} D_ ho W^i_{ ho u}$			$[O_{uB}]_{ij}$	$\frac{g'}{m_W^2} \frac{\sqrt{2m_{u_i}m_{u_j}}}{v} \bar{q}_i \tilde{H} \sigma_{\mu\nu} u_j B_{\mu\nu}$		
O_{2B}	$rac{1}{m_W^2}\partial_\mu B_{\mu u}\partial_ ho B_{ ho u}$			[O, a]	$g_s \sqrt{2m_{d_i}m_{d_j}} \bar{a}_s H \sigma T^a d_s C^a$		
O_{2G}	$\frac{1}{m^2 m} D_\mu G^a_{\mu\nu} D_ ho G^a_{ ho u}$		2	$[\mathcal{O}_{dG}]_{ij}$	$\frac{1}{m_W^2} \frac{v}{\sqrt{2m_m}} q_i \Pi \delta_{\mu\nu} \Pi a_j \Theta_{\mu\nu}$	1	610.07922,
O_{3W}	$\frac{g^3}{m_W^2} \epsilon^{ijk} W^i_{\mu\nu} W^j_{\nu\rho} W^k_{\rho\mu}$	\widetilde{O}_{3W}	$\frac{g^{3}}{m_{W}^{2}}\epsilon^{ijk}\widetilde{W}^{i}_{\mu\nu}W^{j}_{\nu\rho}W^{k}_{\rho\mu}$	$[O_{dW}]_{ij}$	$\frac{g}{m_W^2} \frac{\sqrt{2m_{d_i}m_{d_j}}}{v} \bar{q_i} \sigma^k H \sigma_{\mu\nu} d_j W^k_{\mu\nu}$		Sec. III.2.1
O_{3G}	$=rac{g_s^{3}}{m_W^2}f^{abc}G^a_{\mu u}G^b_{ u ho}G^c_{ ho\mu}$	O_{3G}	$\int \frac{g_s}{m_W^2} f^{abc} G^a_{\mu\nu} G^b_{\nu\rho} G^c_{\rho\mu}$	$[O_{dB}]_{ij}$	$\frac{g'}{m_W^2} \frac{\sqrt{2m_{d_i} m_{d_j}}}{v} \bar{q}_i H \sigma_{\mu\nu} d_j B_{\mu\nu}$		

Oblique corrections and EFT

Historical parametrization of new physics in electroweak propagators: S, T, U

S, T related to dimension-6 operators; U related to dimension-8 operator

 $\mathcal{L}_{VV} = -W^{+\mu}\pi_{+-} \left(p^{2}\right) W_{\mu}^{-} - \frac{1}{2} W^{3\mu}\pi_{33} \left(p^{2}\right) W_{\mu}^{3} - W^{3\mu}\pi_{3B} \left(p^{2}\right) B_{\mu} - \frac{1}{2} B^{\mu}\pi_{BB} \left(p^{2}\right) B_{\mu}$ Traditional constraints from $m_{Z} \left(S\right), \Gamma_{Z} \left(T\right), m_{W} \left(U\right)$

Phenomenological MSSM

Supersymmetry the best motivated model for TeV-scale physics Must search systematically and exhaustively

Phenomenological MSSM defines free parameters broadly consistent with existing constraints A number of dedicated studies probe the available parameter space

ATLAS combined Run 1 direct searches with Higgs measurements to exclude models defined by scanning 19 parameters up to mass scales of 4 TeV

Parameter	Minimum value	Maximum value
$\Delta \rho$	-0.0005	0.0017
$\Delta(g-2)_{\mu}$	-17.7×10^{-10}	43.8×10^{-10}
$BR(b \to s\gamma)$	2.69×10^{-4}	3.87×10^{-4}
$BR(B_s \to \mu^+ \mu^-)$	1.6×10^{-9}	4.2×10^{-9}
$BR(B^+ \to \tau^+ \nu_\tau)$	66×10^{-6}	161×10^{-6}
$\Omega_{ ilde{\chi}_1^0} h^2$		0.1208
$\Gamma_{\text{invisible}(\text{SUSY})}(Z)$		$2{ m MeV}$
Masses of charged sparticles	$100{\rm GeV}$	
$m(\tilde{\chi}_1^{\pm})$	$103{ m GeV}$	
$m(\tilde{u}_{1,2},\tilde{d}_{1,2},\tilde{c}_{1,2},\tilde{s}_{1,2})$	$200{\rm GeV}$	
m(h)	$124\mathrm{GeV}$	$128\mathrm{GeV}$

Parameter	Min value	Max value	Note
$m_{\tilde{L}_1}(=m_{\tilde{L}_2})$	$90{\rm GeV}$	$4\mathrm{TeV}$	Left-handed slepton (first two gens.) mass
$m_{\tilde{e}_1}(=m_{\tilde{e}_2})$	$90{ m GeV}$	$4\mathrm{TeV}$	Right-handed slepton (first two gens.) mass
$m_{ ilde{L}_3}$	$90{ m GeV}$	$4\mathrm{TeV}$	Left-handed stau doublet mass
$m_{ ilde{e}_3}$	$90{\rm GeV}$	$4\mathrm{TeV}$	Right-handed stau mass
$m_{\tilde{Q}_1}(=m_{\tilde{Q}_2})$	$200{\rm GeV}$	$4\mathrm{TeV}$	Left-handed squark (first two gens.) mass
$m_{\tilde{u}_1}(=m_{\tilde{u}_2})$	$200{\rm GeV}$	$4\mathrm{TeV}$	Right-handed up-type squark (first two gens.) mass
$m_{\tilde{d}_1}(=m_{\tilde{d}_2})$	$200{\rm GeV}$	$4\mathrm{TeV}$	Right-handed down-type squark (first two gens.) mass
$m_{ ilde{Q}_3}$	$100{\rm GeV}$	$4\mathrm{TeV}$	Left-handed squark (third gen.) mass
$m_{ ilde{u}_3}$	$100{\rm GeV}$	$4\mathrm{TeV}$	Right-handed top squark mass
$m_{ ilde{d}_3}$	$100{\rm GeV}$	$4\mathrm{TeV}$	Right-handed bottom squark mass
$ M_1 $	$0{ m GeV}$	$4\mathrm{TeV}$	Bino mass parameter
$ M_2 $	$70{ m GeV}$	$4\mathrm{TeV}$	Wino mass parameter
$ \mu $	$80{ m GeV}$	$4\mathrm{TeV}$	Bilinear Higgs mass parameter
M_3	$200{\rm GeV}$	$4\mathrm{TeV}$	Gluino mass parameter
$ A_t $	$0{ m GeV}$	$8\mathrm{TeV}$	Trilinear top coupling
$ A_b $	$0{ m GeV}$	$4\mathrm{TeV}$	Trilinear bottom coupling
$ A_{\tau} $	$0{ m GeV}$	$4\mathrm{TeV}$	Trilinear τ lepton coupling
M_A	$100{\rm GeV}$	$4\mathrm{TeV}$	Pseudoscalar Higgs boson mass
$\tan\beta$	1	60	Ratio of the Higgs vacuum expectation values

mw and pMSSM scan

Ideally incorporate m_W measurement into pMSSM constraints Existing scan uses an m_W window of 80340 - 80428 MeV ATLAS measurement would lower upper bound to 80408 MeV at 95% CL

Can use existing scan to find relative reduction of parameter space, but not total reduction of parameter space, from the W mass constraint

Dominant contribution to m_W is from stop and sbottom quarks:

arXiv:hep-ph/0412214

$$\begin{split} \Delta\rho_0^{\mathrm{SUSY}} &= \frac{3G_{\mu}}{8\sqrt{2}\pi^2} \left[-\sin^2\theta_{\tilde{t}}\cos^2\theta_{\tilde{t}} F_0\left(m_{\tilde{t}_1}^2, m_{\tilde{t}_2}^2\right) - \sin^2\theta_{\tilde{b}}\cos^2\theta_{\tilde{b}} F_0\left(m_{\tilde{b}_1}^2, m_{\tilde{b}_2}^2\right) \right. \\ &\left. + \cos^2\theta_{\tilde{t}}\cos^2\theta_{\tilde{b}} F_0\left(m_{\tilde{t}_1}^2, m_{\tilde{b}_1}^2\right) + \cos^2\theta_{\tilde{t}}\sin^2\theta_{\tilde{b}} F_0\left(m_{\tilde{t}_1}^2, m_{\tilde{b}_2}^2\right) \right. \\ &\left. + \sin^2\theta_{\tilde{t}}\cos^2\theta_{\tilde{b}} F_0\left(m_{\tilde{t}_2}^2, m_{\tilde{b}_1}^2\right) + \sin^2\theta_{\tilde{t}}\sin^2\theta_{\tilde{b}} F_0\left(m_{\tilde{t}_2}^2, m_{\tilde{b}_2}^2\right) \right] \right] \\ M_{\mathrm{H}}^2 = 1 \\ \end{split}$$

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = \frac{1}{1 - \Delta \rho} \qquad \qquad F_0(x, y) = x + y - \frac{2xy}{x - y} \ln\left(\frac{x}{y}\right). \quad \longleftarrow \quad \text{O for } x = y$$

mw and pMSSM scan

Initial study: calculated m_w using model parameters and FeynHiggs 2.11.2 Includes QCD corrections to the sbottom mass that affect it by up to 100 GeV Corrections are not in FeynHiggs 2.3.2 or micrOMEGAs micrOMEGAs used to constrain the model points in the ATLAS scan

In probing fractional reduction of parameter space need to use micrOMEGAs for consistency After discovering SUSY we will need corrections when mapping measurements to parameters Will be a source of parameter uncertainty

Summary

W mass measurement significantly constrains new physics

Effects that contribute differently to m_W and m_Z E.g. squarks with non-universal masses

Investigating impact of m_w measurements on EFT and pMSSM

Ideally produce new propaganda plots in these frameworks

