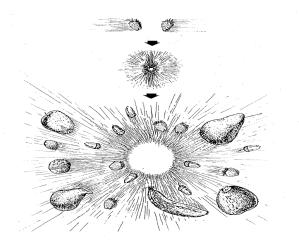


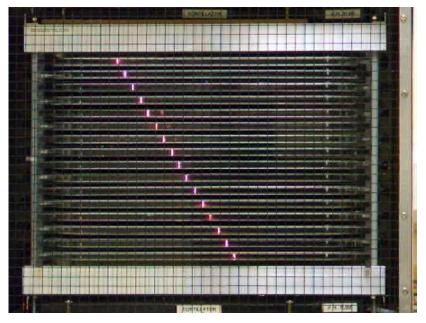
University of Birmingham Outreach team

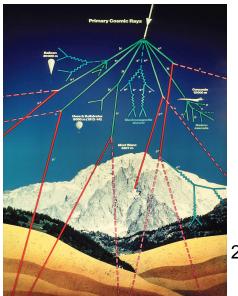
Detecting Cosmic Rays with Quarknet

Typical activity


- Illustrate their presence with a spark chamber
- Measure their distribution with a scintillator telescope

Introduction to cosmic rays


 Demonstration with spark chamber, designed and built by undergrads.


Description

E=mc²; Energy ↔ Matter New particles are produced

Secondary cosmic rays at ground level: mainly **muons** (i.e. electrons but 200 times heavier)

What might we measure?

- What is the flux of particles (per s per cm²) raining down on us?
- Does this flux vary with time (day vs night)?
- Does it vary with position:
 - a) locally (inside, outside, upstairs, downstairs)?

Local investigations

- b) globally (i.e. with altitude, latitude/ longitude)
- Do the cosmic rays occur in showers (i.e. sprays of particles hitting the Earth almost simultaneously from the same source high in the atmosphere)?

Investigate by comparing with other sites.

- Are the cosmic rays really mainly muons?
- How to distinguish from electrons, protons etc?

Identify µ by its range; e and p will interact, but differently, in matter

Simple experiments

Exp1: Solid Angle

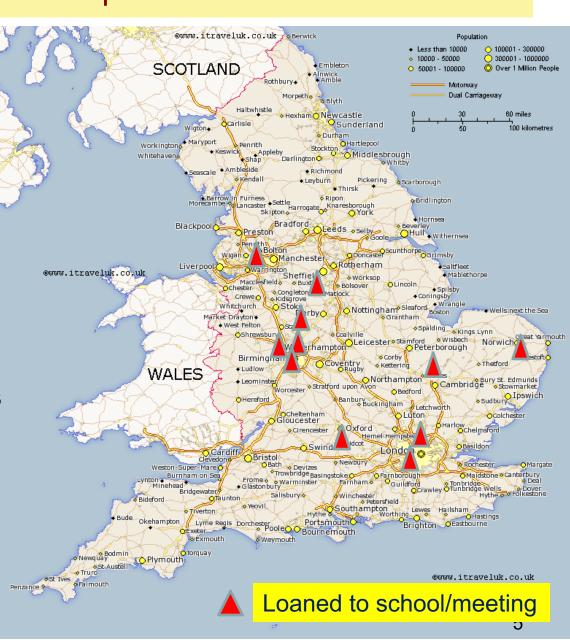
- Start with counters at fixed separation.
- Measure the flux of cosmic rays
- Change the separation
- Measure the flux again

Exp2: Zenith Angle

- Start at fixed separation.
- Measure the flux.
- Change the angle of the detector to the vertical. (Keep the separation the same).

Exp3: Variation with height

- Start at fixed separation with counters on a trolley.
- Measure the flux.
- Move to trolley from floor to floor.
 (Keep the separation unchanged).



Summary of Quarknet telescope activities

- Loaned to schools
 (weeks months)

 But often difficult to fit projects into standard school day.
- used by groups of school students in University visits. Straightforward to make measurements after a brief introduction.
- demonstrated on Open Days and at public talks/meetings.
 Audience can easily gain hands-on experience.

Quarknet is a very robust, effective means of making useful measurements and doing research.

