School on Medical Accelerators

Gabriel GAUBERT PANTECHNIK, Bayeux, France

lon sources for medical accelerators

5th - 9th June 2017 Fondazione CNAO Pavia, Italy

Main purpose

Ion sources are widely use in an amazing number of applications, not only for accelerators but also for chemical analysis, lights, flat screens, space thrusters etc...

They can be few mm³ small up to m³ in fusion machines !

Today this lecture focusses on the ion sources used for particle medical accelerators

The medical applications of ion accelerators are classified into two categories: treatment and diagnosis.

Overview

 \blacksquare Ion Source Requirements

 \square Ionization process, plasma, motion & confinement basics

 $\ensuremath{\boxdot}$ Review of Ion Sources for medical accelerators

Proton radiotherapy IS

Heavy Ion radiotherapy IS

IS Developments for future radiotherapy

Boron Neutron Capture Therapy IS

Radioisotope production

 \blacksquare Conclusion

Overview

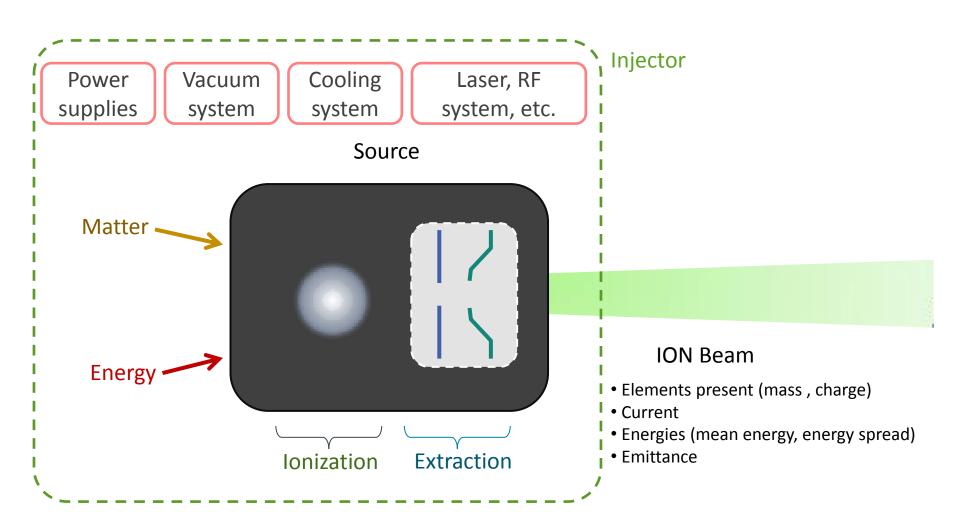
\blacksquare Ion Source Requirements

☑ Ionization process, plasma, motion & confinement basics

Review of Ion Sources for medical accelerators

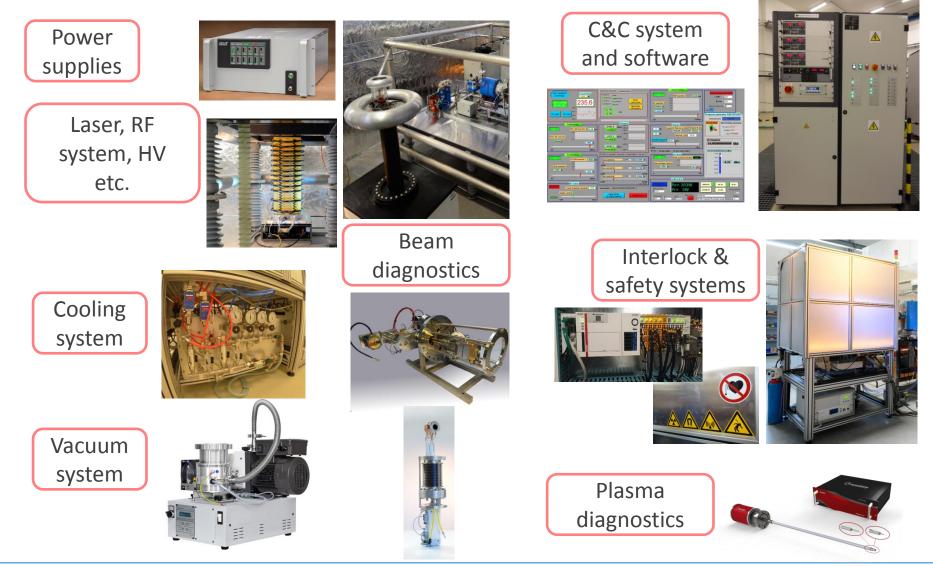
- Proton radiotherapy IS
- Heavy Ion radiotherapy IS
- IS Developments for future radiotherapy
- Boron Neutron Capture Therapy IS
- Radioisotope production
- > Particle therapy IS injector in-site examples

☑ Conclusion


Ion Source definition

- Involved technologies
- > What are the first questions ?
- Parameters

Ion Source definition



\blacksquare Ion Source Requirements

Involved technologies

What are the first questions ?

Particle type:

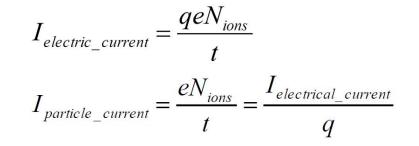
Choose the element of interest and the way to bring it as "neutral" in the IS (gas, evaporation, sputtering, gas mixing)

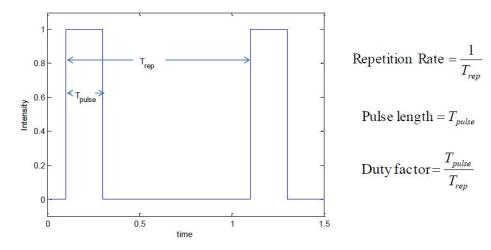
Do I need proton? H^+ , $_2H^+$, $_3H^+$ or isotope like Deuterium or Tritium

Do I need carbon? C⁺, C²⁺, Cⁿ⁺ or CO⁺ ... or isotope like ${}^{11}C$... or isotopologue like ${}^{11}C{}^{18}O{}^{+}$

Do I need a range of different elements ? What is the switching cycle frequency and speed ?

Is another element can do the job ? He⁺ instaed of H⁺ ?




Intensity:

Beam current extracted from the IS:

In case of multiplate charge state:

In case of pulsed beam the current is to be given with its time structure

Intensity order of magnitude (examples):

Carbon therapy: around 200 μ Ae of C⁴⁺ and 800 μ A of $_{3}$ H⁺

Proton therapy: from 10 to several 100µAe of H^+ or H^- cw or pulsed

BNCT: many mA of H⁺ or H⁻

Isotope production: as large as possible depending on target reliability

Energy:

- Total energy after extraction ?
- Energy per nucleon ?
- Energy spread ?
- Extraction voltage ?

$$E_{total} = qeV$$

$$E/_{nucleon} = qeV/A$$

 ΔE

$$E_{extraction} = V (kV)$$

Energy: High beam energy advantages:

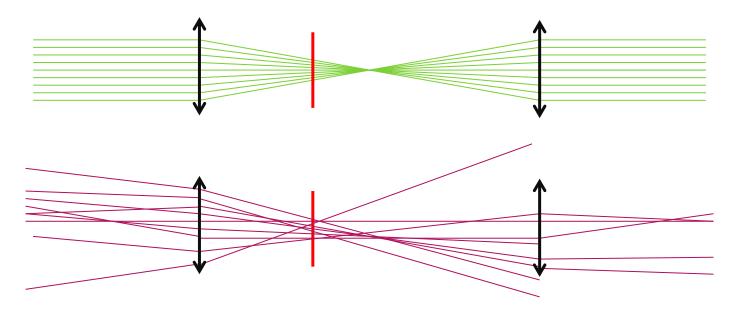
- Space charge effect reduced higher beam current
- Energy spread ratio reduced ($\Delta E/E$)
- Geometrical emittance reduced
- High velocity makes it easier to inject into downstream accelerator (RFQ, DTL ...)

High beam energy disadvantages:

- technical complexity to work with very high HV
- sparks with their consequences on equipments
- high energy together with higher beam power to manage for beam dignostics

Emittance :

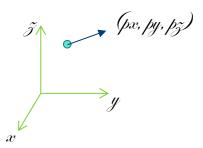
Need to produce a beam with an emittance lower the the accelerator acceptance


But what is emittance ?

Emittance :

How to define a beam quality (independently of the position of measurement)? Will the beam be transported (without significant losses) in the rest of the beam line?

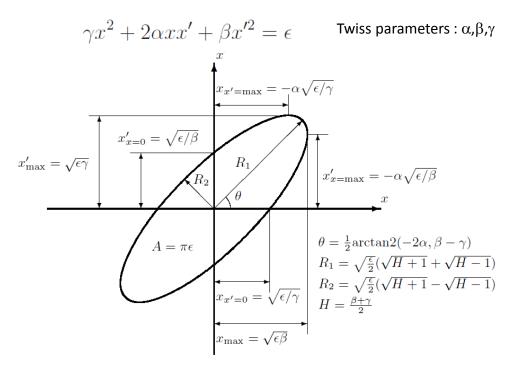
- It is not possible to define the quality of the beam with just its profile.
- Its is not possible to define the acceptance of a beam line with just an input profile.

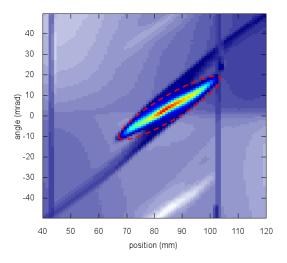


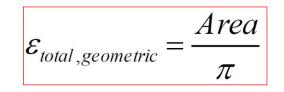
Emittance :

Each particles of a beam can be define by 6 parameters :

(x,y,z,px,py,pz)


In most cases the beam are continuous, with the longitudinal direction along the z axis.





Emittance :

- The beam emittance can be "easily" approximate by an ellipse.
- An ellipse is a simple shape, easy to parameter :

Emittance : which definition ? What unit ?

 $\varepsilon_{normalised} = \beta \gamma \varepsilon_{geometric}$

The normalized emittance conserved with acceleration

 $\mathcal{E}_{rms} = \mathcal{E}_{\sigma}$

Produces an ellipse that extends to +/- 1σ

$$\varepsilon_{4rms} = 4\varepsilon_{rms} = \varepsilon_{2\sigma}$$

... another definition !

$$\varepsilon_{th} = r_{out} \sqrt{\frac{2E_{th,ion}}{3m_0 c^2}}$$

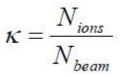
For plasma sources the ion T° and the source exit aperture give the minimum emittance

Emittance UNIT : mm.mrad (but often expressed in π .mm.mrad !)

\blacksquare Ion Source Requirements

Parameters

- Space charge and Child-Langmuir limits
- Space charge compensation
- Brightness = intensity per emittance


- IS Efficiency : from atom to ion
- Beam purity: contaminant level
 - material choices
 - ➤ gas mixing
 - ➤ sputtering

$$J_{CL} = \frac{4}{9} \varepsilon_0 \sqrt{\frac{2qe}{m}} \cdot \frac{U_d^{3/2}}{d^2}$$

$$B_b = \frac{I_b}{\pi^2 \varepsilon_x \varepsilon_y}$$

$$\eta = \frac{N_{ions}}{N_{atoms}}$$

• Operating pressure: from 10⁻¹⁰ mbar to 1 mbar !

- recombination or stripping losses
- breakdowns in extraction system and accelerating fields

Stability

- ➢ from +/- 1% up to +/- 2,5 % around the beam intensity
- feed back loop required ?
- ➤ run IS at medium performance

Operating scheme & reliability

- Uptime / Availability: key element for medical application
- Mean Time Between Failures (MTBF)
- Mean Time To Repair (MTTR)
- Maintenance plan
- Number of spare parts and complexity : as low as possible
- Number of IS on the same injector

• Space

- > contraints on the available space for the IS influence the design
- internal sources in cyclotrons
- compactness of the accelerator injector vault

Overview

☑ Ion Source Requirements

\blacksquare Ionization process, plasma, motion & confinement basics

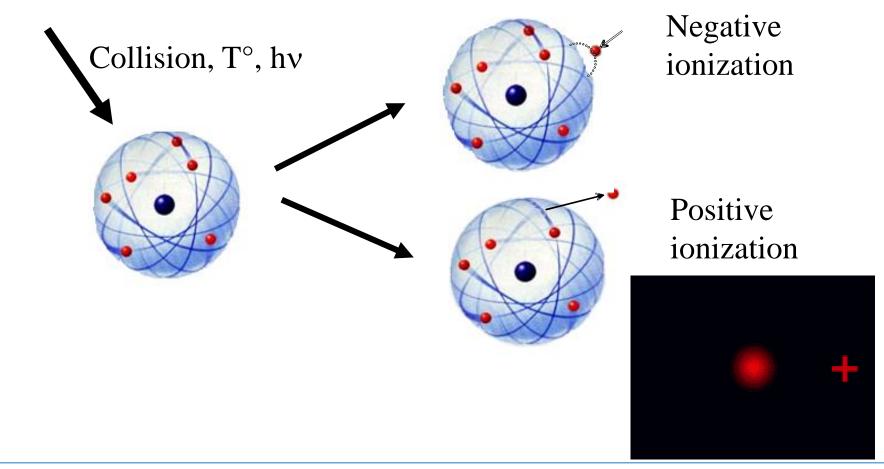
Review of Ion Sources for medical accelerators

- Proton radiotherapy IS
- Heavy Ion radiotherapy IS
- IS Developments for future radiotherapy
- Boron Neutron Capture Therapy IS
- Radioisotope production

☑ Conclusion

Positive – Negative Ions

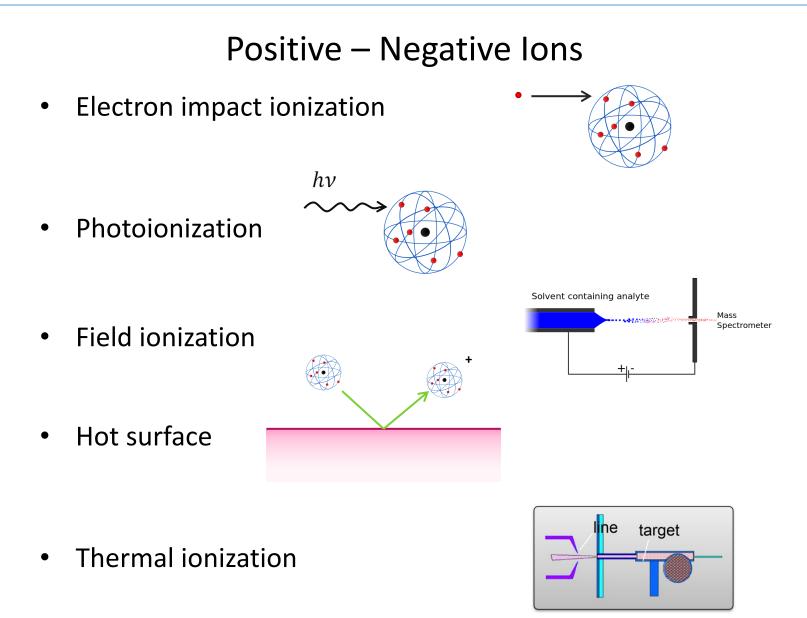
- Classification of Ion Sources
- Electron impact ionization
- Plasma basics
- Motion of charged particles
- Confinement of charges particles



☑ Ionization process, plasma, motion & confinement basics

Positive – Negative Ions

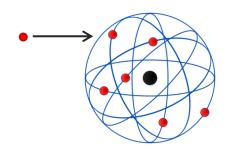
Ionizing one atom is modifying its number of electrons by...

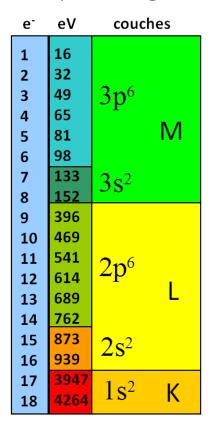

... perturbing the electron cloud

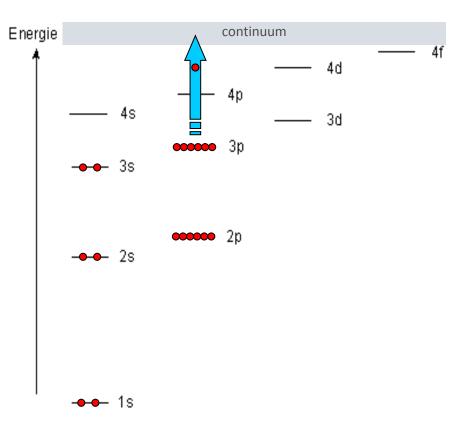
 \blacksquare Ionization process, plasma, motion & confinement basics

Electron Impact DC discharge Arc Duoplasmatron ionization PIG FEBIAD Cathode Kaufman Nier Freeman Nagnetron etc etc etc etc						
Cathode Kaufman Nier Freeman Magnetron etc	-	DC discharge	Arc	·		
Cathode Kaufman Nier Freeman Magnetron etc						
Nier Freeman Magnetron etc						
Freeman Magnetron etc				Kaufman		
Magnetron etc				Nier		
etc				Freeman		
				Magnetron		
				etc		
RF discharge RF Helicon		RF discharge	RF	Helicon		
Thopemann				Thopemann		
μ-wave ECRIS			µ-wave	ECRIS		
Without discharge e- beam EBIS		Without discharge	e- beam	EBIS		
photon LIS			photon	LIS		
Without electron Surface ionization SIS	Without electron	Surface ionization		SIS		
impact ionization Field ionization LIS	impact ionization	Field ionization	LIS			
Electrospray				Electrospray		
Charge Exchange Stripping		Charge Exchange		Stripping		
Thermo-ionizationThermospray		Thermo-ionization		Thermospray		

> IS for medical accelerators are mostly based on the

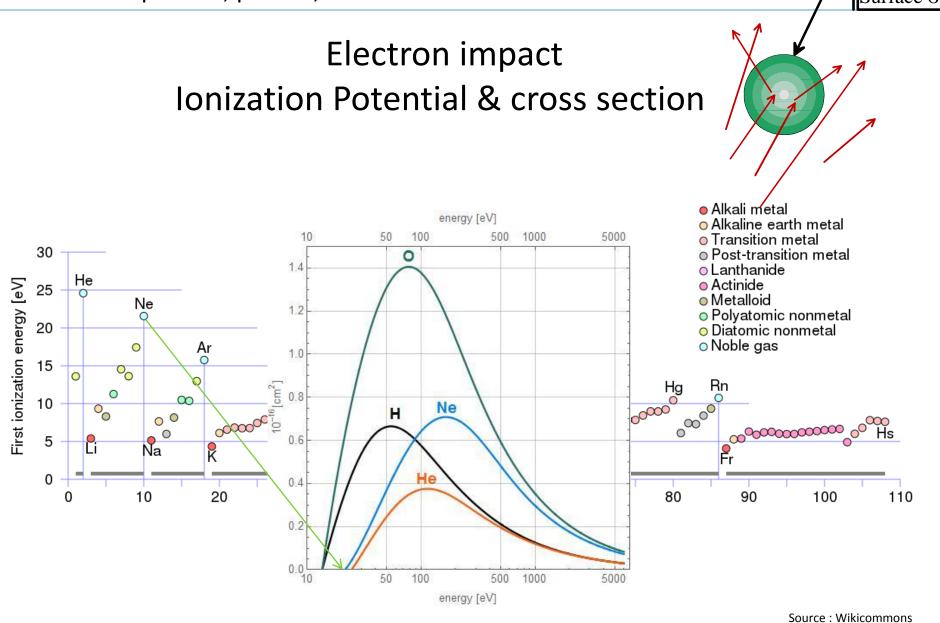

Electron impact ionization




☑ Ionization process, plasma, motion & confinement basics

Electron impact Ionization Potential

Example for argon: ⁴⁰Ar¹⁸



☑ Ionization process, plasma, motion & confinement basics

Surface σ

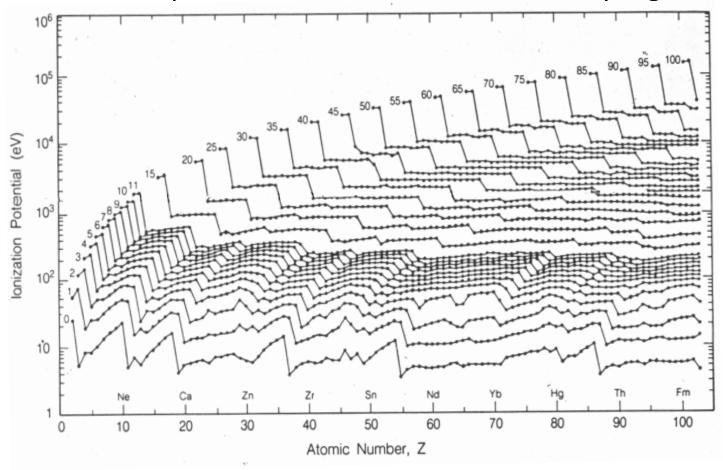
OMA School on Medical Accelerators, CNAO, Pavia Gabriel Gaubert, Ion Sources – June 5-9th 2017 Source : Wikicommor

 \blacksquare Ionization process, plasma, motion & confinement basics

Electron impact Ionization Potential & cross section

Reaction	σ _{200eV} (cm²)
e- + He => He ⁺ +2e-	3,2. 10 ⁻¹⁷
e- + He+ => He ²⁺ +2e-	4,6.10 ⁻¹⁸
e- + He => He ²⁺ +3e-	1,4.10 ⁻¹⁹

Step by step ionization to get multi-charged ions


Source : Wikicommons

Electron impact

Ionization potentials of the atom can be very high !

Carlson et al., http://dx.doi.org/10.1016/S0092-640X(70)80005-5

Electron impact Electron Affinity (EA) for negative Ions

Definition of EA: energy given off when neutral atom in gas phase gains extra electron to form *negatively charged ion*

Group IA 1 H]	그 학교 학생님 방송 사람은 상황이 가슴 물었다.	ootential (eV) affinity (eV)				VIII A
13.59	5221						24.58
0.75	<u> II A</u>	<u>III A</u>	IV A	VA	VI A	VII A	0.078
3 Li	4 Be	5 B	6C	7 N	80	9 F	10 Ne
3.39	9.32	8.30	11.26	14.54	13.61	17.42	21.56
0.62	/ < 0	0.28	1.26	≤0	1.46	3.39	/ < 0 \
11 Na	12 Mg	13 AI	14 Si	150	16 S	17 CI	18 Ar
5.14	7.64	5.98	8.15	10.55	10.36	13.01	15.76
0.54	< 0	0.46	1.38	0.74	2.07	3.61	< 0
19 K	20 Ca	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
4.34	6.11	6.00	7.88	9.81	9.75	11.84	14.00
0.50	≈ 0	0.3	1.2	0.80	2.02	3.36	< 0
37 Rb	38 Sr	49 I n	50 Sn	51 Sb	52 Te	53 I	54 Xe
4.18	5.69	5.78	7.34	8.64	9.01	10.45	12.13
0.48	< 0 .	0.3	1.25	1.05	1.97	3.06	< 0
55 Cs	56 Ba	81 TI	82 Pb	83 Bi	84 Po	85 Ar	86 Rn /
3.89	5.21	6.11	7.41	7.29	8.43	9.5	10.74
0.47	< 0 /	0.3	1.1	1.1	1.9	2.8	< 0

Electron affinities and ionization energies of elements

Electron impact: ion production

The Kinetic energy of one electron Ec must be larger than the ionization potential of the atom I.

Ec > I
$$e + X \rightarrow e + X^+ + e$$

Ec > I_{n+} $e + X^{n+} \rightarrow e + X^{(n+1)+} + e$ Successive ionization

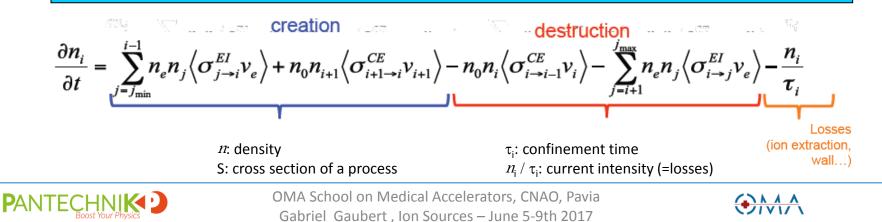
$$Ec > I_{n+} e + X^{n+} \rightarrow e + X^{(n+j)+} + je$$
 Multiple Ionization

N_e monokinetic electrons travelling a L path in a gas will product N⁺ ions as below:

$$N^+ = \sigma N_0 N_e L$$

 $N_{\rm 0}$ is the density of neutral particles

Electron impact but ion destruction ...

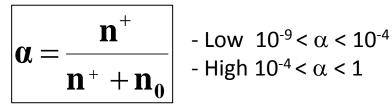

Radiative recombination : $X^{n+} + e \rightarrow X^{(n-1)+} + hv$

Charge exchange $X^+ + Y \rightarrow X + Y^+$

Looses on the walls:

 $X^{n+} + wall \rightarrow X$

32


 \square Ionization process, plasma, motion & confinement basics

Plasma Basics

Plasma is a quasi-neutral ionized gas $\mathbf{n}^+ = \sum \mathbf{n}_i \mathbf{q}_i = \mathbf{n}_e$

Composition = (lons + e^{-} + Atoms + Molecules)

Ionization ratio

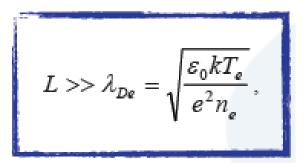
Typical ECR parameters	n _e cm ³	E _e keV	Φ V	T _i eV	τ _e ms
Order Of magnitude	10 ¹⁰ à 10 ¹²	5 à 50	few V to few tens	< 1	0,5 à 5

Plasma parameters:

- n⁺ : positive ion density
- n_e: electron density
- n_o : neutral density
- Ti : ion temperature
- Te: electron temperature
- τ_{e} : e⁻ confinement time
- Φ : plasma potential

$$V_{p} = \frac{kT_{e,cold}}{2e} \left(5.67 - \ln\left(\frac{q_{eff}}{A}\right) \right),$$

Estimation formula for ECR, Bibinov et al.



\blacksquare Ionization process, plasma, motion & confinement basics

Plasma Basics

• Typical total length scale L has to exceed the shielding length of the plasma: Debye Length

the collective interactions are dominated by bulk plasma rather than boundary effects

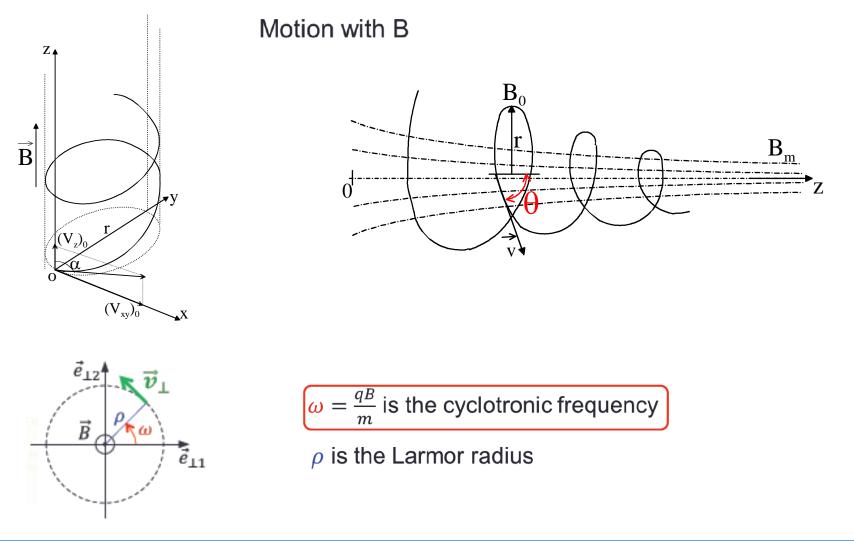
• Number of particles inside the Debye sphere must be sufficient

$$n_e \lambda_D^3 >> 1$$
 .

collective interactions dominate over binary interactions at the mean interparticle separation distance

• Frequency of collective plasma (electron) oscillations must be higher than the collision frequency of electrons and neutrals

$$f_{pe} = \frac{\omega_{pe}}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{n_e e^2}{\varepsilon_0 m_e}} > v_{en},$$



 \blacksquare Ionization process, plasma, motion & confinement basics

Motion of charged particles

Elementary motion of charged particle in static magnetic and electric field

☑ Ionization process, plasma, motion & confinement basics

Motion of charged particles

Elementary motion of charged particle in static magnetic and electric field

Motion with B // E

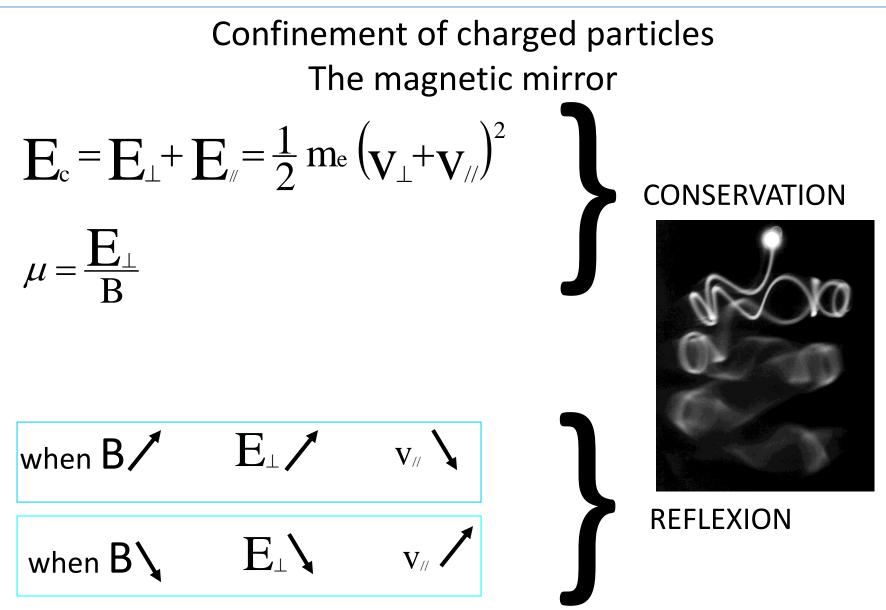
•
$$m\frac{d\vec{v}}{dt} = q\vec{v} \times \vec{B} + \vec{E} \rightarrow \begin{cases} m\frac{d\vec{v}_{\perp}}{dt} = q\vec{v}_{\perp} \times \vec{B} \\ m\frac{d\vec{v}_{\parallel}}{dt} = q\vec{E} \end{cases} \rightarrow \begin{cases} rotation \ with \ v_{\perp} = \rho\omega \\ v_{\parallel} = \frac{qEt}{m} \end{cases}$$

• \rightarrow helix with radius ρ , angular frequency ω , variable pitch $p = \frac{2\pi v_{\parallel}(t)}{\omega}$

Motion with $B \perp E$

•
$$m\frac{d\vec{v}}{dt} = q\vec{v} \times \vec{B} + \vec{E} \rightarrow \vec{v} = \frac{E}{B}(\cos\omega t.\vec{e}_{\perp 1} + \sin\omega t.\vec{e}_{\perp 2}) - \frac{E}{B}.\vec{e}_{\perp 1}$$

• with
$$\vec{e}_{\perp 1} = \frac{E \times B}{EB}$$
 and $\vec{e}_{\perp 2} = \frac{E}{E}$


E x B azimuthal drift

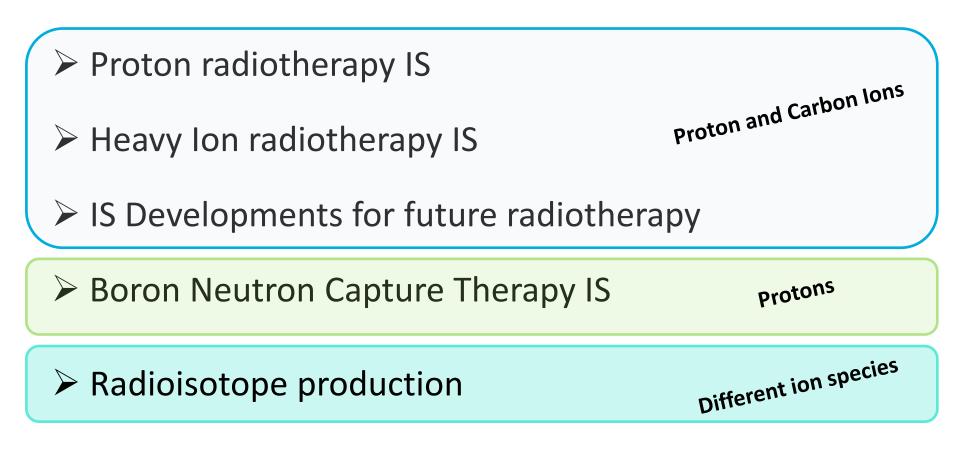
$$\vec{E} \mid \vec{B} \odot$$

☑ Ionization process & plasma basics

Overview

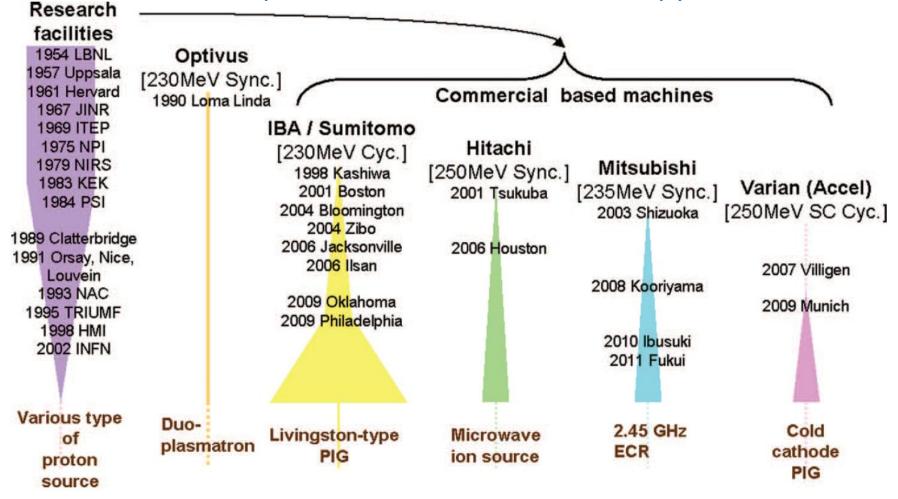
☑ Ion Source Requirements

☑ Ionization process, plasma, motion & confinement basics


$\ensuremath{\boxdot}$ Review of Ion Sources for medical accelerators

- Proton radiotherapy IS
- Heavy Ion radiotherapy IS
- IS Developments for future radiotherapy
- Boron Neutron Capture Therapy IS
- Radioisotope production

Conclusion



Proton radiotherapy IS

Development and trend in radiotherapy

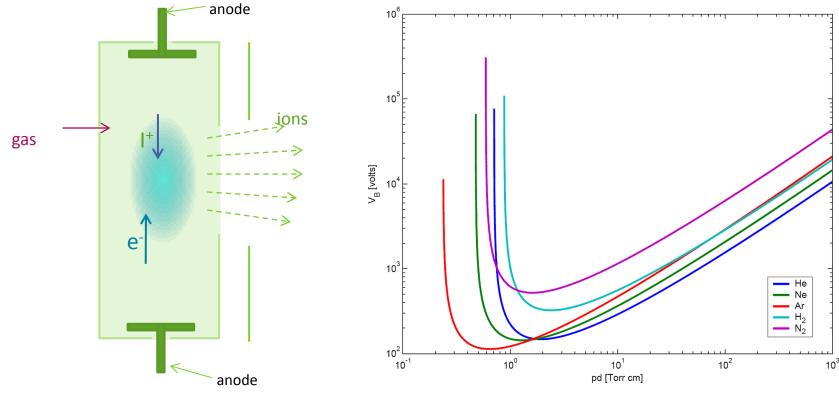
M. Muramatsu and A. Kitagawa, RSI 83, 02B909 (2012)

OMA School on Medical Accelerators, CNAO, Pavia Gabriel Gaubert Ion Sources – June 5-9th 2017

Proton radiotherapy IS

Development and trend in radiotherapy since 2011

about 30 new proton therapy facilities over the world


- new (improvement of) accelerators ... new manufacturers:
 - S2C2 superconducting accelerator at IBA
 - compact 330MeV synchrotron at PROTOM
 - ➤ Gantry mounted accelerator at MEVION
 - compact LINAC at AVO-ADAM

Proton radiotherapy IS

DC Discharge

ullet Simple principle: breakdown of the gas using the Paschen low $V_{
m claw}$

 $V_{
m claquage} = rac{Bpd}{C+\ln(pd)}$

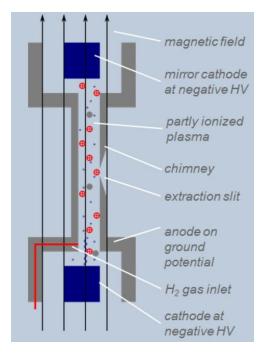
• Many # configurations

Source : wikimedia

OMA School on Medical Accelerators, CNAO, Pavia Gabriel Gaubert, Ion Sources – June 5-9th 2017

Proton radiotherapy IS

Penning Ionization Gauge (PIG)


PANTECHNIK D

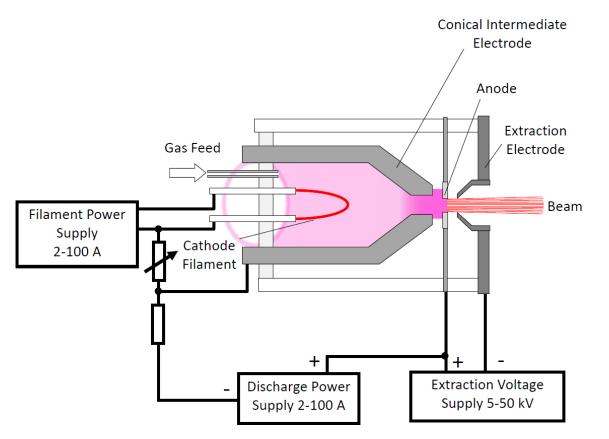
Proton radiotherapy IS

Penning Ionization Gauge (PIG)

VARIAN's 250 MeV cyclotron

Type: Cold cathode PIG Cathode voltage: -1 to -1,8kV Discharge current: 300mA Max. beam current: few 100 μA, H⁺ Gas flow: few sccm

S. Busold et al., Proc. Of Cyclotrons2016, Zurich http://jacow.org/cyclotrons2016/papers/thp06.pdf, 2017

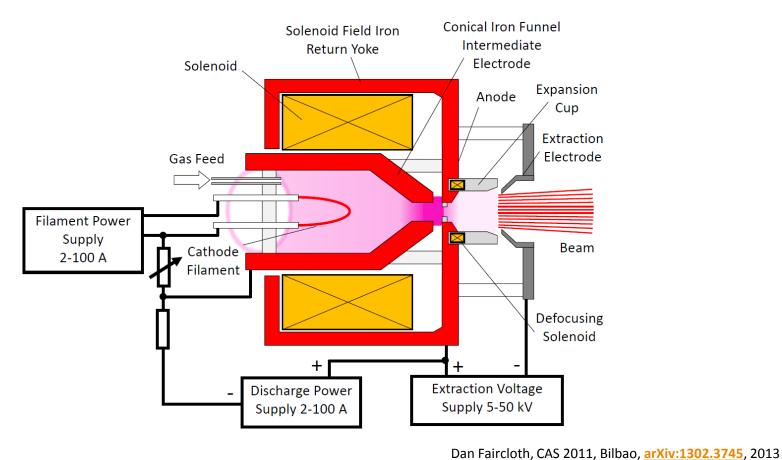


Proton radiotherapy IS

DUOPLASMATRON FOR PROTONS

Original design of the Plasmatron by Manfred Von Ardenne (late 1940s)

OMA School on Medical Accelerators, CNAO, Pavia Gabriel Gaubert, Ion Sources – June 5-9th 2017

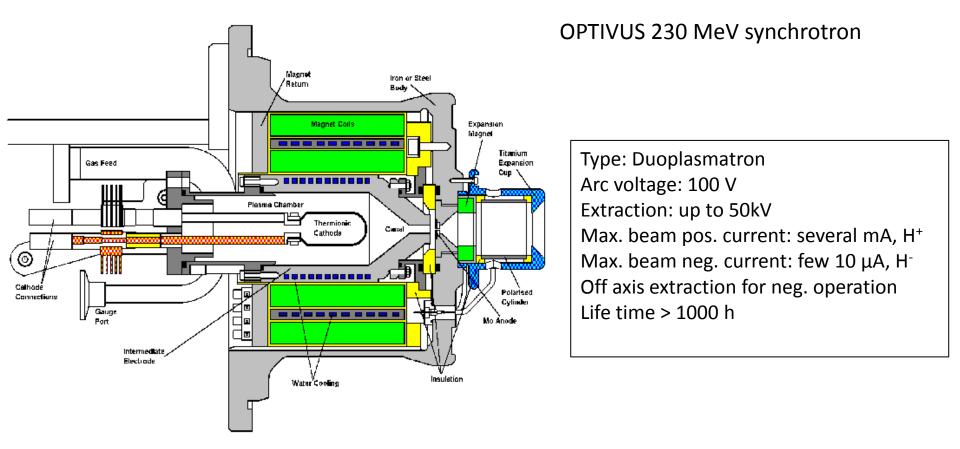


Dan Faircloth, CAS 2011, Bilbao, arXiv:1302.3745, 2013

Proton radiotherapy IS

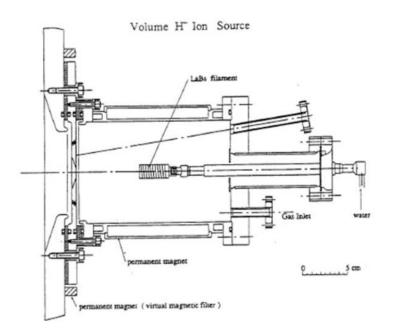
DUOPLASMATRON FOR PROTONS

Duoplasmatron design improves the Plasmatron with magnetic field Manfred Von Ardenne (late 1956s)



Proton radiotherapy IS

DUOPLASMATRON FOR PROTONS


OMA School on Medical Accelerators, CNAO, Pavia Gabriel Gaubert, Ion Sources – June 5-9th 2017

Dan Faircloth, CAS 2011, Bilbao, arXiv:1302.3745, 2013

Proton radiotherapy IS

Volume H⁻ multicusp IS

A filament driven plasma is confined by a multicusp field

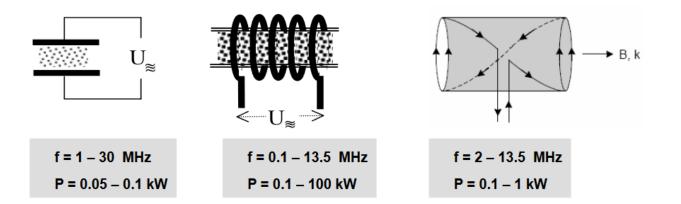
TRIMPH Type DC Volume-Cusp H⁻ IS

Type: Multicusp Arc voltage: 200 V Filament supply: 400 A, 10V Extraction: up to 30kV Max. beam neg. current: 5 mA, H⁻ Life time > 5200 h

Source : http://www.d-pace.com

Source: JPARC KEK Design.

Proton radiotherapy IS

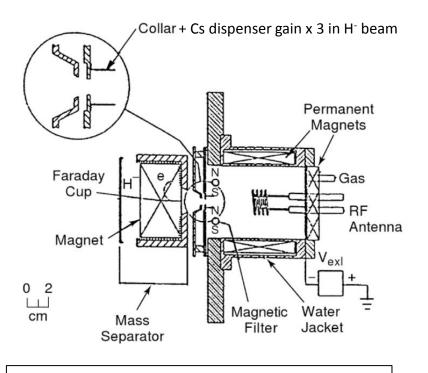

RF Discharge IS

Frequency range 0.1 – 30 MHz Power range 50 – 800 kW

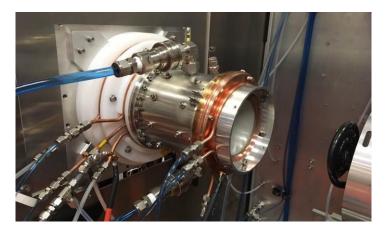
Capacitive coupling

Inductive coupling

Wave Coupling (Helicon)


PANTECHNIK 2

OMA School on Medical Accelerators, CNAO, Pavia Gabriel Gaubert, Ion Sources – June 5-9th 2017 source: Kraus 2012


Proton radiotherapy IS RF Discharge IS

LBNL RF driven multicusp volume source

35kV, > 35mA 100µs at 10Hz

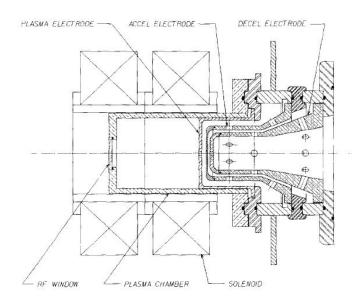
TRIMPH & Jyväskylä RF Volume Cusp source

Type: RF Multicusp No filament Extraction: up to 30kV Max. beam neg. current: 7,5 mA, H⁻ Life time > 1 year

D-pace.com

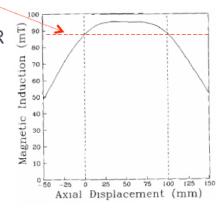
From K.N. Leung, RSI 62 (1991) 100

OMA School on Medical Accelerators, CNAO, Pavia Gabriel Gaubert, Ion Sources – June 5-9th 2017


50

$\ensuremath{\boxdot}$ Review of Ion Sources for medical accelerators

Proton radiotherapy IS

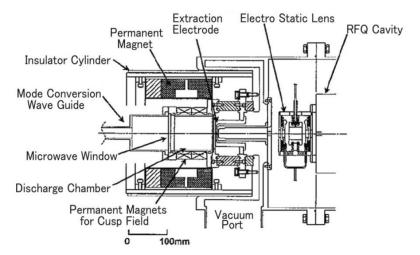

Microwave Discharge IS

Taylor type 2,45GHz ECR ion source

- · Still a reference in the field
- f=2.45 GHz / 2 kW ECR frequency
 - BECR=0.087 T (easy to do)
 - Monomode cavity
- 2 open ECR surface
 - Purely axial field
 - NO MAGNETIC CONFINEMENT
- One single electron pass through ECR
 - Te~1-20 eV
 - Λ_{0->1+} ~ 7 cm
- 1+ Ion Source
- Very high intensity: ~25 mA of H+
 - Ø4 mm hole only
 - « High » pressure P~10⁻⁵ mbar
- Proton Fraction: H+~90%
- H₂⁺ & H₃⁺ ~ 10%
- Low emittance ~0.07 π .mm.mrad 1 σ RMS norm.

Source: T. Thuillier, CAS, Senec, 2012

Source: NIM PR A309 (1991) 37-42



Proton radiotherapy IS

Microwave Discharge IS

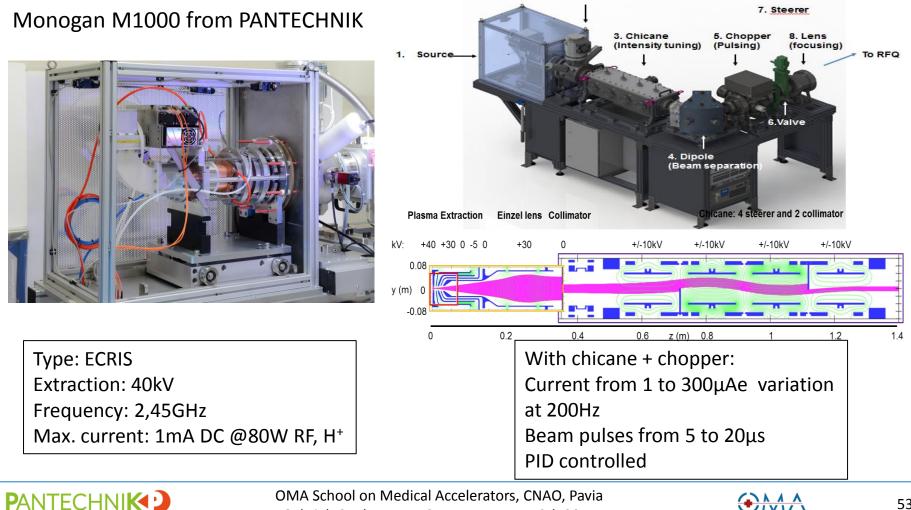
HITACHI & AccSys 250 MeV synchrotron

Type: ECR discharge IS Frequency: 2,45GHz Max. current: 30mA DC, H⁺

MITSUBISHI ELECTRIC Co. (MELCO) 250 MeV synchrotron

Type: ECR discharge IS Frequency: 2,45GHz Max. current: 25mA DC, H⁺

M. Muramatsu and A. Kitagawa, RSI 83, 02B909 (2012)


Review of Ion Sources for medical accelerators

Proton radiotherapy IS

Microwave Discharge IS

Advanced Oncotherapy (AVO) /ADAM – LIGHT 230 MeV LINAC

2. Extraction system

Gabriel Gaubert, Ion Sources – June 5-9th 2017

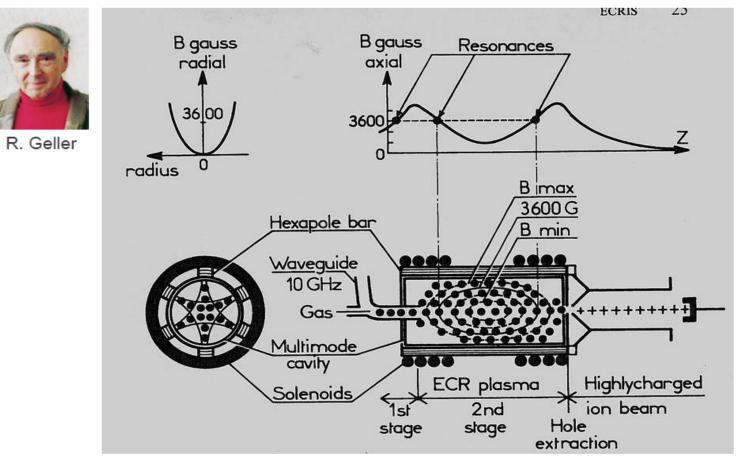
Heavy Ion radiotherapy IS

Heavy Ion radiotherapy facilities (mostly) accelerate carbon ions

Final energy is up to 430MeV/u with several 10⁸ or 10⁹ pps

Only ECR ion sources can supply C^{x+} ion for this requirement

First let's describe shortly ECR IS principle

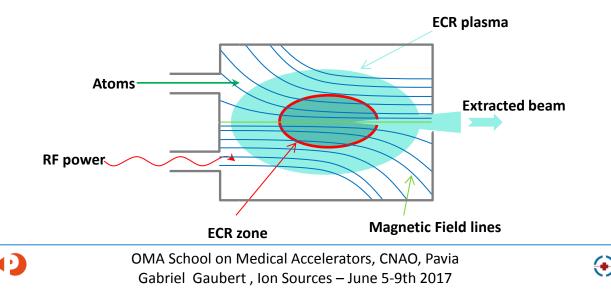


Heavy Ion radiotherapy IS

ECR basics

The first ECR Ion Source, named SUPERMAFIOS, was invented at CEA Grenoble by R. Geller team (France)

See: R. Geller, Ann. Rev. Nucl. Part. Science 40 (1990) 15.

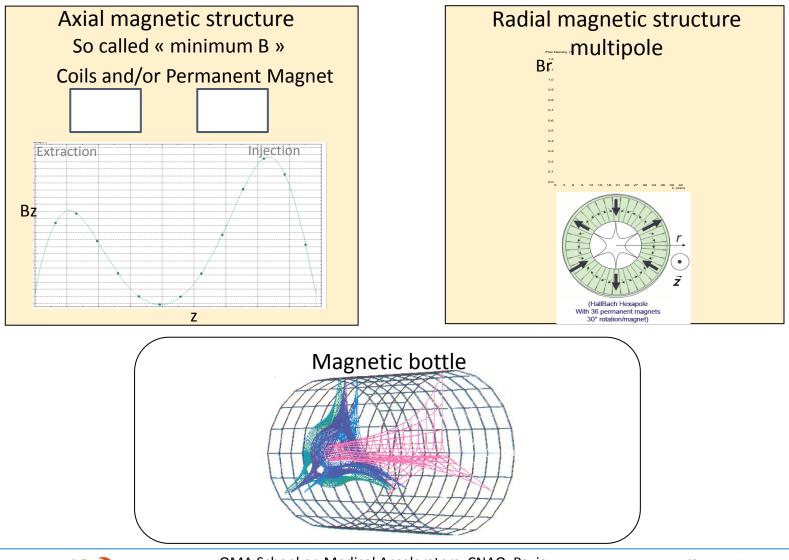


Heavy Ion radiotherapy IS ECR basics

- > A secondary vacuum level to allow multicharged ion production
- > A RF injection into the cavity (multimode)
- A sophisticated magnetic field for
 - Transfer RF power to the electrons using the ECR mechanism
 - ensure the confinement of hot electrons that ionize the atoms
 - ensure the confinement of the ions long enough to get multiple ionizations
 - ensure the stability of the plasma

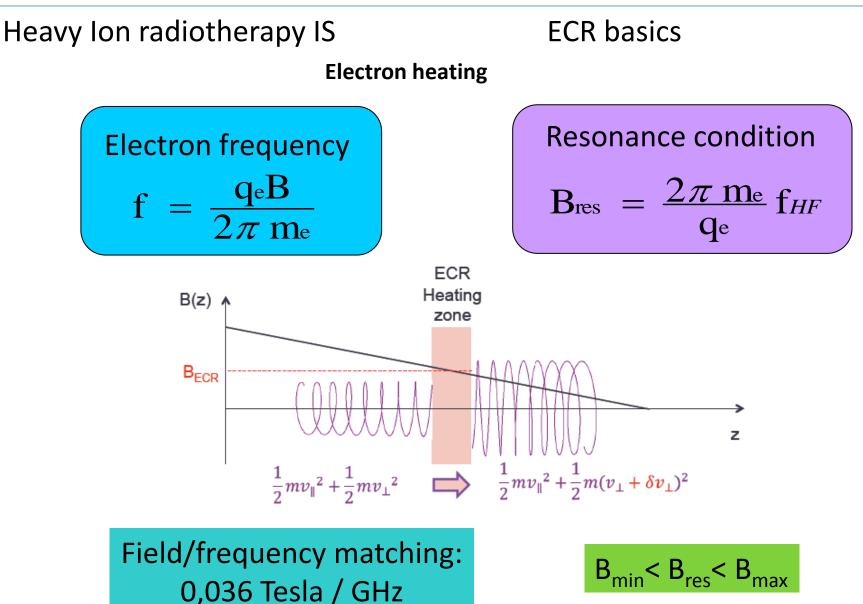
PAN

- An atom injection system to sustain the plasma density
- > An extraction system to accelerate the ions from the plasma



☑ Review of Ion Sources for medical accelerators

Heavy Ion radiotherapy IS

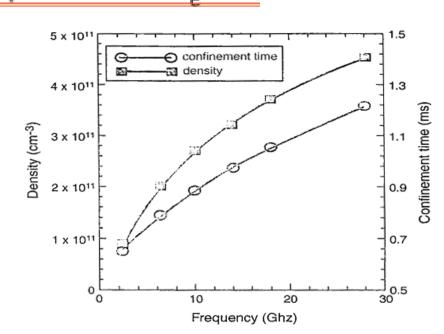

ECR basics

☑ Review of Ion Sources for medical accelerators

Heavy Ion radiotherapy IS ECR basics Plasma oscillation & Cut-Off density

As a response to perturbation, the plasma shows a natural oscillation frequency:

Dispersion relation of an EM wave in a plasma:


The wave propagates if :

ECR CUT-OFF FREQUENCY:

$$\omega > \omega_p \Rightarrow n_e < \frac{m_e \varepsilon_0 \omega^2}{e^2}$$

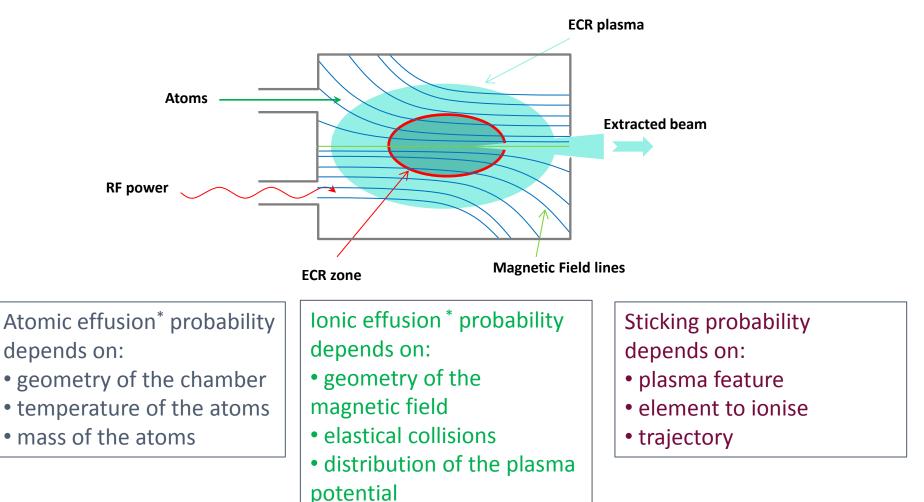
Critical Density:

$$\mathbf{n_c} = \frac{4\pi^2 \, \mathbf{\epsilon_0} \mathbf{m_e}}{\mathbf{e}^2} \mathbf{f_{HF}^2}$$

 $\omega > \omega_n$

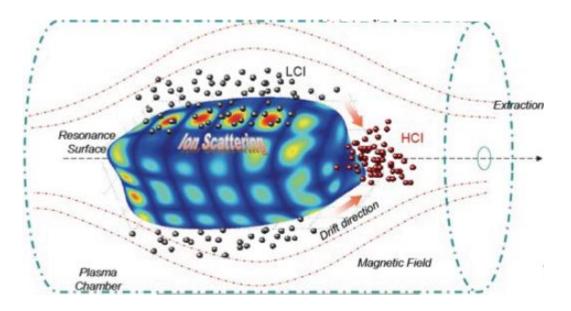
Heavy Ion radiotherapy IS ECR basics ECR Scaling laws (R. Geller, 1987)

- The higher the frequency, the higher the beam current
- The higher the RF power, the higher the beam current
- Plasma density $w \sim f_{ECR}^2$
- Beam current $I \sim w \sim f_{ECR}^2$
- But the higher the ECR magnetic field required

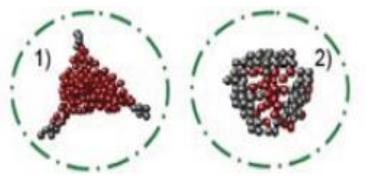

• ECR magnetic field
$$B_{ECR} = \frac{f_{ECR [GHz]}}{28} Tesla$$
 (or 0,036 T / GHz)

f ECR [GHz]	λ _{ECR} [cm]	n _e [cm⁻³]	Λ _{0->1+} [cm]	Τ_{0->1+} [µs]	B _{ECR}
2.45	~12	7.4 ×10 ¹⁰	~7	~10	0.09
14	~2	2.5×10 ¹²	0.2	3	0.5
28	~1	~10 ¹³	0.05	0.7	1
60	~ 0.5	4.4×10 ¹³	0.01	0.17	2

Heavy Ion radiotherapy IS ECR basics Ion beam Dynamics and formation

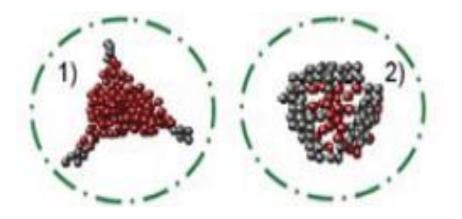


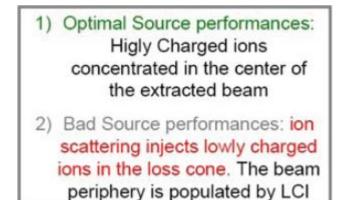
** effusion: particle motion inside the vacuum chamber*

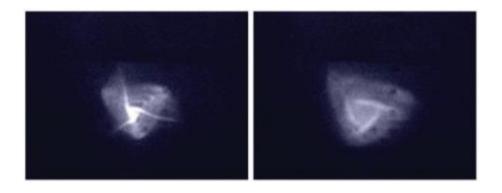


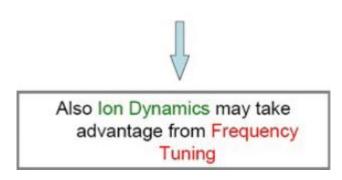
Heavy Ion radiotherapy IS ECR basics Ion beam Dynamics and formation

Perturbations of the Primary Plasma Potential (PPP), due to the electric field patterns, strongly influence the beam formation.

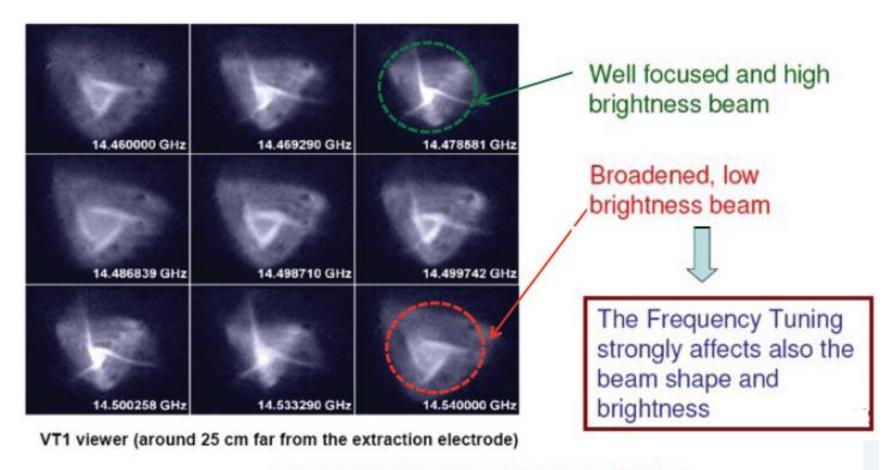



Distribution depends of the E field patterns inside the plasma

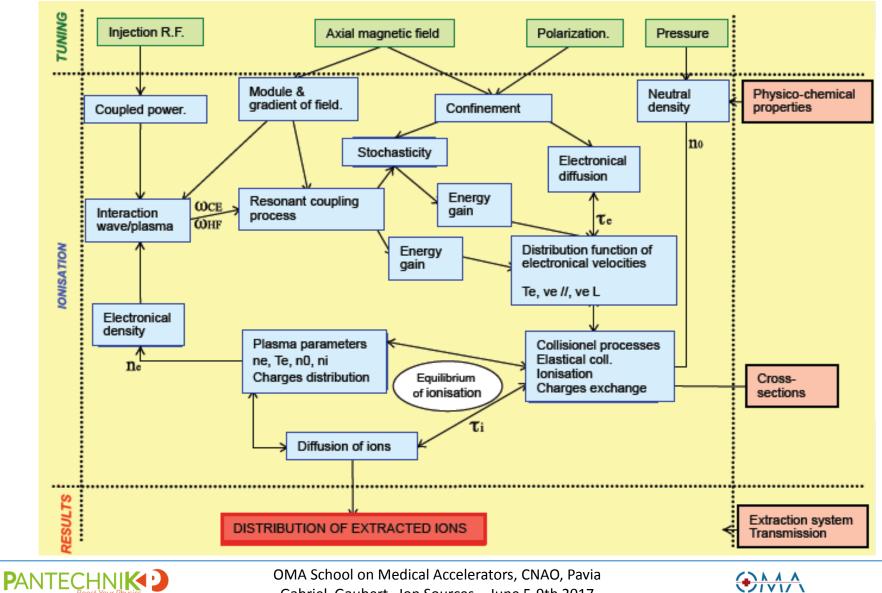




Heavy Ion radiotherapy IS ECR basics Ion beam Dynamics and formation

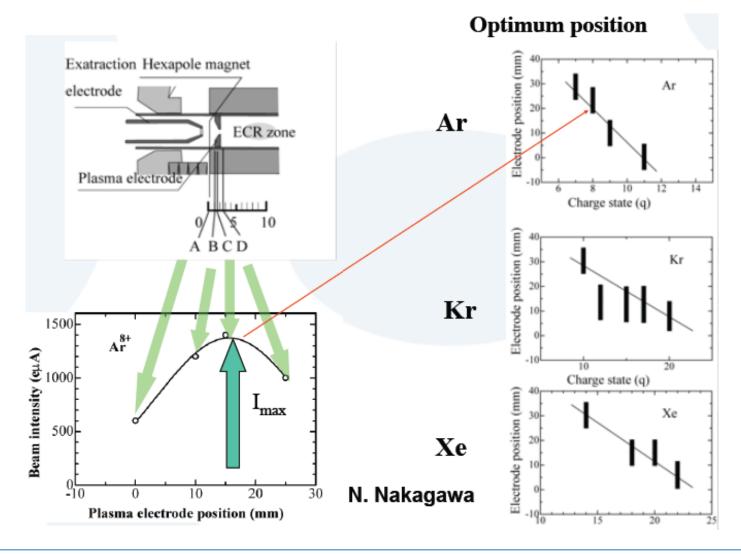


Heavy Ion radiotherapy IS ECR basics Ion beam Dynamics and formation


L. Celona, G. Clavola, F. Consoli, S. Gammino, F. Maimone, D. Mascall, P. Spaätke, K. Tinschert, R. Lang, J. Mäder, J.Roßbach, S. Barbarino, R.S. Catalano, Rev. Sci. Instrum., 79, 023305 (2008).

☑ Review of Ion Sources for medical accelerators

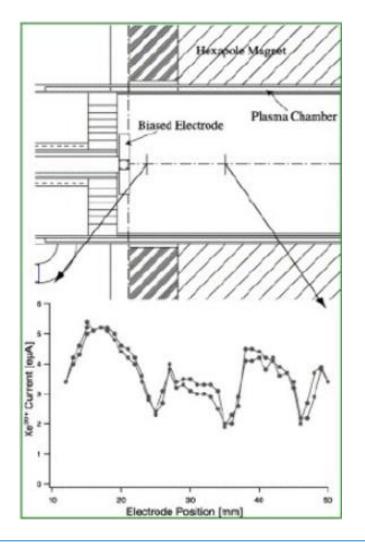
Heavy Ion radiotherapy IS ECR basics Interdependency of parameters



Gabriel Gaubert, Ion Sources – June 5-9th 2017

Heavy Ion radiotherapy IS ECR basics

Parameters of improvement of an ECRIS : Plasma electrode location



Heavy Ion radiotherapy IS

ECR basics

Parameters of improvement of ECRIS : DC biased disk/tube effect

The beam intensity is strongly dependent on the position of the DC biased disk

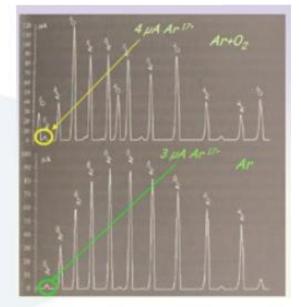
Better to have an adjustable length of the plasma chamber to be able to change the matching conditions between the plasma and the microwaves

♦ Current gain by 2 to 10

Heavy Ion radiotherapy IS ECR basics

Parameters of improvement of ECRIS : Gas mixing effect

Gas mixing technique (1983)


 <u>experimental</u> technique to increase the output of multi-charged ions

 Addition of a ligther gas than the gas (or metal) of interest :

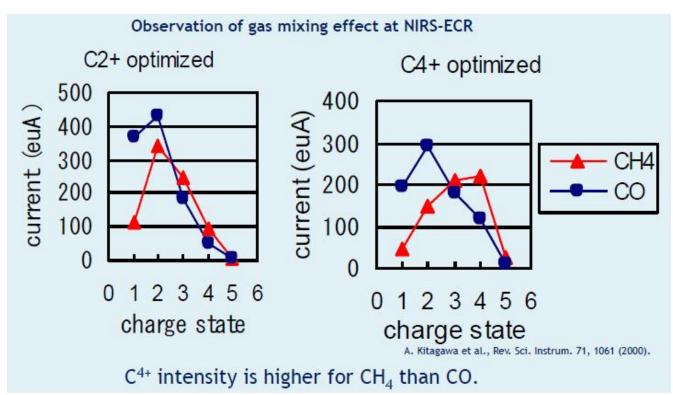
Example: I (Arq+) more intense with O than with Kr

Cooling effect on heavy ions by collision ion/ion

Diminution of the plasma potentiel

Surrent gain by 1 to 5

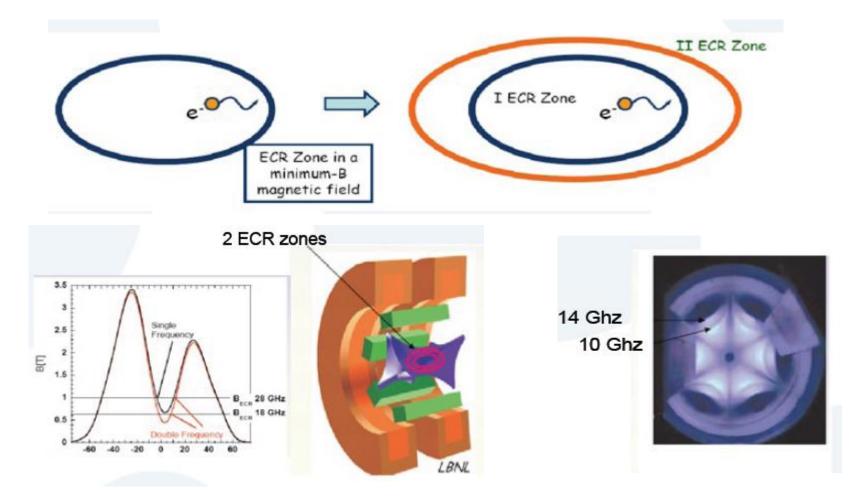
Pb1: I (Arq+, Krq+, Xeq+) are more intense with 18O than with 16O.


The gas mixing is still not well understood

Heavy Ion radiotherapy IS ECR basics

Parameters of improvement of ECRIS : Gas mixing effect

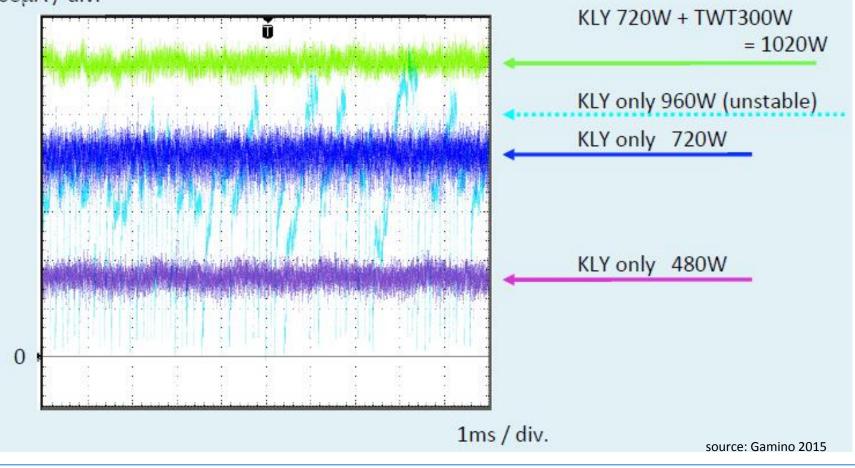
\succ CH₄ for higher beam intensity


 \succ CO₂ + He enhance carbon recycling to the wall and gives high stability

Heavy Ion radiotherapy IS ECR basics

Parameters of improvement of ECRIS: RF double frequency injection

Surrent gain by 1 to 2 for a constant total RF power



Heavy Ion radiotherapy IS ECR basics

Parameters of improvement of ECRIS: RF double frequency injection

HIMAC

10eµA / div.

The extracted current is doubled after a frequency shift of 5 MHz

Transmission of a cyclotron or a RFQ changes significantly when the frequency of the source is slightly changed.

14,52

160

140

120

14,44

14,46

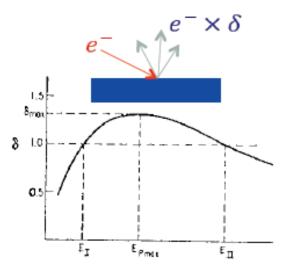
14,48

Frequency [GHz]

OMA School on Medical Accelerators, CNAO, Pavia Gabriel Gaubert, Ion Sources – June 5-9th 2017

14,50

☑ Review of Ion Sources for medical accelerators


Heavy Ion radiotherapy IS

ECR basics

Parameters of improvement of ECRIS: Plasma chamber wall interactions

Secondary Electron Emission

- Impinging electrons to the wall generate secondary electrons flux that are accelerated toward the plasma
 - Excellent feedback effect on plasma density
 - The Yield Strongly depends on material

Secondary electron Yield δ vs primary electron energy

Source J. Arianer, IPNO

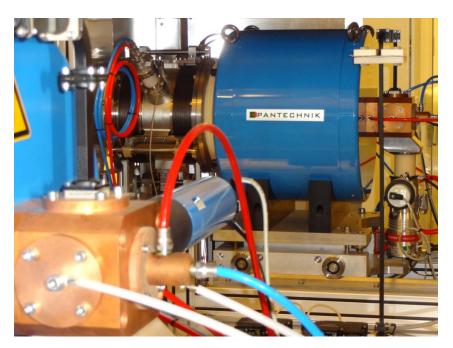
Material	Al	C (soot)	Cu	SiO ₂	Al ₂ O ₃	MgO
δ	1.0-1.2	0.45	1.3	2.1 - 4	2 - 9	3 – 15
$E_{\delta max}$ [eV]	300	500	600	400	-	400 - 1500

OMA School on Medical Accelerators, CNAO, Pavia Gabriel Gaubert, Ion Sources – June 5-9th 2017

Heavy Ion radiotherapy IS

> The latest operational facilities are using full compact permanent magnet ECRIS

Source	SUPERNANOGAN	Kei series
Manufacturer	PANTECHNIK	NIRS – MELCO
ТҮРЕ	ECR	ECR
Ion	Carbon	Carbon
Charge	4+	4+
Required intensity	Low	High
Extraction Voltage	24kV	30kV
Purpose	Wide Use	C ⁴⁺ production
Frequency	14.25-14.75 GHz	9.75-10.25 GHz
Operation	CW or pulsed mode	Pulsed mode
Gas	Carbon oxide (+He)	Hydrocarbon


► LECR3 Hybrid ECRIS from IMP produces C⁴⁺ beam for the Heavy Ion Research Facility in Lanzhou (HIRFL) Facility

Heavy Ion radiotherapy IS

SUPERNANOGAN

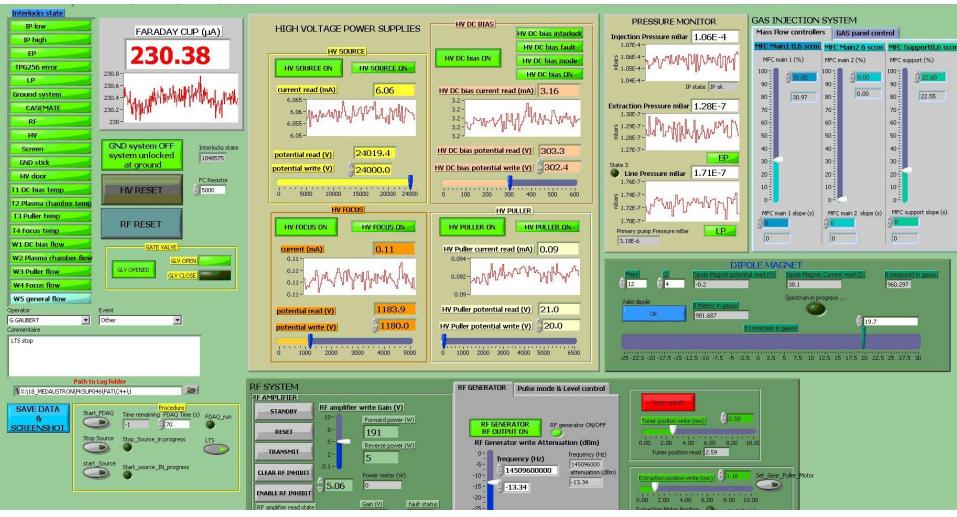
Heidelberg, CNAO, Marburg, Kiel, Shanghai, MedAustron, Kirams

ECRIS	All NdFeB permanent magnets	
Frequency	14.25-14.75 GHz (~250 W)	
Mode	CW or pulsed (10Hz – 5ms)	
lons	C^{4+} and $_{3}H^{+}$, He^{2+} , O^{6+} , Ar^{x+}	
Extraction voltage	24kV to 30kV	
Emittance	< 0.3 π .mm.mrad for 200 μ A C ⁴⁺	
Stability	< +/-2,5% in intensity	
Uptime	> 98% (measured at HIT)	
Maintenance	Parts replacement once a year	

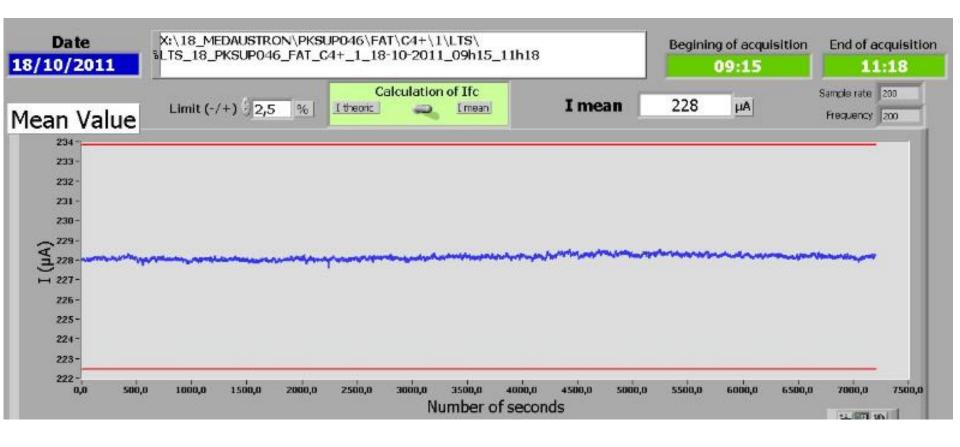
Heavy Ion radiotherapy IS

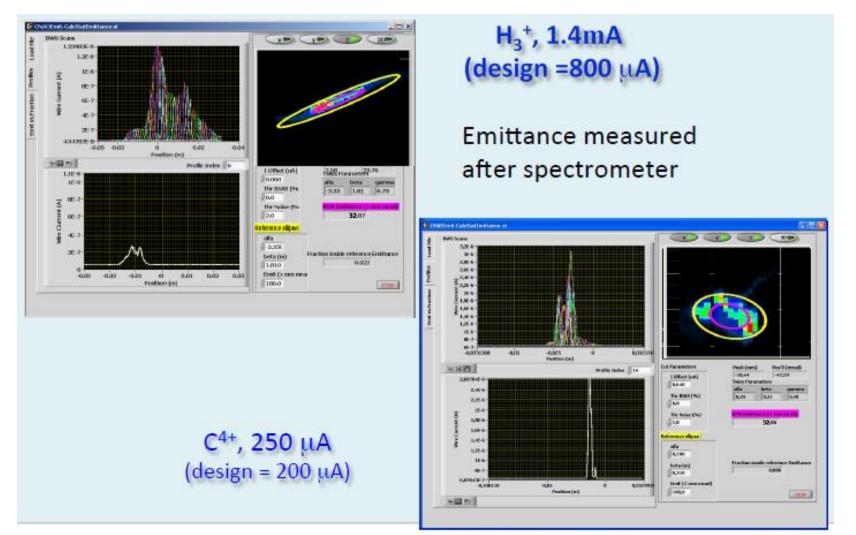
Kei series

Kei2 KeiGM


HIMAC, Gunma U., Saga, iRock

ECRIS	All NdFeB permanent magnets
Frequency	9.75-10.25 GHz (~300 W)
Mode	pulsed
lons	C ⁴⁺ and He ²⁺ , O ⁶⁺ , Ar ⁸⁺
Extraction voltage	30kV – 40kV
Emittance	< 0.3 π .mm.mrad for 300 μ A C ⁴⁺
Stability	< +/-2,5% in intensity
Uptime	-
Maintenance	Parts replacement once a year


Heavy Ion radiotherapy IS SUPERNANOGAN: control panel


Heavy Ion radiotherapy IS SUPERNANOGAN: C⁴⁺ stability over 2 hours

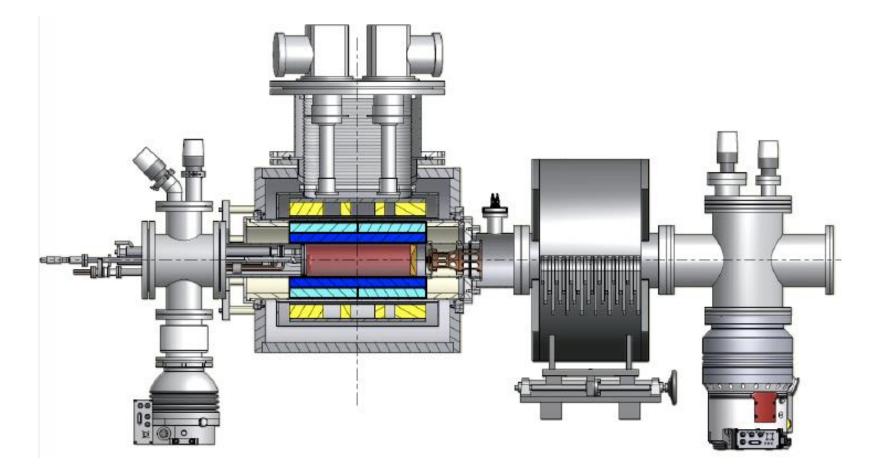
Heavy Ion radiotherapy IS SUPERNANOGAN: emittance at CNAO

IS Developments for future radiotherapy

- Still further possible development to improve ECRIS:
 - ➢ fight against carbon deposition: material, gas mixing, pulsed operation
 - shorten the switch time from 2 beams without multiple IS (cost reduction)
 - RF injection improvment
 - Automatic feedback loop for long term operation

• Higher yields in C⁶⁺ for future cyclotron (C400 IBA, others ?)

- > 18GHz operation ... but require high magnetic fied
- Hybrid superconducting ECRIS are good candidates: PKISIS or Aisha
- ... or other IS based on electron impact without discharge
- ≻ EBIS
- Laser Ion Soucre (LIS) developped by JAEA/NIRS/Kyoto University

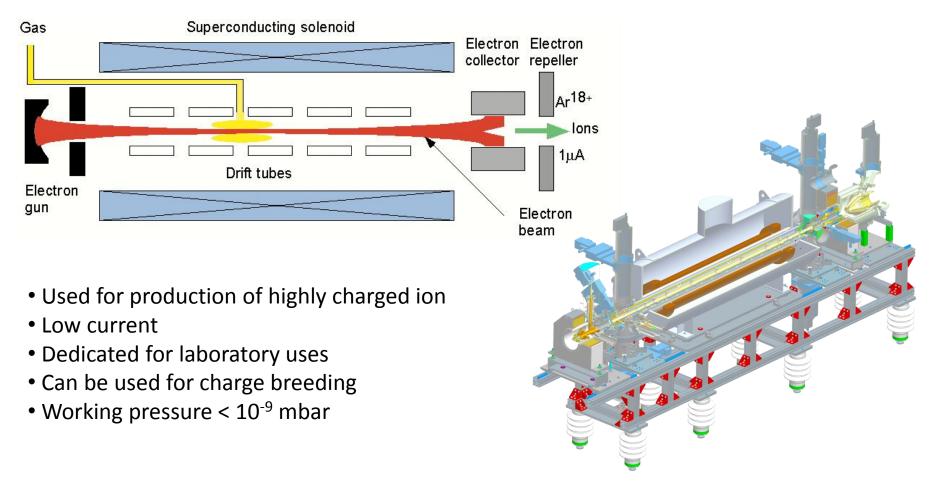

18GHz ECRIS for future radiotherapy: PKISIS

	Magnetic field: • B injection variable < 2.1 T • B extraction variable < 1.5 T • B minimum variable 0.4 < B < 0 • B radial at chamber wall = 1.32		Intensity (µA – electrical)
	Radio Frequency: • f = 18 GHz	⁴ He (2+)	2,400
	• Avgilable RF power = 2.5 kW	¹³ C (4+)	>500
	CPANTECHNIK Mechanical dimensions	¹³ C (6+)	50
ECR ion source with "He-free" 4 K	Plasma chamber diameter = 82		>1,000
Superconducting coils (axial field) + High	 Plasma chamber Length = 450 r Yoke diameter = 680 mm 	nm 16O (6+)	1,500
performance Permanent Magnets (radial field)	• Yoke length = 730 mm	¹⁶ O (7+)	230
	• Weight = 1,500 kg	⁴⁰ Ar (12+)	200
	Insulation	⁴⁰ Ar (14+)	100
	• V max = 30 kV	⁸⁴ Kr (17+)	100
	Cryogenics	¹²⁹ Xe (26+)	100
	 (4.2-45) K Pulsed Tube cryo-cool P = (1 - 40) W 	¹⁸¹ Ta (26+)	20
	• He free	¹⁸¹ Ta (30+)	13
		¹⁸¹ Ta (32+)	6
		²⁰⁹ Bi (29+)	35
		²⁰⁹ Bi (31+)	25
		²⁰⁹ Bi (33+)	15
	OMA School on Medical Accelerators, CNAO, Pavia		

OMA School on Medical Accelerators, CNAO, Pavia Gabriel Gaubert , Ion Sources – June 5-9th 2017 81

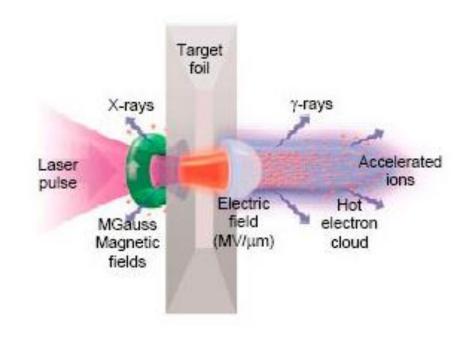
18GHz ECRIS for future radiotherapy: Aisha (CNAO / LNS)

Results to be announced at ICIS 2017 conference in October at Geneva


Source: Gamino, CAS, Wien 2015

IS Developments : EBIS

Electron beam ion source (EBIS) :



Source : BNL, Liljeby 2003

IS Developments : LIS

See Dr Koji Noda yesterday's talk for NIRS HIMAC

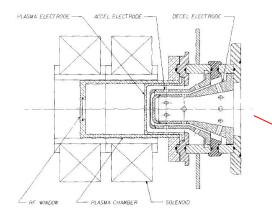
Boron Neutron Capture Therapy Ion Source

- > BNCT efficiency has been proven using neutrons from nuclear reactors
- Accelerators could advantageously replace reactors !
- BNCT accelerators need proton / deuteron beam to convert them into neutrons But very high beam current to get at least 1.10⁹ particle/cm²/s

Neutron source	Accelerated energy [MeV]	Beam current [mA]	Heat load [W]	Group
⁷ Li(p,n) ⁷ Be	1.9-2.5	20	38-50	LBNL,OSU, MIT,UOB
$^{2}H(d,n)^{3}He$	0.4	5000	200	LBNL,PU
3 H(d,n) ⁴ He	0.12	1000	120	LBNL,PU
Ta(p,xn)	50	0.3	15	Tohoku U.
Be(p,xn)	30	2.0	60	Kyoto U.

TABLE II. Examples of proposed accelerator-based BNCT facilities.

M. Muramatsu and A. Kitagawa, RSI 83, 02B909 (2012)



$\ensuremath{\boxdot}$ Review of Ion Sources for medical accelerators

Boron Neutron Capture Therapy Ion Source

Microwave Discharge IS

IBA Dynamitron using a 2,45GHz Ion Source

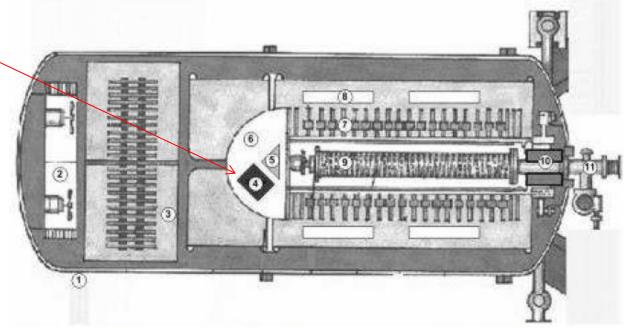


Figure 2: Layout of the dynamitron. The ECR source and selection magnet are pictured as a dark square and grey triangle, respectively.

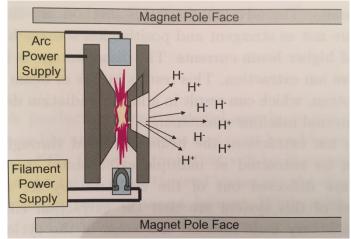
E. Forton et al., DOI: 10.1016/j.apradiso.2009.03.099 · Source: PubMed

Boron Neutron Capture Therapy Ion Source

Microwave Discharge IS: SILHI from PANTECHNIK / CEA licensed

could be a good candidate !

ECRIS	NdFeB permanent magnets
Frequency	2,45 Ghz
Mode	CW or pulsed
lons	H ⁺ , D ⁺
Extraction voltage	60 kV to 100kV
Current	40 to 100 mA
Emittance	< 0.2 π .mm.mrad



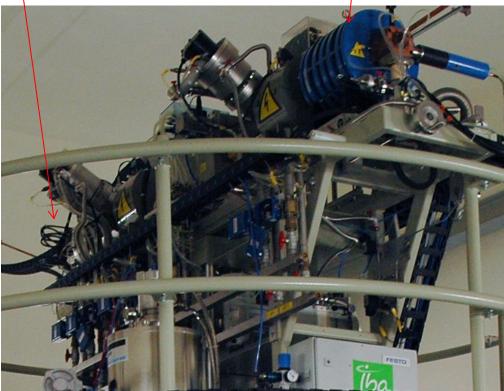
Radioisotope Production

- > Cyclotrons are historically utilized for radioisotope production
- > Many manufacturers, for more than 700 cyclotrons in operation in the world 2010

Manufacturer	Location	
GE Healthcare	Sweden	
Siemens Healthcare	USA	
Ion Beam Applications SA	Belgium	
Advanced Cyclotron Systems Inc.	Canada	
Best Cyclotron Systems, Inc.	Canada	
Sumitomo Heavy Industries, Ltd.	Japan	
Samyoung Unitech Co., Ltd.	Korea	
NPKLUTS	Russia	

mostly they use internal hot / cold cathode IS (similar than for proton therapy)

R. W. & M.E. Hamm, Industrial accelerators and their applications , ISBN 978-981-4307-04-8



Radioisotope Production

- > external IS is also possible with cyclotrons using axial inflector
- C70 IBA for Arronax (France) is fed by one H⁻ multicusp source and one SUPERNANOGAN for ⁴He²⁺ beam injection

OMA School on Medical Accelerators, CNAO, Pavia Gabriel Gaubert, Ion Sources – June 5-9th 2017

https://fr.wikipedia.org/wiki/Cyclotron_ARRONAX


89

Radioisotope Production

- > LINAC are also commercially available (mainly AccSys Technology, Inc. USA)
- > They can use any discharge source already described for high current

lon		vacuated Metal Cyl	
Source			
na nachtar Ios an an A Ios an an A Ios an Anna Ios Ios an Anna Ios	a ot stands so vitaontic adi ijunggaata	RF	Electric Fields in Cavity

➢ Isotopes can eventually be produced and distributed close by the hospital

R. W. & M.E. Hamm, Industrial accelerators and their applications , ISBN 978-981-4307-04-8

Ideal ion source for radioisotope production must have:

beam current as large as possible, depending on the limits on target reliability

>an emittance < accelerator acceptance

➤ a good stability

- be user friendly
- ➤ a high MTBF and short MTTR
- Iow maintenance
- > a moderate installation and maintenance cost

Overview

☑ Ion Source Requirements

☑ Ionization process, plasma, motion & confinement basics

Review of Ion Sources for medical accelerators

Proton radiotherapy IS

Heavy Ion radiotherapy IS

IS Developments for future radiotherapy

Boron Neutron Capture Therapy IS

Radioisotope production

$\ensuremath{\boxtimes}$ Conclusion

CONCLUSION

Ion Source development is a never ending story
... hope you are not lost in this jungle !!

 \geq Ion Therapy, BNCT and radioisotope techniques still need improvments which start with the ion source in terms of robustness, simplicity of maintenance and operation

High current ion source will make possible the production of radioisotopes for immunoradiotherapy

It is a good mix of engineering, physics, passion to SAVE LIFES !

BIBLIOGRAPHY

-The Physics and technology of ion sources, Ian G. Brown, Wiley & Sons, ISBN 3-527-40410-4

- Electron Cyclotron Resonance Ion sources and ECR Plasmas, R. Geller, IOP, 1996

- Handbook of Ion Sources, B. Wolf, CRC press, Boca Raton 1995

- *Industrial accelerators and their applications*, R. W. & M.E. Hamm, R&M Technical Enterprises, ISBN 978-981-4307-04-8

- *Ion Sources for high power hadron accelerators*, Daniel C. Faircloth, Rutherford Appleton Laboratory, Chilton, Oxfordshire, UK. <u>http://doi.org/10.5170/CERN-2013-001.369</u>

- Proceedings of the International Conference on Ion Sources

- Proceedings of the workshops on ECR Ion Sources, JACoW online proceedings, <u>WWW.jacow.org</u>

- Proceedings of the Cyclotron conferences, JACoW online proceedings, WWW.jacow.org

- Electron cyclotron resonance sources: Historical review and future prospects, R. Geller, RSI V69, N°3, 1998

