
Bulk IO Update
Brian Bockelman

Pondering Analysis
• ROOT has high overheads for simple objects!

• Consider a TBranch that consists of a single float.

• Each object read by ROOT results in:

• Virtual calls (TBranch::GetEntry, TBasket::PrepareBasket, TLeaf::ReadBasket,
TBuffer::ReadFloat).

• Function pointer call (TBranch::fReadLeaves).

• Plus all the CPU overhead of bounds checking and error condition checking.

• E.g., for every float we read from the same basket, we check for different
possible basket layout formats.

• Additionally, there is significant work at basket boundaries.

ROOT Bulk IO
• Proposal: For simple branches, introduce a “fast path”

that requires one library call per basket.

• The fast path will only support the latest ROOT format
and a strict subset of branch types.

• User code is responsible for falling back to more
flexible “slow path”. By design, we want the
difference between “fast” and “slow” to be explicit.

• Concerned that poorly implemented auto-fallback
will cause user to accidentally lose performance.

New “User-facing” APIs
• This low-level API is necessarily messy! Will talk about high-

level API next.

• Int_t TBranch::GetEntriesFast( 
 Long64_t entry,  
 TBuffer &user_buf,  
 unsigned flags);

• Returns the number of events deserialized, or -1 on failure.

• Object of type T can be found using:

reinterpret_cast<T>(user_buf.GetCurrent())[idx]

“User-facing” API
• Int_t TBranch::GetEntriesFast( 
 Long64_t entry,  
 TBuffer &user_buf,  
 TBuffer &offset_buf,  
 unsigned flags);

• Returns the number of events deserialized, or -1 on failure.

• The object for event idx can be accessed via:

reinterpret_cast<T>( 
 user_buf.GetCurrent() +  
 offset_buf.GetCurrent()[idx]);

Preliminary Results
• Wrote a microbenchmark that writes 100M floats to a

ROOT file; can read it back via either
“standard” (TTreeReader) or “bulk” APIs.

• 3.5s to read with TTreeReader.

• 0.75s to read with low-level bulk APIs.

• Approximately a 4.7x speedup!

• Note: microbenchmark is meant to showcase bulk API
speeds.

The “flags” argument
• flags is meant to allow for alternate behavior. Current idea:

• kRaw: For objects that can deserialize in-place, return the
serialized buffer.

• Users can then invoke deserialization routine immediately before
reading the event. Why?

• Even with the bulk APIs, to perform a byte-swap, we must
sequentially scan the entire buffer twice: once inside ROOT (to
perform byteswap) and once in user code. Implies we read
data from memory into cache twice!

• If (deserialize + user code) is combined into one
streaming memory access, then we can save time.

NOTE: Since flags are runtime; will likely switch these to a compile-time technique.

Raw Buffers and Users
• With our float microbenchmark, deserializing in user code reduces

runtime from 0.75s to 0.62s.

• Important result: there is no measurable CPU cost byte swap if
byte swap is done inside user code.

• Taking in estimates of startup overhead into account (0.23s), the
total speedup is 8.3x.

• CAVEAT: benchmarking in this manner is fairly inaccurate,
especially as the total runtime is so small. It’s reasonable to say
“a lot faster” but an improved testbed is warranted.

• Unfortunate it’s a really bad idea to ask users to actually do this
coding themselves!

TTreeReaderFast
• Consider sample TTreeReader code:

 TTreeReader myReader("T", hfile);  
 TTreeReaderValue<float> myF(myReader, "myFloat"); 
 Long64_t idx = 0;  
 Float_t sum = 1;  
 while (myReader.Next()) {  
 sum += *myF;  
 }

• Observation: unlike most other places in ROOT, TTreeReaderValue<float>
provides compile-time guarantees about the object type.

• Idea: write a TTreeReaderFast class that manages the TBuffer.

• myReader.Next() could be inlined by compiler, avoiding function calls unless a new
basket is needed.

• For certain types, *myF would invoke the appropriate deserialization code (kRaw mode).

Next Steps
• High-level interface: Work to hide all low-level interfaces behind a

“TTreeReaderFast” facade.

• Possibly make the existing interfaces private / internal.

• Zero-copy interface: If TFile was extended with mmap-compatible
interfaces, we could avoid memory copies.

• Continue to expand object types and branches that can use the bulk IO API.

• Next up: variable-length arrays.

• More micro-benchmarks!

• Particularly, how much of this improvement is lost as we “add in realism”?

