FROM QUARK MODEL TO QUANTUM CHROMODYNAMICS

Alessandro Barone

University of Bologna

05/04/2017 International School of High Energy Physics 2017

ISOSPIN, STRANGENESS AND HYPERCHARGE

Isospin symmetry of strong interaction (pp, pn, nn) and STRANGE particles \rightarrow Gell-Mann and Pais interpreted this particles with the following assumptions:

- strange particles \rightarrow new quantum number= strangeness (S);
- S = 0 for leptons, nucleons and pions;
- S conserved in strong and electromagnetic interactions;
- S not conserved in weak interactions.

Gell-Mann e Nishijima proposed the relation

$$Y = B + S \qquad Q = I_3 + \frac{1}{2}Y$$

SU(3) as symmetry group (broken symmetry) to described particles

$$\begin{split} \lambda_1 &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_2 &= \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_3 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \lambda_4 &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \lambda_5 &= \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \lambda_6 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \\ \lambda_7 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \lambda_8 &= \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}. \end{split}$$

$$[\lambda_j, \lambda_k] = 2if_{jk}^{\ \ h} \lambda_h$$

Cartan Subalgebra generators:

$$H_1 = \frac{1}{2}\lambda_3 = I_3$$
 $H_2 = \frac{1}{2}\lambda_8 = \frac{\sqrt{3}}{2}Y$

Mesons

$$\mathbf{3}\otimes \mathbf{\overline{3}} = \mathbf{1} \oplus \mathbf{8}$$

(a) Pseudosclar mesons $J^P = 0^-$

$$\eta' = \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s})$$

(b) Vectorial mesons $J^P = 1^-$

$$\omega_1 = \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s})$$

BARYONS

$$\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3} = \mathbf{1} \oplus \mathbf{8}_S \oplus \mathbf{8}_A \oplus \mathbf{10}$$

(c) Octet
$$J^P = \frac{1}{2}^+$$

(d) Decuplet $J^P = \frac{3}{2}^+$

Gell-Mann - Okubo formula

OCTEC MASS FORMULA (BARYONS)

$$m_8(I,Y) = a + bY + c \left[I(I+1) - \frac{1}{4}Y^2\right]$$

Gell-Mann - Okubo relation

$$\frac{1}{2}(m_{\mathcal{N}}+m_{\Xi})=\frac{1}{4}(3m_{\Lambda}+m_{\Sigma})$$

ELECTROMAGNETIC SPLIT

U-SPIN GENERATORS

$$U_1 = \frac{1}{2}\lambda_6$$
 $U_2 = \frac{1}{2}\lambda_7$ $U_3 = \frac{1}{4}(\sqrt{3}\lambda_8 - \lambda_3) = \frac{1}{2}(\sqrt{3}H_2 - H_1)$ $[U_j, U_k] = i\epsilon_{jk}{}^h U_h$

U-spin conserved in em interactions: $[U_i, Q] = 0 \ \forall j$

ELECTROMAGNETIC SPLIT

OCTET OF BARYONS

$$m = m(I, Y) + \delta m(U, Q)$$

$$\delta m_p = \delta m_{\Sigma^+} \,, \quad \delta m_n = \delta m_{\Xi^0}$$

$$\delta m_{\Sigma^-} = \delta m_{\Xi^-} \,,$$

$$\begin{split} \delta m_n - \delta m_p &= m_n - m_p \,, \\ \delta m_{\Xi^-} - \delta m_{\Xi^0} &= m_{\Xi^-} - m_{\Xi^0} \,, \\ \delta m_{\Sigma^+} - \delta m_{\Sigma^-} &= m_{\Sigma^+} - m_{\Sigma^-} \,. \end{split}$$

COLEMAN-GLASHOW RELATION

$$m_n - m_p + m_{\Xi^-} - m_{\Xi^0} = m_{\Sigma^-} - m_{\Sigma^+}$$

HADRONIC WAVE FUNCTION

$$\psi = \phi_{\mathit{flavour}} \chi_{\mathit{spin}} \eta_{\mathit{orbital}}$$

Pauli principle's violation

Caso Δ^{++} :

- $L = 0 \Rightarrow \eta_{orbitale}$ symmetric
- $lack \Delta^{++} = uuu \Rightarrow \phi_{sapore}$ symmetric
- $S = \frac{3}{2} \Rightarrow 3$ spin up $\Rightarrow \chi_{spin}$ symmetric
- No free quark observed
- B Hadrons build with the scheme $q\bar{q}$ o qqq, but in principle we can't exclude scheme like qq o qqqq.

HADRONIC WAVE FUNCTION

$$\psi = \phi_{\mathit{flavour}} \chi_{\mathit{spin}} \eta_{\mathit{orbital}}$$

- Pauli principle's violation.
 - Caso Δ^{++} :
 - $L = 0 \Rightarrow \eta_{orbitale}$ symmetric
 - $lack \Delta^{++} = uuu \Rightarrow \phi_{sapore}$ symmetric
 - lacksquare $S=rac{3}{2} \Rightarrow$ 3 spin up $\Rightarrow \chi_{spin}$ symmetric
- No free quark observed
- B Hadrons build with the scheme $q\bar{q}$ o qqq, but in principle we can't exclude scheme like qq o qqqq.

Problems of the static model

HADRONIC WAVE FUNCTION

$$\psi = \phi_{\mathit{flavour}} \chi_{\mathit{spin}} \eta_{\mathit{orbital}}$$

Pauli principle's violation.

Caso Δ^{++} :

- $L = 0 \Rightarrow \eta_{orbitale}$ symmetric
- lacktriangle $\Delta^{++} = uuu \Rightarrow \phi_{sapore}$ symmetric
- $S = \frac{3}{2} \Rightarrow 3$ spin up $\Rightarrow \chi_{spin}$ symmetric
- No free quark observed
- B Hadrons build with the scheme $q\bar{q}$ o qqq, but in principle we can't exclude scheme like qq o qqqq.

Problems of the static model

HADRONIC WAVE FUNCTION

$$\psi = \phi_{\mathit{flavour}} \chi_{\mathit{spin}} \eta_{\mathit{orbital}}$$

Caso
$$\Delta^{++}$$
:

- $L = 0 \Rightarrow \eta_{orbitale}$ symmetric
- lacktriangle $\Delta^{++} = uuu \Rightarrow \phi_{sapore}$ symmetric
- $S = \frac{3}{2} \Rightarrow 3$ spin up $\Rightarrow \chi_{spin}$ symmetric
- No free quark observed
- B Hadrons build with the scheme $q\bar{q}$ o qqq, but in principle we can't exclude scheme like qq o qqqq.

Problems of the static model

HADRONIC WAVE FUNCTION

$$\psi = \phi_{\mathit{flavour}} \chi_{\mathit{spin}} \eta_{\mathit{orbital}}$$

Caso
$$\Delta^{++}$$
:

•
$$L = 0 \Rightarrow \eta_{orbitale}$$
 symmetric

$$lackrel{\Delta^{++}} = uuu \Rightarrow \phi_{sapore}$$
 symmetric

•
$$S = \frac{3}{2} \Rightarrow 3$$
 spin up $\Rightarrow \chi_{spin}$ symmetric

- No free quark observed
- B Hadrons build with the scheme $q\bar{q}$ o qqq, but in principle we can't exclude scheme like qq o qqqq.

HADRONIC WAVE FUNCTION

$$\psi = \phi_{\mathit{flavour}} \chi_{\mathit{spin}} \eta_{\mathit{orbital}}$$

Caso
$$\Delta^{++}$$
:

•
$$L=0 \Rightarrow \eta_{orbitale}$$
 symmetric

$$lackrel{\Delta^{++}} = uuu \Rightarrow \phi_{sapore}$$
 symmetric

•
$$S = \frac{3}{2} \Rightarrow 3$$
 spin up $\Rightarrow \chi_{spin}$ symmetric

- No free quark observed
- Hadrons build with the scheme $q\bar{q}$ o qqq, but in principle we can't exclude scheme like qq o qqqq.

HADRONIC WAVE FUNCTION

$$\psi = \phi_{\mathit{flavour}} \chi_{\mathit{spin}} \eta_{\mathit{orbital}}$$

Caso
$$\Delta^{++}$$
:

- $L = 0 \Rightarrow \eta_{orbitale}$ symmetric
- $lack \Delta^{++} = uuu \Rightarrow \phi_{sapore}$ symmetric
- $S = \frac{3}{2} \Rightarrow 3$ spin up $\Rightarrow \chi_{spin}$ symmetric
- No free quark observed
- Hadrons build with the scheme $q\bar{q}$ o qqq, but in principle we can't exclude scheme like qq o qqqq.

☐Introduction to QCD

Gauge theory of strong interactions

QCD

In the same time \rightarrow SLAC experiments (Deep inelastic scattering)

PARTON MODEL

Parton model \rightarrow elastic scattering of elementary particles Properties = asymptotic freedom, confinament

We need a gauge theory (as in QED)

Gauge Principle

Particles interaction associated with the request of local phase invariance

It has to be NON ABELIAN to describe experiments! New degree of freedom \rightarrow COLOR CHARGE described by SU(3)