Top electroweak couplings study using di-leptonic state at \sqrt{s} = 500 GeV, ILC with the Matrix Element Method

Workshop on top physics at the LC 2017

Yo Sato^A

Akimasa Ishikawa^A, Emi Kou^B, Francois Le Diberder^B, Hitoshi Yamamoto^A, Junping Tian^C, Keisuke Fujii^D,

Tohoku University^A, LAL^B, University of Tokyo^C, KEK^D

Top EW couplings

- □ Top quark is the heaviest particle in the SM. Its large mass implies that it is strongly coupled to the mechanism of electroweak symmetry breaking (EWSB)
 - → Top EW couplings are good probes for New physics behind EWSB

$$\mathcal{L}_{\text{int}} = \sum_{v=\gamma,Z} g^v \left[V_l^v \bar{t} \gamma^l (F_{1V}^v) + (F_{1A}^v) \gamma_5 \right) t + \frac{i}{2m_t} \partial_\nu V_l \bar{t} \sigma^{l\nu} (F_{2V}^v) + (F_{2A}^v) \gamma_5 \right) t$$

eg.)

- Composite models yield typically 10% deviation of $g_{L,R}{}^Z (= F_{1V}^Z \pm F_{1A}^Z)$ from SM
- In the 2HDM, $F_{2A}^{\gamma/Z}$ which is a CP-violating parameter can be non-zero

Di-leptonic state of the top pair production

Top pair production has three different final states:

- Fully-hadronic state $(e^+e^- \to t\bar{t} \to b\bar{b}q\bar{q}q\bar{q})$ 46.2 %
- Semi-leptonic state $(e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}q\bar{q}lv)$ 43.5%
- Di-leptonic state $(e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}l\nu l\nu)$ 10.3%

Advantage

- 9 helicity angles can be computed (details will be described later)
- → Higher sensitivity to the form factors

Difficulty

- Two missing neutrinos → Difficult to reconstruct top quark.
- → Develop the reconstruction process in realistic situation

Set up of analysis

Situation	LCWS16, Morioka	Top@LC 17, CERN
Full simulation of ILD	✓	✓
Hadronization	✓	✓
Gluon emission from top	Off	✓
ISR/BS	Off	✓
γγ→hadrons	Off	✓
bkg. events	Off	Off (ongoing)

Sample (Only signal)	Di-muonic state (SM-LO) $e^+e^- \to b\bar{b}\mu^+\nu\mu^-\bar{\nu}$	
\sqrt{s}	500 GeV	
Polarization (P_{e^-}, P_{e^+})	(-0.8, +0.3) "Left" / (+0.8, -0.3) "Right"	
Integrated luminosity	500 fb ⁻¹ (50/50 between Left and Right)	
Generator	Whizard	
Detector	ILD_01_v05 (DBD ver.)	

Reconstruction process

- Isolated leptons tagging
 - Number of isolated leptons = 2 & Opposite charge each of two
- \triangleright Suppression of $\gamma\gamma \rightarrow$ hadrons
 - kt algorithm (cf. the Semi-leptonic analysis, R = 1.5)
- b-jet reconstruction
 - LCFI Plus (Durham algorithm)
 - The b-charge measurement is not used (It will be useful)
- > Kinematical reconstruction of top quark

$$e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}\mu^+\nu\mu^-\bar{\nu}$$
 Measurable
$$\begin{bmatrix} \text{muon's}: E_{\mu^+}, \theta_{\mu^+}, \phi_{\mu^+}, E_{\mu^-}, \theta_{\mu^-}, \phi_{\mu^-} \\ \text{b-jet's}: E_{b1}, \theta_{b1}, \phi_{b1}, E_{b2}, \theta_{b2}, \phi_{b2} \end{bmatrix}$$
 Missing
$$\begin{bmatrix} \text{neutrino's}: E_{\nu}, \theta_{\nu}, \phi_{\nu}, E_{\overline{\nu}}, \theta_{\overline{\nu}}, \phi_{\overline{\nu}} \\ \text{=> 6 unknowns} \end{bmatrix}$$

To recover them, impose the kinematical constraints;

- Initial state constraints : $(\sqrt{s}, \vec{P}_{\text{init.}}) = (500, \vec{0})$
- Mass constraints : m_t , $m_{\bar{t}}$, m_{W^+} , m_{W^-}

=> 8 constraints (2 in excess)

We don't use E_{b1} and E_{b2} which are relatively difficult to reconstruct.

To detect the solution, we solve the following equations.

$$E_{\mu^{\pm}}^{W^{\pm} \text{ rest frame}}(\theta_t, \phi_t) = m_{W^{\pm}}/2 \text{ (Red : } \mu^+, \text{ Green : } \mu^-)$$

assignment A (correct), b1=b, $b2=\bar{b}$ assignment B (wrong), $b1=\bar{b}$, b2=b

Typically, 4 candidates exist for each event.

We need to select the optimal solution from these candidates.

To select the optimal solution, we compare E_b and $E_{\bar{b}}$ between calculated by (θ_t, ϕ_t) and measured by the b-jet reconstruction.

 $E_b(\theta_t, \phi_t)$ in the case of assignment A

$$\chi_b^2(\theta_t, \phi_t) = \left(\frac{E_b(\theta_t, \phi_t) - E_b^{\text{meas.}}}{\sigma[E_b^{\text{meas.}}]}\right)^2 + \left(\frac{E_{\bar{b}}(\theta_t, \phi_t) - E_{\bar{b}}^{\text{meas.}}}{\sigma[E_{\bar{b}}^{\text{meas.}}]}\right)^2$$

Compute χ_b^2 for each candidate \rightarrow Pick one which has the smallest χ_b^2

$$\chi_b^2 (\theta_t, \phi_t) = 2$$
 (Blue)

assignment A (correct), b1 = b, $b2 = \bar{b}$

assignment B (wrong), $b1 = \overline{b}$, b2 = b

The candidate A1 has the minimum χ_b^2 .

 \rightarrow The assignment A is selected and the solution is $(\theta_t, \phi_t) \simeq (0.5, -0.35)$

Technically, to obtain the solution, we minimize χ^2_{tot} ;

$$\chi^2_{tot}(\theta_t,\phi_t) = \chi^2_{\mu}(\theta_t,\phi_t) + \chi^2_{b}(\theta_t,\phi_t)$$

where
$$\chi_{\mu}^{2}(\theta_{t},\phi_{t}) \equiv \left(\frac{E_{\mu^{+}}^{(W^{+} \text{ rest frame})}(\theta_{t},\phi_{t}) - m_{W^{+}/2}}{\sigma\left[E_{\mu^{+}}^{(W^{+} \text{ rest frame})}\right]}\right)^{2} + \left(\frac{E_{\mu^{-}}^{(W^{-} \text{ rest frame})}(\theta_{t},\phi_{t}) - m_{W^{-}/2}}{\sigma\left[E_{\mu^{-}}^{(W^{-} \text{ rest frame})}\right]}\right)^{2}$$

 χ_{μ}^2 is dominant to determine (θ_t, ϕ_t) because $\sigma \left[E_{\mu}^{(W \text{ rest frame})} \right] \ll \sigma[E_b]$

 χ_{tot}^2 distribution

$F_{\rm wrong}$: the fraction of the wrong assignment of b-jets

 F_{wrong} (the fraction of the wrong assignment of b-jets) = 22 %

When we use samples not including the ISR, $F_{\text{wrong}} = 8 \%$

→ ISR significantly affects the assignment problem.

We use two quantities to reduce F_{wrong}

$$\chi^2_{tot}$$
 (as mentioned)

$$\Delta \chi_{tot}^2 = \left| \chi_{tot, assignment A}^2 - \chi_{tot, assignment B}^2 \right|$$

$F_{\rm wrong}$: the fraction of the wrong assignment of b-jets

We investigate F_{wrong} and the efficiency varying the set of criteria for $(\chi_{tot}^2, \Delta \chi_{tot}^2)$

The polar angle distribution of top is improved by the quality cut.

 $\chi_{tot}^2 < 5$, $\Delta \chi_{tot}^2 > 6$ $(F_{\text{wrong}} = 5.0 \%$ Efficiency = 36 %)

Luminosity spectrum

Because we impose the initial state constraints, the events which have low \sqrt{s} are badly reconstructed.

Luminosity spectrum

Black: Total events, Red: After quality cut

Ratio of luminosity spectrum (Red/Black)

The quality cut reduces low \sqrt{s} events, but there are still a tail.

Luminosity spectrum

Tried to fit the energy of ISR photon along beam direction;

$$e^+e^- \rightarrow b\bar{b}\mu^+\nu\mu^-\bar{\nu} + \gamma_{\rm ISR}$$

- \rightarrow Another parameter, K
- $|K| = E_{\gamma}/250$, hence $\sqrt{s} = 500 * \sqrt{1 |K|}$
- If γ is emitted in the $e^-(e^+)$ direction, K is positive (negative).

Then one minimizes $\chi_{tot}^2'(\theta_t, \phi_t, K)$;

$$\chi_{tot}^2{}'(\theta_t, \phi_t, K) = \chi_{tot}^2(\theta_t, \phi_t, K) - 2\log PDF_K(K)$$

- \rightarrow Reconstructed \sqrt{s} don't correlate MC truth.
 - → The constraints are not enough.

Now we fix K = 0 (i.e. use $\chi_{tot}^2(\theta_t, \phi_t)$)

 \sqrt{s} (MC Truth vs. Rec.)

9 helicity angles computation

All final state particles including two neutrinos can be calculated. The 9 helicity angles which are related to the ttZ/γ vertex are computed.

$$\theta_t, \theta_{W^+}^{t \text{ frame}}, \phi_{W^+}^{t \text{ frame}}, \theta_{\mu^+}^{W^+ \text{ frame}}, \phi_{\mu^+}^{W^+ \text{ frame}}, \theta_{W^-}^{\bar{t} \text{ frame}}, \phi_{W^-}^{\bar{t} \text{ frame}}, \theta_{\mu^-}^{W^- \text{ frame}}, \phi_{\mu^-}^{W^- \text{$$

(G. L. Kane, G. A. Ladinsky, C.-P. Yuan, Phys.Rev. D45 (1992) 124-141)

Matrix element method analysis

Matrix element method is based on the maximum likelihood method.

The $|M|^2$ (SM-LO) is used as the probability density function.

We use the 9-dim distribution and the cross section simultaneously

- → Fit any the form factors.
- 1. Only \tilde{F}_{2V}^{Z} (The simplest case)
- 2. 6 CPC form factors $(\tilde{F}_{1V}^{\gamma}, \tilde{F}_{1V}^{Z}, \tilde{F}_{1A}^{\gamma}, \tilde{F}_{1A}^{Z}, \tilde{F}_{2V}^{\gamma}, \tilde{F}_{2V}^{Z})$
- 3. 4 CPV form factors $\left(Re\tilde{F}_{2A}^{\gamma}, Re\tilde{F}_{2A}^{Z}, Im\tilde{F}_{2A}^{\gamma}, Im\tilde{F}_{2A}^{Z}\right)$

Matrix element method analysis

To estimate the goodness of fit, we use chi-squared test;

$$\chi^2 = \sum \delta F_i V_{ij}^{-1} \delta F_j$$

where

 δF_i : the deviation of the form factor from SM value

 V_{ij} : the covariance matrix of the form factor

From χ^2 and the degree of freedom, the confidence level is computed.

\widetilde{F}_{2V}^{Z} fit (The simplest case)

(Fix the other form factors at the SM, $\delta F = 0$)

Before quality cut

$$\delta \tilde{F}_{2V}^{Z} = 0.117 \pm 0.033$$
, $\chi^{2} = 12.6$ (confidence level = 0.03%)

After quality cut ($\chi^2_{tot} < 5 \& \Delta \chi^2_{tot} > 6$, efficiency 36%)

$$\delta \tilde{F}_{2V}^{Z} = 0.096 \pm 0.055$$
, $\chi^{2} = 3.0$ (confidence level = 8.3%)

\widetilde{F}_{2V}^{Z} fit (The simplest case)

Use only $\cos \theta_t$ and the cross section

9 helicity angles $\rightarrow \cos \theta_t$

After quality cut ($\chi^2_{tot} < 5 \& \Delta \chi^2_{tot} > 6$, efficiency 36%)

$$\delta \tilde{F}_{2V}^{Z} = -0.074 \pm 0.087$$
, $\chi^{2} = 0.71$ (confidence level = 40 %)

- The error becomes 1.6 factor larger from the 9 helicity angles case
- The bias disappears

Investigate the error and bias changing the number of angles (ongoing)

9 helicity angles \rightarrow 7 helicity angles \rightarrow ... \rightarrow cos θ_t

\widetilde{F}_{2V}^{Z} fit (The simplest case)

Other ways to reduce the bias

• Convolve the $|M|^2$ with the resolution function of the helicity angles

The deviation of each helicity angles

Use other quantities for the quality cut.

eg)
$$\left|\chi_{tot, caseA1(B1)}^2 - \chi_{tot, caseA2(B2)}^2\right|$$

6 CPC form factors fit

Fit 6 form factors $(\tilde{F}_{1V}^{\gamma}, \tilde{F}_{1V}^{Z}, \tilde{F}_{1A}^{\gamma}, \tilde{F}_{1A}^{Z}, \tilde{F}_{2V}^{\gamma}, \tilde{F}_{2V}^{Z})$

Before quality cut

$$<\sigma_F> = 0.021, \chi^2 = 141$$
 (confidence level ~ 0 %)

After quality cut ($\chi^2_{tot} < 5 \& \Delta \chi^2_{tot} > 6$, efficiency 36%)

$$<\sigma_F> = 0.035$$
, $\chi^2 = 10.5$ (confidence level = 11 %)

4 CPV form factors fit

Fit 4 form factors $\left(Re\tilde{F}_{2A}^{\gamma}, Re\tilde{F}_{2A}^{Z}, Im\tilde{F}_{2A}^{\gamma}, Im\tilde{F}_{2A}^{Z}\right)$

Before quality cut

$$<\sigma_F> = 0.026$$
, $\chi^2 = 8.6$ (confidence level = 7.2 %)

After quality cut ($\chi^2_{tot} < 5 \& \Delta \chi^2_{tot} > 6$, efficiency 36%)

$$<\sigma_F> = 0.038, \chi^2 = 3.7$$
 (confidence level = 45 %)

Even though the fraction of the wrong assignment of b-jets (F_{wrong}) is large, the results are almost consistent with SM.

 \rightarrow Need to use samples which have the deviation of these form factors to investigate the effects of F_{wrong}

Summary

- Di-leptonic state analysis produces the 9 helicity angles which are sensitive to the form factors.
- □ Reconstruct top quark imposing the kinematical constraints
 - ISR significantly affects the assignment problem of b-jets
 - The quality cut improves the fraction of wrong assignment of b-jets, hence the angular distributions.
- Fit the form factors with the Matrix element method
 - CPC: After quality cut, results are consistent with SM. The small bias will be reduced by convoluting the resolution functions etc.
 - CPV: Need to investigate the effects on CPV form factors using samples which have deviation of these form factors.

Back up

Suppression of $\gamma\gamma \rightarrow$ hadrons & b-jet reconstruction

Particles from $\gamma\gamma \rightarrow$ hadrons are mostly emitted along the beam direction. The direction of the b-jet is affected by these particles.

Suppress these particles using the kt algorithm (R=1.5).

→ The direction of the b-jet is improved.

The polar angle distribution b-jets. A: without the suppression of $\gamma\gamma \rightarrow$ hadrons, B: with the suppression of $\gamma\gamma \rightarrow$ hadrons

Scalar product, $\widehat{\eta}_{t, \text{MC}} \cdot \widehat{\eta}_{t, \text{Rec.}}$

CPV form factors fit

Fit 4 form factors $\left(Re\tilde{F}_{2A}^{\gamma}, Re\tilde{F}_{2A}^{Z}, Im\tilde{F}_{2A}^{\gamma}, Im\tilde{F}_{2A}^{Z}\right)$

Before quality cut

$$<\sigma_F> = 0.026$$
, $\chi^2 = 8.6$ (confidence level = 7.2 %)

After quality cut ($\chi^2_{tot} < 5 \& \Delta \chi^2_{tot} > 6$, efficiency 35%)

$$<\sigma_F> = 0.038, \chi^2 = 3.7$$
 (confidence level = 45 %)