My favourite projects by Stéphane Monteil.

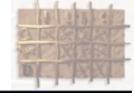
Outline

- 1. The theory projects.
- 2. The dream machine.

42

42

© https://en.wikipedia.org/wiki/The_Hitchhiker%27s_Guide_to_the_Galaxy_(novel)


In absence of an hypercomputer to find what the question, we need to devote a part of the Science budget to

think.

- Some theory(ies) of everything have already been written.
- We are in a time where the NoLoose theorem is actually lost.
- The BSM energy scale is unknown. There is even nothing preventing the SM to be valid up to the Planck scale.
- The LHC Run II has not yet delivered a BSM signal. It might come. It may not.
- YET, there are intriguing indications of departures from SM predictions in the Flavour Physics at large (Please help Angelo to build his (*g*-2)-related experiment [I've personally offered a beer yesterday]).
- We need to come up with bottom-up approaches in which the interplay between theoreticians and experimentalists is more required than ever.

 Theorists do need ... a pen and a sheet of paper (and a eraser in case they get it wrong) → [80 cents of euro / physicist / day].

- Theorists do need ... a pen and a sheet of paper (and a eraser in case they get it wrong) → [80 cents of euro / physicist / day].
- Some will need to calculate the next loop of the SM. A farm of computers is required → [10 MEuros].

- Theorists do need ... a pen and a sheet of paper (and a eraser in case they get it wrong) → [80 cents of euro / physicist / day].
- Some will need to calculate the next loop of the SM. A farm of computers is required → [10 MEuros].
- All need to travel (a lot) → [10 kEuros / physicist / year].
 [This is not for personal convenience. It is a mandatory part of the projects and dissemination of the results.]

- Theorists do need ... a pen and a sheet of paper (and a eraser in case they get it wrong) → [80 cents of euro / physicist / day].
- Some will need to calculate the next loop of the SM. A farm of computers is required → [10 MEuros].
- All need to travel (a lot) → [10 kEuros / physicist / year].
 [This is not for personal convenience. It is a mandatory part of the projects and dissemination of the results.]
- Theorists (and experimentalists) in HEP need on top of these fundings a large scale generalist experimental project aiming at tackling most of the outstanding questions of the field.

2) A dream machine

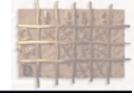
2) A dream machine

Muon Colliders @ 30 TeV

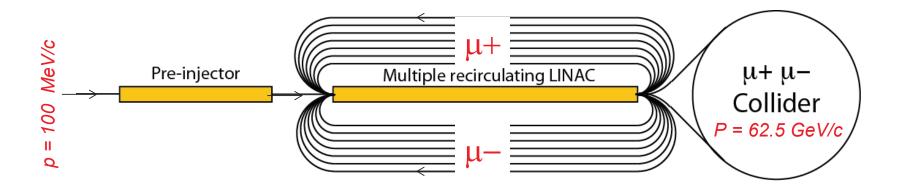
2) A dream machine - Physics.

Muons will experience a first interesting threshold at 125 GeV.

$$\mu^+\mu^- \to H$$


- Measure branching fractions, measure the Higgs width by scanning.
- Upgrade the energy to Multi-TeV. Multi can be as large as 30 TeV. It is not necessary to change the layout of the experiment. The whole centre-of-mass energy is used for the Physics (in contrast with the proton machines). Any new excitation coupling to muons can be finely studied.
- To catch up with with the lectures you received: whether some lepton non-universality shows up at low energy from a new gauge boson coupling, this machine is the straightforward way to directly observe and accurately study it.

3) A dream machine: challenges



- Muons are long-living: $au_{\mu} = 2.19 \, \cdot 10^{-6} \; \mathrm{s}$
- If you accelerate them *fast enough*, you can keep them in a circular machine to get high luminosity collider.
- The problem is that particles are accelerated in bunches. They must have a small emittance (all momenta aligned in the lab, no dispersion in the phase space in the rest frame).
- Solution: produce them at rest.
- HW: what is the energy of a positron beam (annihilating on electrons at rest) required to produce a pair of muon-antimuon at rest? Answer: 45 GeV. You need to fund Johannes's project first.

3) A dream machine: how does it look like?

Compact because of modest beamstrahlung

©C. Rubbia - CERN seminar.

- We are speaking of few hundred meters circumference.
- The budget is modest as far as the muon ring is concerned. The price is << ILC, e.g. << 15 billion Euros. The main challenge is the cooling facility.
- FCC-ee as the first step.