Interconnection networks simulations for computing systems dedicated to scientific applications at the exascale

Flavio Pisani

ISHEP 2017 University of Bologna

05/04/2017

Growth of computing power and exascale

- The available computing power is exponentially growing
- The next frontier is the exascale 10¹⁸ FLOPS (Floating Point Operation Per Second)
- ullet This computing power will be available interconnecting together $\sim 10^6$ computing nodes
- The interconnection network becomes extremely complex and fundamental for the system

 $\downarrow \downarrow$

Simulations of the network system are required

N-dimensional Tori

- N-dimensional grid with periodic boundaries connections
- Every node has 2N neighbours
- Good scalability
- Optimized for short ranged traffic

Dragonfly

- Three layer hierarchical network: router, group e system
- P_i end nodes
- R_i routers in every group
- h channel for inter groups communication
- Gi groups in the system
- More complex scalability

Simulation's requirements

- Low level network description
- Parallel computing capabilities
- Quick implementation of new topologies
- Quick swap of routing algorithms
- Capability of generating both synthetic and real application traffic
- Perform statistical analysis of network performances

By using the OMNet++ framework we can fulfill all the requirements

Scaling of the simulator

Scaling of the simulator on an intel cluster with infiniband interconnection.

Random uniform traffic

DPSNN traffic

Conclusions

- Development of an accurate, flexible and scalable network simulator
- N-dimensional tori can sustain uniform traffic
- Adaptive routing algorithms improve significantly the performances
- Non-minimal partly adaptive routing algorithms do not provide significant improvements
- Dragonfly networks are efficient for uniform traffic
- DPSNN traffic is more efficient on tori than on dragonfly networks

THANK YOU FOR YOUR ATTENTION

BACKUP SLIDES

Moore's law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

top500

Neuronal models

LIFCA dynamic model for spikes generation

$$V_m < V_{th} \left\{ egin{array}{ll} \dot{V}_m &= -rac{V_m - E_L}{\mathrm{T}} - rac{g_w w}{C_m} + rac{I_e}{C_m} \ & \ \dot{w} &= -rac{w}{ au_w} \ & \ V_m \geq V_{th} \left\{ egin{array}{ll} V_m &= V_{reset} \ & \ w &= w + A_C \end{array}
ight.$$

Column connection model

$$Ae^{-\frac{r}{\lambda}}$$

OMNet++

What OMNeT++ is?

Discrete event simulation Framework written in C++

What does it offer?

- A flexible and configurable object-oriented structure
- A scripting language for easy definition of network topologies
- The possibility of collecting statistics during the simulation
- Native support to parallel processing through OpenMPI

Cluster specifications

CPU	2 x Intel Xeon CPU E5620 @ 2.40 GHz
Memory	48 GB
Network card	Mellanox MT26428 Connectx2
OpenMPI version	1.10.3
Linux version	CentOS 7.2 kernel 3.10.0-327.22.2

Routing algorithms

Routing algorithm's classification

- Minimal: it selects only the shortest path between two nodes.
- Deterministic: It selects only one among the available paths.
- Partly adaptive: It selects several of the available paths.
- Fully adaptive: It selects several of available paths.

Minimal deterministic

e-cube

Minimal deterministic

e-cube

Minimal deterministic

e-cube

Minimal fully adaptive

star-channel

Minimal deterministic

e-cube

Minimal fully adaptive

star-channel

Minimal deterministic e-cube

Minimal fully adaptive star-channel

Minimal deterministic e-cube

Minimal fully adaptive star-channel

Minimal deterministic e-cube

Minimal fully adaptive star-channel

Minimal deterministic e-cube

Minimal fully adaptive star-channel

Simulation's requirements

- Low level network description
- Parallel computing capabilities
- Quick implementation of new topologies
- Quick swap of routing algorithms
- Capability of generating both synthetic and real application traffic
- Perform statistical analysis of network performances

By using the OMNet++ framework we can fulfill all the requirements

Structure of the simulation software

Random uniform traffic

