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Growth of computing power and exascale

Growth of computing power and exascale

@ The available computing power is exponentially growing

o The next frontier is the exascale 101 FLOPS (Floating Point
Operation Per Second)

@ This computing power will be available interconnecting together ~ 10°
computing nodes

@ The interconnection network becomes extremely complex and
fundamental for the system

4

Simulations of the network system are required
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Network topologies

N-dimensional Tori
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Network topologies

Dragonfly
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Simulation software

Simulation’s requirements

Low level network description

Parallel computing capabilities

Quick implementation of new topologies

Quick swap of routing algorithms

Capability of generating both synthetic and real application traffic

Perform statistical analysis of network performances

By using the OMNet++ framework we can fulfill all the requirements
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Scaling of the simulator
Scaling of the simulator on an intel cluster with infiniband interconnection.

Scaling of the simulator on a 96x96 2D torus
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Random uniform traffic
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DPSNN traffic

Performance difference relative to the e-cube algorithm
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Conclusions

Development of an accurate, flexible and scalable network simulator
N-dimensional tori can sustain uniform traffic

Adaptive routing algorithms improve significantly the performances

Non-minimal partly adaptive routing algorithms do not provide
significant improvements

Dragonfly networks are efficient for uniform traffic

@ DPSNN traffic is more efficient on tori than on dragonfly networks
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Conclusions
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Moore's law

Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore's Law
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top500

Plot of highest supercomputer performance over time
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Neuronal models

LIFCA dynamic model for spikes generation
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OMNet++

What OMNeT++ is?

Discrete event simulation Framework written in C4++4

What does it offer?
o A flexible and configurable object-oriented structure
@ A scripting language for easy definition of network topologies
@ The possibility of collecting statistics during the simulation

@ Native support to parallel processing through OpenMPI
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Cluster specifications

CPU 2 x Intel Xeon CPU E5620 @ 2.40 GHz
Memory 48 GB

Network card Mellanox MT26428 Connectx2
OpenMPI version | 1.10.3

Linux version CentOS 7.2 kernel 3.10.0-327.22.2
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Routing algorithms

Routing algorithm’s classification
@ Minimal: it selects only the shortest path between two nodes.
Deterministic: It selects only one among the available paths.

o
o Partly adaptive: It selects several of the available paths.
o

Fully adaptive: It selects several of available paths.
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Examples of routing algorithms for tori
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Examples of routing algorithms for tori

Minimal deterministic
e-cube J

Flavio Pisani (University of Bologna) 05/04/2017 18 / 10



Examples of routing algorithms for tori
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Examples of routing algorithms for tori

Minimal deterministic
e-cube J
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star-channel J
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Examples of routing algorithms for tori

Flavio Pisani (University of Bologna)

Minimal deterministic
e-cube

Minimal fully adaptive

star-channel

Non minimal partly adaptive

05/04/2017

18 / 10
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Examples of routing algorithms for tori
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Examples of routing algorithms for tori
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Simulation software

Simulation’s requirements

Low level network description

Parallel computing capabilities

Quick implementation of new topologies

Quick swap of routing algorithms

Capability of generating both synthetic and real application traffic

Perform statistical analysis of network performances

By using the OMNet++ framework we can fulfill all the requirements
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Simulation software

Structure of the simulation software

Three levels hierarchical software structure
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Simulation software

Random uniform traffic

Packet latency vs Normalized applied load
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