COMET-2 4 cLFV

Charged Lepton Flavour Violation

with COMET2, and other projects

Why looking for cLFV?

- Neutral Lepton Flavour Violations(/transitions): exist!!!
- Why not charged LFV? (local, L=0, version of neutrino oscillation)
- Truly rare processes: e.g. $BR(\mu \rightarrow e \gamma) < 10^{-12}$
- « No » SM background: e.g. BR($\mu \rightarrow e \gamma$)_{SM} ~ 10⁻⁵⁴
- Crucial to reveal or discriminate certain mechanisms of neutrino mass, e.g. involving sterile neutrinos γ

v_s and cLFV in muonic atoms: μ -e conversion

▶ Muonic atoms: 1s bound state formed when μ^- stopped in target

SM processes: $\mu^- \to e^- \nu_\mu \bar{\nu}_e$ (decay in orbit); $\mu^- + (A,Z) \to \nu_\mu + (A,Z-1)$ (nuclear capture)

▶ cLFV $\mu^- - e^-$ conversion: $\mu^- + (A, Z) \rightarrow e^- + (A, Z)$ coherent conversion, increases with Z (maximal for $30 \le Z \le 60$)

► Event signature: single mono-energetic electron

$$E_{\mu e}^{\rm N} = m_{\mu} - E_B(A,Z) - E_R(A,Z)$$
, $E_{\mu e}^{\rm Al, \ Pb, \ Ti} pprox \mathcal{O}(100 \ {\rm MeV})$

- ▶ Backgrounds ⇒ only physics (e.g. μ decay in orbit); beam (purity), cosmic rays, ...
- **▶** Experimental status (present bounds and future prospects):

$CR(\mu-e,N)$ bound	material	year
4.3×10^{-12}	Ti	1993
4.6×10^{-11}	Pb	1996
7×10^{-13}	Au	2006

Experiment (material)	future sensitivity	year	
Mu2e (AI)	3×10^{-17}	\sim 2021	
COMET (AI) - Phase I (II)	$10^{-15} (10^{-17})$	\sim 2018(21)	
PRISM/PRIME (Ti)	10 ⁻¹⁸		
DeeMe (SiC)	10^{-14}		

Muon capture: tremendous progress on the way

Experiment (material)	future sensitivity	year
Mu2e (Al)	$3 \times 10^{-17} [360]$	~ 2021
COMET (Al) - Phase I	$3 \times 10^{-15} [362]$	~ 2018
COMET (Al) - Phase II	$3 \times 10^{-17} [362]$	~ 2021
PRISM/PRIME (Ti)	$10^{-18} [364]$	
DeeMe (SiC)	$10^{-14} [365]$	

Table 3.8: Future sensitivities for $CR(\mu - e, N)$.

COMET Detectors

Straw Tracker

(# of straw stations is not determined)

in vacuum under 1T magnetic field

COMET Phase-I

COMET Phase-II

Schedule of COMET Phase-I and Phase-II

	JFY	2015	2016	2017	2018	2019	2020	2021	2022	2023
COMET Phase-I	construction									
	data taking					7				
COMET Phase-II	construction									
	data taking									

COMET Phase-I:

2018 ~
S.E.S. ~ 3x10⁻¹⁵

(for 150 days
with 3.2 kW proton beam)

COMET Phase-II:

2022 ~

S.E.S. ~ (1.0-2.6)x10⁻¹⁷

(for 2x10⁷ sec

with 56 kW proton beam)

PRISM/PRIME: Future Search with S.E. sensitivity of 3x10⁻¹⁹

v_s and cLFV in muonic atoms: $\mu + e \rightarrow e + e$

▶ Muonic atom decay: $\mu^-e^- \rightarrow e^-e^-$

[Koike et al, '10]

Initial μ^- and e^- : 1s state bound in Coulomb field of the muonic atom's nucleus

► Coulomb interaction increases overlap between

$$\Psi_{\mu^-}$$
 and Ψ_{e^-} wave functions

$$\Gamma(\mu^- e^- \to e^- e^-, N) \propto \sigma_{\mu e \to e e} v_{\text{rel}} \left[(Z - 1) \alpha m_e \right]^3 / \pi$$

- ▶ Clean experimental signature: back-to-back electrons, $E_{e^-}\approx m_\mu/2$ larger phase space than $\mu\to 3e$
- ightharpoonup Rate strongly enhanced in large Z atoms

$$\Gamma/\Gamma_0 \gtrsim (Z-1)^3$$

[Uesaka et al, '15-'16]

Consider experimental setups for Pb, U!?

Experimental status: New observable!
Hopefully included in COMET's Physics programme

v_s and cLFV in muonic atoms: prospects

▶ cLFV muonic atom decay $\mu^-e^- \rightarrow e^-e^-$ vs μ^-e conversion (Aluminium target)

"3+1" toy model [Abada, De Romeri and AMT, '15]

- ► Sizeable values for $BR(\mu^-e^- \to e^-e^-)$ potentially within experimental reach! [COMET] probe "heavy mass" regimes unaccessible for SHiP, FCC, LHC, ...
- For Aluminium [COMET], $CR(\mu-e)$ appears to have stronger experimental potential ... consider "heavy" targets to probe $BR(\mu^-e^- \to e^-e^-)$