Interpretation of e+e- -> bbar

F. Richard LAL-Orsay

in collaboration with S. Bilokin and R. Poeschl

Workshop on top physics at the LC 2017

CERN 7-9 juin 2017

Introduction

- Electron Neutrino
 Mass -0

 Bectron
 Muon
 105.7

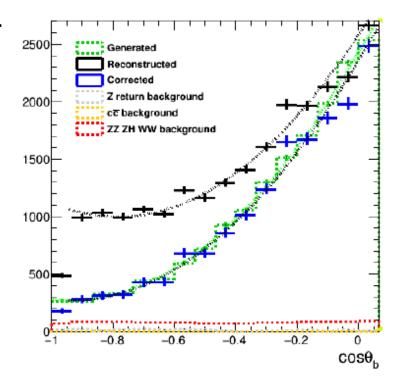
 Bectron
 Muon
 105.7

 Charm
 Top
 1500

 Down
 Strange
 160

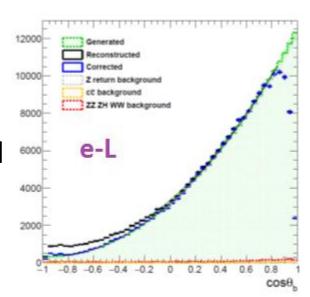
 Bottom
 4 250
- The main attention has been up to now focused on the top sector, but e+e- also offers a unique opportunity to study weak couplings of b quarks to Z and γ
- While Z couplings can, as for LEP1, be measured at the Z resonance, outside the resonance **beam polarisation** is needed to separate the Z and γ components since, in contrast to the top, b decays are dominated by **scalar meson channels** and offer no observables to disentangle the two components
- Several composite models predict a high degree of compositeness both for the t and b quarks. In this respect the well-known deviation observed at LEP1 should be verified/discarded in the future
- Can this be done at ILC? To which accuracy?

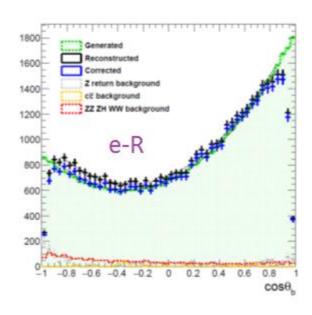
Purpose of this talk


- This presentation intends to discuss a very recent analysis of the channel ee->bb with the ILD set up, collecting 500 fb⁻¹ at 250 GeV with polarized e- (80%) and e+ (30%)
- I will briefly recall (see talk of S. Bilokin) the main features of this analysis relying on b charge determination using the microvertex information and the charged kaon identification from the TPC of ILD
- I will then derive the accuracies achievable from these measurements on the vector and axial couplings
- I will finally go through the interpretation of these results, recalling the **LEP1 puzzle** and putting this measurement in context with top physics

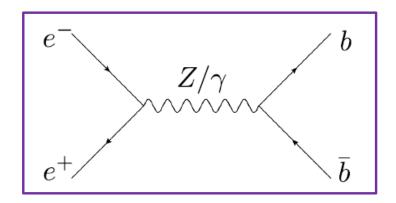
How to measure e+e- ->bb

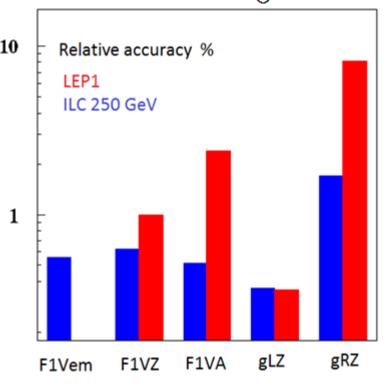
- Secondary vertices allow to unambiguously identify charged B mesons and therefore the b quark charge
- Unfortunately this can only be done with limited purity, ~80%, given that the secondary track efficiency is limited at ~95% (half of this inefficiency being due to an absence of significant offset) recalling that, on average, one needs to reconstruct 5 charged tracks.
- To cope with this, one requires the presence of two charged B mesons, which reduces the efficiency
- This efficiency is increased to 13% by selecting **charged kaons** which give a comparable purity


Limitation

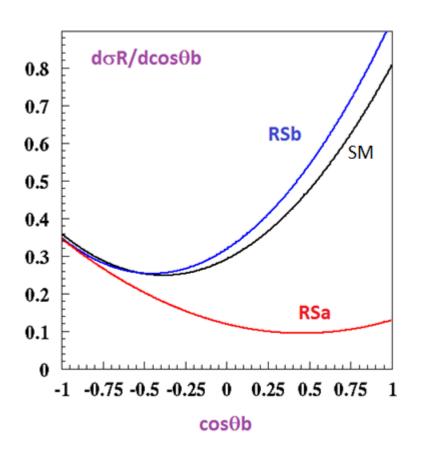

- Selecting two charged B mesons is however insufficient, in particular to measure e-Le->bb which is very forward backward asymmetric
- A method was derived, using the amount of wrong sign events B+B+ and B-B- to correct for this effect
- Migration due to track losses can be perfectly corrected from the data themselves
- If BSM physics populate the backward hemisphere, it will be detected with very high sensitivity

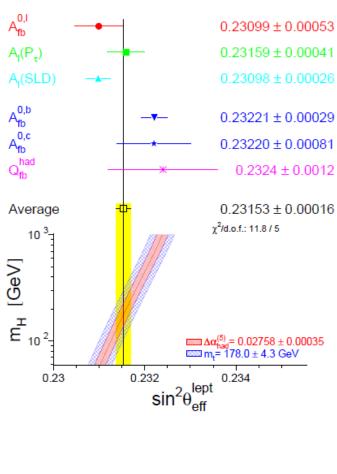
Results

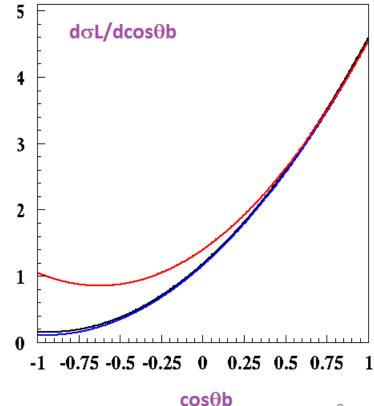

- The two curves are obtained with the two beams **fully polarized** and an integrated luminosity of 250 fb⁻¹ for each polarisation
- 3% background coming from ZZ, ZH and radiative return to Z
- In practice 2/3 Lumi. taken with e-L and 1/3 with e-R 1506.07830
- One can obtain these two distributions L and R from combining data obtained with partial polarisation
- $d\sigma$ -,+/ $d\cos\theta$ =0.58L+0.035R and $d\sigma$ +,-/ $d\cos\theta$ = 0.58R+0.035L L= $d\sigma_L$ / $d\cos\theta$ and R= $d\sigma_R$ / $d\cos\theta$
- L and R are fitted by $d\sigma/d\cos\theta \sim S(1+\cos^2\theta) + A\cos\theta$
- S~F1V²+F1A² and A~F1VF1A terms in $1/\gamma^2$ can be neglected
- For e-L S and A strongly correlated (ρ ~0.8) which reduces the errors
- The fit uses the region where $|\cos\theta| < 0.8$



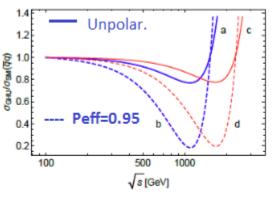
Separating γ from Z exchange


- With the four measurement of S and A for two polarisations one can **fully disentangle** F1VZ, F1AZ (or g_{R7} and g_{L7}) and F1Vem
- Precision is not limited by systematics (P, Lumi., εb , 10 back. $^{\circ}$ 0.4%) and errors can be reduced with higher luminosity (2000 fb⁻¹ is planned at ILC)
- $\delta g_{RZ}/g_{RZ}$ ~2% sufficient to confirm at >5 σ or to discard the LEP1 effect which is at the 25% level
- Recall the sign uncertainty on LEP1 solutions $dg_{RZ}/g_{RZ}=25\%$ or $dg_{RZ}/g_{RZ}=-225\%$
- Not a problem at 250 GeV to make the right choice for the sign




Preliminary

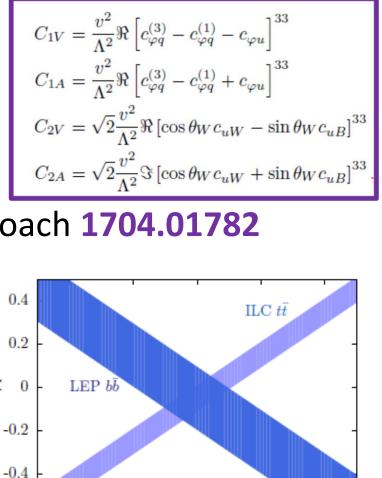
LEP1 effect


hep-ph/0610173

F. Richard LAL-Orsay June 2017

Interpretations

- Either use specific models like RS which has many versions or use EFT
- RS alone: Mkk>10 TeV to pass S,T constraints
- RS with custodial symmetries to pass S,T constraints: Mkk>5 TeV
- RS with special warping: Mkk>1 TeV 1011.2205 LHCb anomalies
- Will be explored by t and b measurements as shown in 1403.2893
- RS with gauge-Higgs unification: Mkk 5-10 TeV 1705.05282
- All flavour affected and will be tested not only with t,b but also will light quarks (c to be investigated) and leptons


f	$g^L_{Z^{(1)}f}$	$g^R_{Z^{(1)}f}$	$g_{Z_{R}^{(1)}}^{L}$	$g_{Z_{R}^{(1)}f}^{R}$	$g^L_{\gamma^{(1)}f}$	$g^R_{\gamma^{(1)}f}$
ν_e	-0.2225	0	0	0	0	0
ν_{μ}	-0.2225	0	0	0	0	0
ν_{τ}	-0.2224	0	0	0	0	0
e	0.1196	0.9981	0	-1.3762	0.1880	-1.8165
μ	0.1196	0.9369	0	-1.3029	0.1880	-1.7051
τ	0.1195	0.8847	0	-1.2401	0.1879	-1.6102
\boldsymbol{u}	-0.1539	-0.6536	0	0.9034	-0.1253	1.1896
c	-0.1539	-0.6041	0	0.8439	-0.1253	1.0994
t	0.6888	-0.3431	1.3208	0.5253	0.5616	0.6258
d	0.1882	0.3268	0	-0.4517	0.1303	-1.2369
s	0.1882	0.3021	0	-0.4220	0.1303	-1.1431
\boldsymbol{b}	-0.8470	0.1720	1.3189	-0.2625	-0.5840	-0.6506

at ILC Peff=0.89

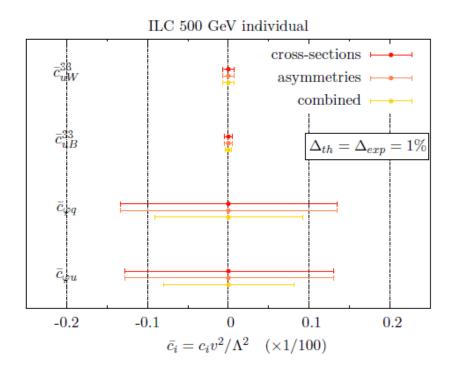
EFT

- Recently have compared and e+e- and LHC potential using the Effective Field Theory approach 1704.01782
- It clearly states that b measurement are a key feature to **narrow down uncertainties**
- This reference uses a coarse analysis which can be improved using ILC results on top 1505.06020
- Reach Λ ~10 TeV is achievable

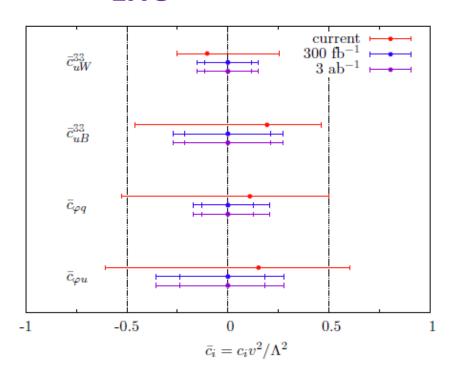
0.2

-0.2

-0.4


0.4

Conclusion


- ee->bb very demanding for the ILD detector (can be used as a benchmark)
- Migration effects can be perfectly corrected from the data themselves without using external informations
- Polarisation needed to separate the γ and Z couplings
- Accuracies surpass LEP1 but EW corrections are needed
- The **LEP1 effect** can be conclusively tested at 250 GeV with 500 fb⁻¹
- Reach on composite models, in particular in their RS versions, can be indirectly covered for masses well **beyond the LHC** using top and b EW measurements
- EFT illustrates the strong complementarity between b and t quark EW measurements and show that a collider reaching 500 GeV can cover effective mass scales up to 10 TeV

BACK UP SLIDES

EFT 1704.01782

LHC

Formulae

• $d\sigma/d\cos\theta = S_0\{(1+\cos^2\theta)[|F1V+F2V|^2+F1A^2]+(1-\cos^2\theta)|\gamma^{-1}F1V+\gamma F2V|^2-4\cos\theta F1A(F1V+\Re F2V)\}$

$$F_{1V}^{L} = -Q_b + e_L BW \frac{-0.25 - Q_b s_W^2}{s_W c_W} \qquad F_{1A}^{L} = e_L BW \frac{0.25}{s_W c_W}$$

- $eL=(-0.5+s^2w)/cwsw BW=s/(s-M_Z^2)$
- F2V α_s/γ^2 hence 1-cos $^2\theta$ can be neglected for b quarks
- Keeping interference terms and neglecting $1/\gamma^2$ terms
- $d\sigma/d\cos\theta = S_0\{(1+\cos^2\theta)(F1V^2+2F1V\Re F2V+F1A^2)-4\cos\theta F1A(F1V+\Re F2V)\}$