
jAliEn status and plans
Vova, Miguel, Costin

mailto:volodymyr.yurchenko@cern.ch
mailto:miguel.martinez.pedreira@cern.ch
mailto:Costin.Grigoras@cern.ch
mailto:volodymyr.yurchenko@cern.ch

AliEn communication

ROOT on WN slot

VOBox
Services

Catalogue
TQ
Transfers
LDAP

Central services

Brokers
 (jobs, transf.)

Job APIs

User APIs

Optimizers
 (quota, prio)

Authen
 (all else)

JobAgent

SOAP

SOAP

proxy certificate

SOAP

Xrootd protocol

Token authentication

Site services

ROOT on User Machine
Xrootd
Proxy certificate

Worker node

aliensh

O(20K)

O(10)

Worker node

jAliEn

ROOT on WN slot

jSite

Catalogue
TQ
Transfers
LDAP

Central services

JobAgent
 :jBox

Site services

jCentral

jBox

SSL(Compressed(Java serialized object stream))

WebsocketS, JSON serialization of requests/replies

Default uplink

Optional uplink

ROOT on User Machine

jsh

O(10)

O(100)

O(1000)

Flexible deployment
Same codebase, each level multiplexes connections and
caches objects
Dual personality servers

Java binary serialization + SSL and compression
Efficient channel for inter-service communication
Asynchronous messages passed between endpoints

Websockets + SSL
End-clients (ROOT, custom clients)

Both are long-lived, persistent connections

Scenarios
Jobs connect to the JobAgent-provided socket

or the VoBox service directly, or jCentral...
Option to scale horizontally the site services (for large sites)

Users have several alternatives
Use full Grid certificate in ROOT to connect centrally (ask for

password at every connection)
Same with proxy certificates (1 password/proxy generation)
Run jBox to act like ssh-agent, asking the password ~1/reboot

Early adopters
git clone https://gitlab.cern.ch/jalien/jalien.git
cd jalien
./jalien setup
./compile.sh
./jalien

… > cp -T 32 output/*/*.zip file:/tmp/

A much faster way to download the
internet (multiple threads, skipping
existing files to resume/retry)

https://gitlab.cern.ch/jalien/jalien.git

Websockets provide full-duplex communication channel over
a single TCP connection
Persistent channel, suitable for heavy load, low latency
applications
ROOT implementation: based on libwebsockets, an open
source library available in all popular linux distributions
Secure connections based on OpenSSL

More about websockets

https://libwebsockets.org/

Deployment options
Embedded Tomcat server providing the websocketS server
endpoint

fixed port no. for central services
dynamic port no. for WN/user desktop instances

ROOT plugin loads identity and server addr:
from environment (child process of JobAgent)
from $TMPDIR/jalien_token_<uid> (user desktop)
default locations (~/.globus/user{cert,key}.pem and

alice-jcentral.cern.ch:443, for standalone ROOT instances)

Client connections
Similar ROOT call to the current one

TGrid *jalien = TGrid::Connect("jalien");

New clients can be built in any language
wss://<host>:<port>/websocket/json
wss:// = Secure WebSocket protocol

JSON for serialization
JSON is generic, compact and easy enough to
work with
ROOT plugin uses JSON-C to compose and
decode the messages from upstream
In Java we use json-simple
Any other language has an easy to use JSON
library to use

https://github.com/json-c/json-c

JobAgent for Titan
Full stack, from BQ submission to job execution
Specialized version of the jAliEn JobAgent
Tackling network-less worker nodes
Filesystem-based communication channel between WNs
and interactive nodes
Implements all steps of the job execution:

Download input files, prepare sandbox, setup the environment
Execute the actual job, monitor resource usage
Upload job output files, clean up

Caching service for AliEn
Share cached data across all central AliEn and
API services
- find command results - OCDB searches
- access/whereis - file locations
- LFN tree configuration
- JobToken generator
- User groups, database locations...

A Tomcat-based solution serving 5-10kHz of requests

Site services
VoBox (CE) WN (JobAgent) Other

Done Logger redirection
LDAP tree configuration
Startup script
CE slots retrieval
Number jobs matching
Monitoring info

Logger redirection
Job matching
CVMFS and env setup
Payload execution and control
Monitoring info (process info:
cpu, mem, disk, same for
control)
Configuration through VM env
(instead of LDAP in AliEn)

JobManager and JobBroker
calls

To-Do Verify proxy utils (timeleft,
re-create…)
Batch interfaces

MessagesMaster (msgs for JAs:
e.g. kill payload)
Spy on job execution

Embedded || independent
MonaLisa ?
Startup scripts for services
Full-scale tests

Optimizers
GUID tables

Automatically switch the catalogue to a new GUID table when content grows
too much in the active one

LFN tables
Send alarms when parts of the tree grow to more than 50M rows
Still splitting the tree manually but this too could be automatized

Gradually plan to move the rest
Relying on Java thread pools to do the heavy lifting
Still need the ability to monitor and control them individually

Data movers
Transfer agents in production
Handling all bulk data operations

Raw data migration to T1s
Storage decommissioning / recovery
Physical removal of SE files
SE crawler / dark data cleanup

Misc points
New catalogue (Cassandra-based) implemented only in the
new framework
Drops the proprietary Xrootd protocol between services

Xrootd client as command line tools (v4+ syntax ready)
Standard protocols lower the bar for writing new clients

All services are IPv6-ready
Simplify the firewall requirements (only upstream
connections)

The only exception is the bandwidth/traceroute test

Trello dashboard - link

https://trello.com/b/V4rqcw9O/jalien-development-dashboard

Trello dashboard - link

https://trello.com/b/V4rqcw9O/jalien-development-dashboard

Last slide

