Amici

AMICI

WP2.2: Global landscape (CEA, CERN, INFN, CNRS).

Olivier Napoly
 CEA/Irfu

EUROPEAN COMMISSION
DIRECTORATE-GENERAL FOR RESEARCH \& INNOVATION

WP2.2:

The roadmaps of the different scientific domains using accelerators and superconducting magnets in Europe, such as the ESFRI list and its international equivalents, as well as the roadmaps of the major research laboratories worldwide will be collected and analysed in order to identify the future trends and need. With the additional input from the innovation market survey from WP4, synergies, possible mismatches and potential for innovation will be described. All this will be used to assess the workload, the capabilities and, whenever possible the priorities of the European Technological Infrastructures, constituting Technological Roadmaps, in the different technological domains identified in WP2.1.'

Some relevant documents

IPAC15
 (心)

Richmond Conference Center
Richmond, Virginia, USA
3-8 May, 2015

Construction Projects and Upgrades of Particle Accelerators

$8^{\text {th }}$ Edition

Information for Industry
Collaborating in the Field of Particle Accelerators

Compiled by Christine Petit-Jean-Genaz IPAC Conferences Coordinator for Europe

TABLE OF CONTENTS
Project Region: Asia
Australia
ANSTO Centre for Accelerator Science 1
China

- China Initiative Accelerator Driven System (CIADS) China Spallation Neutron Source (CSNS)
High Energy Photon Source Test Facility (R\&D for HEPS)
High Intensity Heavy Ion Accelerator Facility (HIAF) in China 5
India
Performance Enhancement of Indus-2 with Insertion Devices and Upgrade of Sub-system
R\&D Activities for High Energy Proton Linac-based Spallation
Neutron Source
Superconducting Linacs for Electrons and Heavy-ions Technical Design Report and R\&D for Advanced National Facility for Unstable \& Rare Isotope Beams (ANURIB)
Japan
- iBNCT Project

Spring-8 Upgrade
SuperKEKB
Synchrotron Light in Tohoku, Japan (SLiT-J)
J-PARC/MR
RIBF Upgrade Project

Republic of Korea

- PAL-XFEL Project
$\begin{array}{ll}\text { KHIMA (Korea Heavy Ion Medical Accelerator) } & 16 \\ & 17\end{array}$
RAON
Taiwan
The Development of Fully Solid-state 60 kW RF Transmitter

Some relevant documents
Project Region: Europe

Belgium
Czech RepublicELIMED21
France
ThomX22
Germany
bERLinPi $\begin{array}{r}23 \\ 24 \\ \hline\end{array}$
FARR
ItalySuperconducting Cyclotron for Light Ions with kW Power25
SPARC-LAB (Sources for Plasma Accelerators \& Radiation26
27
compton with Lasers and Beams)land
Naional Electromagne28
Romania
ELI-NP Beam Gamma System 29
Spain CELLS-ALBAESS Bilbao30
31
SwedenEuropean Spallation Source (ESS)FREIA32
33
Switzerland
SLS 2.0AWAKEExtra Low Energy Antiproton ring ELENAHigh Luminosity LHC (also: HiLumi LHC, HL-LHC)34
35
3
LHC Injectors Upgrade (LIU)37
38
39
nited Kingdom
CLARA
ISIS Linak Tank 1 Replacement40
41

Diamond DDBA Lattice Modification Project
Diamond DDBA Lattice Modification Project 42

Project Region: Europe or Asia

Europe, Japan and/or South Korea
International Fusion Materials Irradiation Facility (IFMIF)
Project Region: North America, Central and South America North America

USA
Accelerator Test Facility Upgrade
Development of a Brilliant X-ray Source Upgrade for CHESS 45
Development of a Brilliant X-ray Source Upgrade for CHESS
eRHIC
Energy Recovery Linac using fixed-field, alternating gradient (FFAG) technology
(FFAG) technology
Linac Coherent Light Source II
Proton Improvement Plan - II (PIP-II)
DAEdALUS/IsoDAR
Advanced Photon Source Upgrade
Mu2e
Coherent Electron Cooling Proff-of-Principle Project 54
South America
Brazil
Sirius

Amici

Some relevant documents

Some relevant documents

Some relevant documents

Material and Engineering Sciences

Category	Group	Name	Full name
TGIR		ESRF	European Synchrotron Radiation Facility
TGIR		XFEL	European X-ray free electron laser
TGIR		ILL	European neutron source - Institut Laue Langevin
TGIR		ORPHEE	Orphée reactor. Excluding LLE part (Laboratoire Lén Brillouin)
TGIR		SOLEIL	3rd generation synchrotron radiation source
IR		CESTA Lasers	High-density energy lasers - CEA/ CESTA
IR		EMIR	Network of accelerators for material irradiation Laboratoire des champs magnétiques intenses Laboratory for the use of intense lasers
IR		LNCMI	National network for electronic microsocoopy (transmission and atomic probe)
IR		LULI	National network of interdisciplinary RPE (paramagnetic electronic resonance)
IR		METSA	Network of nanotechnology centres
IR		Renard	Retwork of high-field NMR platforms
RR		RMNATECH	European spallation source

| 42

Some relevant documents

ESFRI
 European Strategy Forum on Research Infrastructures

Technological Infrastructures Importance for ESFRI projects

Brussels, January 2015

John Womersley
Chief Executive, Science and Technology Facilities Council (UK) Chair of ESFRI

Amici

Some relevant documents

Technology Infrastructures

- The European network of capabilities in this area is a key to implementing new RI projects
- Enabling technologies include
- Particle accelerators
- Imaging detectors
- Electronics
- Magnets
- Cryogenics
- Lasers
- Computing and data-intensive science

Some relevant documents

Some relevant documents

Contents

04 INTRODUCTION
Accelerators for America's Future
10 CHAPTER 1
Accelerators for Energy and the Environment
24 CHAPTER 2
Accelerators for Medicine
40 CHAPTER 3
Accelerators for Industry
54 CENTERFOLD
Adventures in Accelerator Mass Spectrometry
58 CHAPTER 4
Accelerators for Security and Defense
70 CHAPTER 5
Accelerators for Discovery Science
84 CHAPTER 6
Accelerator Science and Education
90 SUMMARY
Technical, Program and Policy Directions

Amicial

Some relevant documents

now ubiquitous in the accelerator world. The current need is for development
of a fieldable device for testing with defense and security parters of a fieldable device for testing with defense and security partners. Relativistic electron beams can generate high-power electromagnetic radiation at various frequencies for directed-energy-specific missions. Examples include free electron lasers, highly directional gamma-ray beams through Compton scattering, and millimeter-wave to terahertz radiation. optical beam quality and wavelengths required for security and defense purposes. In the mid-1990s, the highest average-power FEL had achieved only 11 watts. The Navy, as a user of the FEL at DOE's Thomas Jefferson National Accelerator Facility achieved 2.2 kW , and a subsequent upgrade in 2006 demonstrated 14 kW at 1.6 microns, a wavelength of particular interest to the Navy

Free electron laser-based directed energy can expand to a wide range of missions. With increased efficiency and decreased weight, for example, FEL might serve as airborne platforms. With appropriate R\&D, such goals appear programs, potentiolly leading to lower-cost FEL sytems and associated energ-recovery-linac light sour
A megawatt-class FEL will require several critical accelerator R\&D developments. Credible designs exist for two of these: a high-quality ampere class electron gun and continuous wave injector that can operate for weeks, and ampere-class SRF cavities with higher-mode suppression using high-tem perature superconductors. However, demonstration of these designs requires funding. At the conceptual level with simulations, researchers are currentl| exploring a third critical element, megawatt-level RF couplers. Complete to the actual performance of, for example, future $100-\mathrm{kW}$ prototypes, will require major efforts.

Cargo inspection and interrogation
Security priorities of the last decade have turned to deterring the threat from subnational organizations. Some of these deterrents rely on identifying small quantities of special nuclear material in shipping containers through a signature reaction induced by radiation. Accelerals are atural of current proposals to delop active interrogation techniques

Standing off" at a distance from the object under inspect electromagnetic radiation, including that from accelerators, is of significant interest in security and defense. The recent developments in terahertz radiation at FELS show potential for active interrogation with desirable standoff distances for cargo, improvised explosive devices and biological investigations.

Other interrogation techniques use neutron and proton beams ranging from tens of keV to tens of GeV with radiographic sensitivity to a variety of materials. high gradient and high temperature superconducting technologies, as well as high gradient and high temperature superconducting technologies, as welt as

Researchers have proposed more exotic radiography using the low interaction rates of muons to achieve significant standoff. Such proposals would build on developments for muon colliders and neutrino factories, the subject of R\&D for possible future basic-science facilities.

Replement of radlocthe sources and materiat

In the 1970s, accelerator-based gamma-ray radiation therapy replaced radioiso-tope-based devices in the United States and Western Europe. However, in mu with over 10,000 in service, according to the International Atomic Energy Agency

Some relevant documents

Report to ESFRI

(March 2016)

This final report is presented to ESFRI according to the mandate which was given in 2013 (and extended in June 2015) to the Working Group on Innovation and following the conclusions of the discussion of the interim report presented at the $53^{\text {rd }}$ meeting of the Forum held in Lisbon on the 12 $2^{\text {th }}$ of June 2015. It is focused on the main objectives which were defined by the Forum (see the Terms of Reference of WG INNO, in Annex 1), namely to contribute to the development of a strategy aimed to strengthen and improve the relations between Research Infrastructures and Industry and to promote the potential for innovation of Research Infrastructures in all its aspects. All sections of the report are for innovation of Research Infrastructures in all its aspects. All sections of the report are
concentrated on these issues. Examples of good practices are given in text boxes. A set of conclusions and recommendations has been drawn to the attention of Research Infrastructures managers and ESFRI in the perspective of the firther implementation of the ESFRI Roadmap.
The group held 8 meetings in which representatives of the various categories of stakeholders were successively invited to participate and to present their experiences, needs and expectations.

Some relevant documents

Current practices in industrial cooperation and innovation during the construction phase [from the survey of ESFRI Landmarks (2015)] - [2
The "in-kind contribution" approach for building the ESS Neutrons ESS will be built on a green-field site, a challenge which brings with it great potential, for society, as
well as for science. Further scientific and technological advancements will be required to build this unique facility, which is the best of its kind. Within the construction of ESS, a significant amount
will be R\&D related, which has a high potential for innovation. The construction will generate growth and jobs, advance development and fuel innovation potential in the region and across the EU. With ESS being built as a collaborative project, the growth effect will be shared between the region (Öresund), the host countries (Sweden and Denmark) as well all as the ESS Partner
Countries. Most of the necessary skills for its development need to be imported through in-kind Countries. Most of the necessary skills for its development need to be imported through in-kind
contributions (IKC) from participating institutes and companies in the Member States. The IKC contributions (IKC) from participating institutes and companies in the Member States. The IKC
approach is intended to foster collaborations between national academia and industry, representing the entire supply chain.
While the management and integration of IKC is challenging for a project organisation, it also provides significant and highly desirable advantages for the ESS itself as well as the member
countries. Access to frontier technology that enables the realisation of ESS would otherwise be countries. Access to frontier technology that enables
unattainable, as well experienced technical and scientific personnel and access to unique production facilities and technologies. This is a very important socio-economic driver in that the construction of ESS fuels national innovation potential, competitiveness, and the national GDP of
all of the Member States for the long term. This will increase each country's national and crossall of the Member states for the long term. This
national capacity and help create jobs and growth
Industry as a supplier for the construction of the EUROPEAN XFEL
The development of one of the technologies that are at the heart of the European XFEL, i.e. the
superconducting RF (radiofrequency) acceelerator technology, was conducted in close collaboration with industry. The need to couple state of the art materials and processes, developed in a publiclyfunded research environment, with mass production of components, only possible in an industrial environment, made TT a sine-qua-non condition for the implementation of large accelerator facilities. Over more than 20 years, the TESLA world-wide collaboration, with a very strong
European component (led by DESY), in collaboration with industry, developed and refined the technologies allowing the production of 2 km of superconducting RF cavities of extremely demanding specifications. As a result of the DESY leadership in the development of superconducting RF, European industry is today a market leader and a likely supplier of projects using this technology in Europe and in other continents.
of telecommunications to electronics hardware for the control of enion of the Micro-TCA. 4 standard European XFEL accelerator), by the DESY controls division in collaboration with industrial partners (to be adopted by the European Spallation Source in Lund (SE) as well); and (ii) with consortia of academic and industrial laboratories in Germany, Switzerland and Italy developing
sensors and data handling electronics for innovative MHz frame acquisition rate detectors, under the impulse from the European XFEL.
SKA's global cooperation
There are several ways in promotion of TT and KT along with the Square Kilometre Array (SKA) project development. For instance, the UK government has created the "Newton Fund Programme" which is administrated by the Royal Academy of Engineering, with the aim to develop science and countries. In the same time, the South African government has launched the "SKA Youth into Science and Engineering project which has awarded, since 2005 up to date, bursaries in the areas of astronomy, including PhDs, MScs and postdoctoral fellowships.
The University of Manchester, on whose site the SKA HQ is based, is developing a collaboration programme with Chinese Academy of Sciences for the exchange of scientists that will link the construction of FAST (Five hundred meter Aperture Spherical Telescope) in China with the development of the SKA project that will help China enhance its capabilities in development of key components of receivers for science observation. The extremely low noise amplifiers (LNAS), been identified. In addition, SKAO Office has also provided opportunities by offering secondment programme to several Member States, such as a three-year exchange programme with Japanese radio scientists, the yearly-based exchange programme with Chinese secondment on signal system modelling and outreach communications.

Open Innovation at IMEC

IMEC's experience is an example of a new "precompetitive space" created around the RI where "must-have technological platforms" are offered to industry in a working mode. Effectiveness is firstly due to the fact to be in the same place and work together on shared objectives. The aim is to join: PhD research; technology (IAP) where the industrial partners rotate around IMEC r ther than using a consortium approch A secifo precompetitive research IP model is used; noticeable is the power of using a unique IP fingerprint.

Finer resolution of IP
landscape developed
OPEN INNOVATION
in IIAP approach
Program based approach
-Integraton of fection fre cych
-Integration of tectune olfocycle
Project-based R\&D outsourcing

IIAP: IMEC Industrial Affiliation Program
imec \qquad

Partner obtains co-ownership (with
imec) imect on resilst tow
contributed' (R1):

- Partner gets a royalty free, non-
exclusive licenge without
subbicensing
 (yearly), witho
Partner gets a royaly free, nonParner gets a royalty free, non-
exclusive license whout sublicensing
nights on ime's backgoround (R) nghts on imec's backiround of0).
necessary for exploitation of the Iesests of the prograitation of the
Program entry fee) (ime

For each partuer there is possibility to
generate poroprietary results $R 2$ as generate proprietary results (R2) as
part ofeparter Red
application of R1 outcome onto through

 IMEC acts as a service, not for problem solving or TT stuffs, but for research programmes, properly funded. are involved, but also SMEs have been attracted by means of an enterprises network.

Eligibility

WHAT IS A LARGE RESEARCH INFRASTRUCTURE?

The principles that define a large research infrastructure can be stated as follows:

- it must be a tool or a device that has unique characteristics identified by the scientific community that makes use of it as required for conducting high-level research activities. The targeted scientific communities can be national, European, or international, according to the case;
- it must have governance that is identified, unified and effective, and strategic and scientific bodies for steering;
- it must be open to any research community that wants to use it, accessible based on peer-reviewed scientific excellence; it must therefore have suitable evaluation bodies;
- it can conduct its own research, and/or provide services to one (or several) communities of users that integrate the stakeholders of the economic sector. These communities can be present on the site, conduct work there on a oneoff basis, or interact remotely.

Moreover, research infrastructures will in the future have to be able to:

- produce a multi-annual budget schedule as well as a consolidated budget that incorporates the full costs;
- make the data produced available, either immediately, or after an embargo period corresponding to the international practices of the field involved.

Work Packages Timeline

	YEAR 1												YEAR 2												YEAR 3					
	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27	M28	M29	M30
Work Package 1: Management, coordination and dissemination (CEA)																														
WP1.1 Project management (CEA)	M1.1	01.1									M1.5	01.4											M1.5	D1.4					M1.5	D1.4.
WP1.2 Organization of the participation of industry (INFN)			M1.3	01.2																				01.6						
WP1.3 Administrative and financial project management (CEA)												01.5												01.5						01.5
WP1.4 Communication and outreach activities (IFJ-PAN)		M1.2			M1.4						D1.3																			01.7
Work Package 2: Strategy (CNRS)																														
WP2.1 Key technological areas (CNRS)									M2.1															02.1						
WP2.2 Global landscape (CEA)												M2.2												D2,2						
WP2.3 Accelerator and SC magnet TI sustainability (UU)																		M2.3												02.3
Work Package 3: Cooperation (DESY)																														
WP3.1 Definition of eligibility criteria (CEA)									M3. 1									03.1												
WP3.2 Networking and coordination model (IFJ-PAN)												M3.2																		03.2
WP3.3 From cooperation to collaboration (DESY)																		M3.3												D3, 3
Work Package 4: Innovation (STFC)																														
WP4.1 Industry survey - accelerator technologies (STFC)															M4.1												M4.4			04.1
WP4.2 Industry survey - magnet technologies (CEA)															M4.2															D4.2
WP4.3 Good practices and barriers to engagement between industry and 7 l ((INFN)																										M4.3				04.3
Work Package 5: Industrialization (INFN)																														
WP5. 1 Professional training and apprenticeship (CEA)																M5. 2		M5.3										05.2		D5.4
WP5. 2 Harmonisation - Material and components reference (CNRS)																										D5.1				
WP5.3 Harmonisation - Cryogenic safety procedures (KIT)												M5.1																05.3		
WP5.4 Developing prototyping in industry (INFN)																								M5.4						D5.5.

Figure 3: Gant chart of the project

