Basic radiotherapy physics

• Radiation beams interact with material inside the body causing ionisations which lead to cell DNA damage.

• The radiation dose deposited in the medium is measured in units of Gray.
 o 1 Gray = 1 Joule/kilogramme

• We aim to deposit dose within the tumour to cause the maximum damage, while sparing the surrounding tissue.

• In external beam radiotherapy we…
 o generate a radiation beam,
 o modify it to suit our needs,
 o and (carefully) aim it at the patient

The basic purpose of treatment planning systems
Rationale for Proton Therapy

- No exit dose past the target volume being treated
 - The most important proton property

- Reduce morbidity (including integral dose & second malignancy)
 - A major motivation in most paediatric indications

- Dose escalation
 - Can increase curative treatment options
 - A major motivation in current adult indications
The Christie NHS Foundation Trust

- Two NHS proton developments
 - The Christie (Manchester)
 - Due to open August 2018
 - UCLH (London)
 - Due to open 2020

- Each centre aiming to treat ~750 patients per year.

- Currently referring patients overseas for proton therapy.
The Christie

Photon radiotherapy
- 10 linear accelerators
- 1 MR-linac

Proton radiotherapy
- 3 clinical gantries
- 1 research room
Layout of the proton service at the Christie

- Accelerator
 - Cyclotron
 - On schedule for June 2017 delivery

- 3 treatment rooms
 - Varian ProBeam systems
 - 360° gantries
 - Pencil beam scanning

- Research room
 - For use outside clinical hours
Treatment Planning Systems for proton therapy

- Commercial TPSs:
 - Elekta – XiO
 - Philips - Pinnacle3
 - RaySearch Laboratories – RayStation
 - Varian - Eclipse
 - v13.7 in use at the Christie

- In-house TPSs:
 - Massachusetts General Hospital – Astroid
 - Paul Scherrer Institut - PSIPlan
The Christie NHS Foundation Trust

The treatment process

1. Scan
 - Immobilisation
 - CT scan (kv photons)
 - HU-to-SP calibration

2. Plan
 - Target delineation
 - Plan design & review
 - Plan verification

3. Treat
 - On-treatment imaging
 - Adaption if necessary

4. Monitor outcome
Immobilisation

- The patient is immobilised on the treatment couch.
 - Thermoplastic masks
 - Tattoo dots / semi-permanent skin marks for alignment with in-room lasers.
 - Couch tops with adjustable head / arm rests
 - General anaesthetic may be required in small number of cases. (Typically ~ 10% of paediatrics)
CT scan of patient

1. Scan

2. Plan

3. Treat

4. Monitor outcome

- A kV photon CT scan of patient is acquired in the treatment position.
- This is used for:
 - Target/organ delineation
 - Dose calculation.
CT calibration: For MV photon therapy

- Photon interactions are primarily with electrons:
 - Photoelectric effect (dominates ~10-25 keV)
 - **Compton scatter** (dominates ~25 keV - 25 MeV)
 - Pair production (dominates ~>25 MeV)

- A calibration mapping Hounsfield Units to **relative electron density** is derived.

- This is then used to calculate dose deposited by the proton beam.
CT calibration: For proton therapy

- Proton interactions are by:
 - Coulomb interactions with orbital electrons
 - Coulomb interactions with nuclei
 - In-/Non-elastic interactions with nuclei

- A calibration mapping Hounsfield Units to relative proton stopping power is derived.
 (Stoichiometric method is typically used - see Schneider et al. 1996.)

- This is then used to calculate dose deposited by the proton beam.

- Uncertainty arises because imaging and treatment use different particles.
Treatment planning

1. Scan
2. Plan
3. Treat
4. Monitor outcome
Planning aims

1. To deliver prescribed dose to the target volume
2. To minimise the dose to other tissues
Target definition

There are several classes of target:

1. Scan
2. Plan
3. Treat
4. Monitor outcome
Target definition

There are several classes of target:

GTV – Gross tumour volume
 – Defines the visible tumour.
Target definition

There are several classes of target:

CTV – Clinical target volume
 – Defines where there may be tumour cells which are not visible on scans.
Target definition

There are several classes of target:

PTV – Planning target volume
 – Defines the volume to be treated to ensure coverage of the GTV and CTV.
 – For an analysis of appropriate margins, see Van Herk et al (2000)
Organs-at-risk (OARs)

OARs can be classed as:

Serial
- If part of the organ is damaged then the organ may lose all function.
- E.g. Spinal cord
- Typically limit the max dose to the OAR.

Parallel
- If part of the organ is damaged then the remaining part of the organ may continue to function.
- E.g. Kidneys.
- Typically limit the volume of OAR receiving a given dose.
Organs-at-risk (OARs)

Example: Brainstem adjacent to target
• A maximum allowed dose of ~54 Gy is typical
Planning

Example:
- 3 field plan
- Delivers prescribed dose to target
- Dose to adjacent OARs minimised.
Planning technique

- Dependent on:
 - Anatomy of targets and OARs
 - Type of cancer
 - Delivery technology
 - On-treatment imaging technology
 - Treatment planning system features
 - Department protocols
The Christie NHS Foundation Trust

1. Scan

2. Plan

3. Treat

4. Monitor outcome

Proton delivery technologies

Scattering systems

Energy spreading
Lateral spreading
Compensator
Collimator

Pencil Beam Scanning (PBS) systems

Energy selection
Steering magnets

Outcome
Recap: The Bragg peak

- In 1D, multiple Bragg peaks are added to form a Spread-Out-Bragg-Peak (SOBP)

- Pencil Beam Scanning (PBS) effectively does this in 3D.

- The TPS is used to
 - Determine the spot positions
 - Compute the optimal spot weightings.
The Christie NHS Foundation Trust

1. Scan

2. Plan

3. Treat

4. Monitor outcome

PBS planning basics

- Inverse planned
- PTV and OAR objectives
- Discrete beam angles (i.e. not arcs)
- Typically 1-5 fields per plan
 - Mean number of fields is ~2.5
- Beams are not necessarily coplanar

Parameters configured during planning:
- Technique
- Objectives
- Beam angles
- Beam modifiers (range shifters, etc.)
- Spot positions
- Spot weights

Similar to step-and-shoot photon IMRT

Different from photon IMRT

Defined by the planner

Computed by the optimiser
PBS planning techniques

1. Scan
2. Plan
3. Treat
4. Monitor outcome

- **SFO**: Single Field Optimisation
 (or SFUD: Single Field Uniform Dose)
- **MFO**: Multi Field Optimisation
 (or IMPT: Intensity Modulated Proton Therapy)
Example 1: Spherical PTV in an anatomical phantom
SFO (Single Field Optimisation)

Combined dose

Individual fields
Example 2: Spherical PTV in an anatomical phantom with cylindrical OAR
SFO
(Single Field Optimisation)

MFO
(Multi Field Optimisation)
SFO
(Single Field Optimisation)

MFO
(Multi Field Optimisation)
Summary: SFO vs. MFO

- Both SFO and MFO are used clinically
- MFO provides more control of the combined dose distribution
 - A uniform dose for each field is not required
 - Only the combined dose distribution must be uniform
→ MFO gives the optimiser more freedom to produce the combined dose in any way it likes.
- Issues:
 - How do we know the optimiser has picked a safe solution?
 - How sensitive are the plans to uncertainties?
Range uncertainty

- Protons stop in the patient
- How well do we know exactly where they stop?
 → ‘Range uncertainty’

Total uncertainty: 2.7 - 4.6 % + 1.2 mm
Clinical sources of range uncertainty

1. CT calibration (and artefacts)
 - Unrelated to patient setup

2. Beam paths passing through inhomogeneities
 - Patient setup
 - Patient motion
 - Gas/liquid in patient cavities
 - etc…

3. Patient anatomy changes from planning scan
 - Weight loss/gain
 - Tumour regression
 - etc…
Range uncertainty: 1 – The CT calibration

- Recap: The CT HU-to-stopping power table has an associated uncertainty.
 → This leads to uncertainty in the proton range.
Range uncertainty: 1 – The CT calibration

1. Scan
2. Plan
3. Treat
4. Monitor outcome

![Graph showing relative dose vs. depth in water (mm)](image)

- Lower density region

The Christie NHS Foundation Trust
Range uncertainty: 1 – The CT calibration

1. Scan
2. Plan
3. Treat
4. Monitor outcome
Range uncertainty: 1 – The CT calibration

- Return to the previous SFO / MFO plans:
 - What impact could range uncertainty have?
Range uncertainty: 2 – Inhomogeneities

1. Scan
2. Plan
3. Treat
4. Monitor outcome

- These two spots belong to different energy layers.
- They reach a similar depth because one passes through bone, while the other does not.
A lateral offset in the patient setup means that the two spots no longer reach the same depth, since both now pass through bone.
Range uncertainty: 2 – Inhomogeneities

1. Scan
2. Plan
3. Treat
4. Monitor outcome
Range uncertainty: 2 – Inhomogeneities

1. Scan
2. Plan
3. Treat
4. Monitor outcome
Range uncertainty: 2 – Inhomogeneities

- PBS is more sensitive than photon RT to inhomogeneities

- Potential issues:
 - Beams passing along the edges of inhomogeneities (either low or high density)
 - Cavities which may fill with gas / liquid (e.g. Sinuses, bowel)
 - Dense targets in low density surroundings (e.g. Lung)
 - Moving targets.
Range uncertainty: 3 – Anatomy changes

- Weight loss example
 - Less tissue between patient surface and the target
 → The dose will overshoot the target
Coping with uncertainties

• PBS plans typically contain 1-5 fields.
• Each field may consist of several 1000 spots.
• There are many ways to weight the spots to achieve the same total dose in the nominal case.

→ There is a high degree of degeneracy.

• However, each plan will behave differently under a range of error scenarios (range uncertainty, setup error, etc.)

• A robust plan is one which remains within tolerance under possible error scenarios.
Coping with uncertainties: 1 – Beam directions

- Avoid beam directions where an OAR is directly behind the target
- Using the lateral edge avoids range uncertainty problems
- Additional fields / patched fields may help.
Coping with uncertainties: 2 – Target definitions

- Due to the energy dependent range of protons, the proton dose distribution is not well approximated by the static dose cloud approximation.

- The effect on the dose distribution depends on:
 - Direction of offset (along or lateral to beam)
 - Heterogeneities in the beam path

- A uniform CTV to PTV expansion does not necessarily ensure good coverage of the CTV.

Effect of ± 3mm lateral shift on a proton beam
Coping with uncertainties:
2 – Target definitions

- One approach is to use **Beam Specific PTVs**
- The CTV to PTV expansion now depends on:
 - Direction (along or lateral to beam)
 - Heterogeneities in the beam path

Park *et al* Int. J. Radiation Oncology Biol. Phys. 82(2) 2012: e329–e336
Coping with uncertainties: 3 – Robust optimisation

- Alternatively, the PTV concept can be discarded.
- Instead, the CTV is used for optimisation.
- Information describing the uncertainties (range, setup) is supplied to the optimiser.

- The optimiser looks for a plan which meets the objectives for both:
 - The nominal case
 - A number of error scenarios.

→ Now available in recent commercial TPSs
→ Optimisation is slower than non-robust planning.
Coping with uncertainties: 3 – Robust optimisation example

Figure 3. Dose distributions in Gy for the three individual beams for $p_w = 0$ (upper row) and $p_w = 1$ (lower row). Range uncertainties of 5 mm are accounted for.

Coping with uncertainties:
3 – Robust optimisation example

- The worst case spinal cord dose decreased by ~40 Gy.
- The nominal case spinal cord dose increased by ~10 Gy.
→ Robustness is a trade-off for plan quality.

Figure 4. DVH of dose distributions recalculated for 1331 different realizations of the range uncertainties (black lines). Coloured solid lines: DVH for nominal dose distribution. Coloured dashed/chain-dotted lines: worst/best case dose distribution.

Beam modifiers: 2 – Collimators

- Lateral spot width is dependent on energy.
- At low energies, especially when using a range-shifter, PBS spot width is greater than for scattered systems.
- Lateral width is important, as it is used in preference to the distal edge next to OARs.

- A collimator could potentially sharpen the lateral edge for shallow targets.

Calculation of absolute dose

- Lateral shape of spot is usually Gaussian, with $\sigma = \sim 3\text{-}8$ mm.
- Nuclear interactions result in a wide, low level halo.
 - $< 0.1\%$ of intensity of peak
 - Typically > 1000 spots per field

→ Halo significantly affects the dose to the patient.

- Monte-Carlo dose calculations are becoming available in clinical TPSs.
- Plan verification (by physical measurement or independent dose calculation) is necessary before patient treatment.
RBE

• The biological effect due to 1 Gy delivered by protons $\approx 1.1 \times$ The biological effect due to 1 Gy delivered by photons

• i.e. Protons have a relative biological effect (RBE) of ~ 1.1

• RBE depends on many factors:
 ▫ Tissue type
 ▫ Tissue oxygenation
 ▫ Endpoint (cell survival, toxicity, etc.)
 ▫ Proton energy / Linear energy transfer (LET)
 ▫ …

• An RBE of 1.1 is used clinically, and is intentionally conservative.

• Much research into factors affecting RBE is ongoing.

Paganetti et al. Seminars in radiation oncology 2013;23(2):77-87
Clinical case example

Sacrum:
• 13 year old female
• 45 Gy in 25 fractions
• Clinical double scattering plan delivered at UFPTI, Jacksonville (2012)
Sacrum: Dose Distributions

VMAT (2 arcs)

IMRT (7 fields)

3D CRT (5 fields)

PBS SFO (2 fields)

PBS MFO (2 fields)

DS (2 fields)
Sacrum: Dose Distributions

VMAT (2 arcs)
IMRT (7 fields)
3D CRT (5 fields)

PBS SFO (2 fields)
PBS MFO (2 fields)
DS (2 fields)

% of prescribed dose
Sacrum: Dose Distributions

VMAT (2 arcs) IMRT (7 fields) 3D CRT (5 fields)

PBS SFO (2 fields) PBS MFO (2 fields) DS (2 fields)
Summary

• Main advantage over photon therapy:
 → Absence of exit dose

• Many possible combinations of beams and spot weights can provide very similar overall dose distributions:
 → High degree of degeneracy

• Several issues need particular care when planning proton therapy
 → CT calibration
 → Robustness (daily setup, range uncertainty, inhomogeneities)
 → RBE
References

• Paganetti H, van Luijk P. Biological Considerations when comparing Proton Therapy with Photon Therapy. *Seminars in radiation oncology* 2013;23(2):77-87
Thank you

Acknowledgements: Ranald MacKay, Julia Handley, Imran Patel, Matthew Clarke, Michael Trainer, Matthew Lowe, Peter Sitch, Frances Charlwood, David Lines, Jenny Richardson, Hazel Pennington, Steve Murphy