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What flavour stands for? 

• Flavour
• several fields with the same quantum numbers
• particles: mass eigenstate with the same charge

•Same colours and same electromagnetic charge  
•In the Standard Model within SU 3 "#$×U 1 ()

representation we have  

3
*+,

3
*+,

1 -. 1 /

u, c, t d, s, b

e, 𝜇, 𝜏 𝜈.,𝜈+,𝜈,
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What flavour physics means?

• Flavour physics
• Interaction that distinguish among the flavours
• Gauge interactions (related to unbroken symmetries) 

mediated therefore by massless gauge bosons dot 
not distinguish among flavours

• Within the Standard Model, flavour physics refers to 
the weak and Yukawa interactions

• 𝑊±	and	h	mediated interaction are Flavour Physics

Strong interaction Electromagnetic interaction

Weak interaction
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What are the flavour parameters?

• Flavour parameters
• Parameters that carry a flavour index

9 masses of the 
charged fermions

4 mixing parameters 
(three angles and one phase)

masses of lepton 
and quarks

that describe the interactions of the 
charged weak-force carriers (𝑊±) 

with quark-antiquark pairs.
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What Flavour Universal means?

• Flavour Universal
• Interaction with couplings that are proportional to 

the unit matrix in flavour space

• An alternative term for “flavour-universal” is  
“flavour blind”

Strong interaction Electromagnetic interaction
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What Flavour Diagonal means?

• Flavour Diagonal
• interactions with couplings that are diagonal, but not 

necessarily universal, in the flavour space.

Yukawa interactions of the Higgs particle are 
flavour diagonal in the mass basis.

Weak interaction
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What Flavour Changing means?

• Flavour Changing
• refers to processes where the initial and final flavour-

numbers are different
• Initial/final flavour-numbers = the number of 

particles of a certain flavour minus the number of 
anti-particles of the same flavour

Flavour Changing Charged 
Current

Flavour Changing Neutral 
Current

Flavour Changing
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Flavour Changing Charged Current (FCCC)

• Flavour Changing Charged Current
• are processes, both up-type and down-type flavour 

and/or both charged lepton and neutrino flavour 
involved

• within the Standard Model, these processes do not 
occur at tree level, and are often highly suppressed.

𝜇 → 𝑒	𝜈̅>𝜈? 𝐾- → 𝜇-	𝜈̅?
(𝑠𝑢D 	→ 𝜇-	𝜈̅?)

𝐵/ → 𝐽/𝜓𝐾I/
(𝑏D𝑑		 → 𝑐𝑐̅	𝑠̅𝑑)
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Flavour Changing Neutral Current (FCNC)

• Flavour Changing Neutral Current
• are processes, either up-type or down-type flavours 

but not both, and/or either charged lepton or 
neutrino flavours but not both, are involved

• within the Standard Model, these processes do not 
occur at tree level, and are often highly suppressed.

𝜇 → 𝑒	𝛾 𝐾N/ → 𝜇-𝜇*

(𝑠𝑑̅ 	→ 𝜇-𝜇*)𝐵/ → 𝜙𝐾I/
(𝑏D𝑑		 → 𝑠𝑠̅	𝑠̅𝑑)
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Why is flavor physics interesting?

Tool for discovery

Intrinsic puzzling features

Γ(KR/ → 𝜇-𝜇*)
Γ(𝐾* → 𝜇*𝜈?)

=
6.84 ± 0.11 ×10-Z

6.36 ± 0.11 ×10-.

led to predicting a fourth (the charm) quark
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Why is flavor physics interesting?

Tool for discovery

Intrinsic puzzling features

The size of Δ𝑚] led to a successful 
prediction of the charm mass
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Why is flavor physics interesting?

Tool for discovery

Intrinsic puzzling features

The size of Δ𝑚^ led to a successful 
prediction of the top mass
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Why is flavor physics interesting?

Tool for discovery

Intrinsic puzzling features

The size of Δ𝑚^ led to a successful 
prediction of the top mass
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Why is flavor physics interesting?

Tool for discovery

Intrinsic puzzling features

The measurement of 𝜖] led to predicting the 
third generation.
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Why is flavor physics interesting?

Tool for discovery

Intrinsic puzzling features

The measurement of neutrino flavor transitions 
led to the discovery of neutrino

masses.



Cargese, 3nd BCD-ISHEP 2017                                                                18Angelo Carbone

Why is flavor physics interesting?

Tool for discovery

Intrinsic puzzling features

CP violation is closely related to Flavour Physics

Baryogenesis tells us, however, that there must 
exist new sources of CP violation.
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Why is flavor physics interesting?

Tool for discovery

Intrinsic puzzling features

CP violation is closely related to Flavour Physics

Baryogenesis tells us, however, that there must 
exist new sources of CP violation.
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Why is flavor physics interesting?

Tool for discovery

Intrinsic puzzling features

The fine-tuning problem of the Higgs mass, 
and the puzzle of the dark matter imply

that there exists new physics at, or below, the 
TeV scale.



Cargese, 3nd BCD-ISHEP 2017                                                                21Angelo Carbone

Why is flavor physics interesting?

Tool for discovery

Intrinsic puzzling features

The fine-tuning problem of the Higgs mass, 
and the puzzle of the dark matter imply

that there exists new physics at, or below, the 
TeV scale.
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Why is flavor physics interesting?

Tool for discovery

Intrinsic puzzling features

Most of the charged fermion flavour parameters 
are small and hierarchical. 

The standard model does not provide any 
explanation

This is the Standard Model flavor puzzle
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The Yukawa Lagrangian

ℒabc = 𝑌efg𝑄N,e𝜙𝐷k,f + 𝑌efm𝑄N,e𝜙n𝑈k,f + 𝑌ef>𝐿k,e𝜙𝐸k,f + ℎ. 𝑐.

ℒ = ℒset + ℒu + ℒv + ℒa

𝜙, 𝜙n = 𝑖𝜏+𝜙x

𝑄N,e 3,2 *./z

𝑈k,e 3,1 *+/, 𝐷k,e 3,1 -./,

𝐿k,e 1,2 -./+ 𝐸k,e 1,1 -.

This part of the Lagrangian describes 
the Yukawa interactions

Fermion fields:

Scalar field:

Y are general 3 x 3 matrices of dimensionless couplings
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The Yukawa Lagrangian

ℒabc = 𝑌efg𝑄N,e𝜙𝐷k,f + 𝑌efm𝑄N,e𝜙n𝑈k,f + 𝑌ef>𝐿k,e𝜙𝐸k,f + ℎ. 𝑐.

This part of the Lagrangian is made of the fermion 
fields and the scalar field, subject to the gauge 

symmetry and leading to the SSB

𝜙 1,2 *./+
S.S.B.

𝜙 1,2 *./+ =
0

𝑣/√2
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The Yukawa Lagrangian

ℒabc = 𝑌efg𝑄N,e𝜙𝐷k,f + 𝑌efm𝑄N,e𝜙n𝑈k,f + 𝑌ef>𝐿k,e𝜙𝐸k,f + ℎ. 𝑐.

After S.S.B. you want to write the Lagrangian for mass 
eigenstates

𝑌}> is diagonal and real
In this basis the
Fermion fields are:

𝜈>,N
𝑒N

𝜈?,N
𝜇N

𝜈~,N
𝜏N

𝑒k 𝜇k 𝜏k

𝑌> → 𝑌}> = 𝑈>,N𝑌>𝑈>,k
x
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The Yukawa Lagrangian

ℒabc = 𝑌efg𝑄N,e𝜙𝐷k,f + 𝑌efm𝑄N,e𝜙n𝑈k,f + 𝑌ef>𝐿k,e𝜙𝐸k,f + ℎ. 𝑐.

After S.S.B. you want to write the Lagrangian for mass 
eigenstates

𝑌}m is diagonal and real
In this basis the
Fermion fields are:

𝑢N
𝑑m,N

𝑐N
𝑑�,N

𝑡N
𝑑�,N

𝑢k 𝑐k 𝑡k

𝑌m → 𝑌}m = 𝑉m,N𝑌m𝑈m,k
x
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The Yukawa Lagrangian

ℒabc = 𝑌efg𝑄N,e𝜙𝐷k,f + 𝑌efm𝑄N,e𝜙n𝑈k,f + 𝑌ef>𝐿k,e𝜙𝐸k,f + ℎ. 𝑐.

After S.S.B. you want to write the Lagrangian for mass 
eigenstates

𝑌}g is diagonal and real
In this basis the
Fermion fields are:

𝑢g,N
𝑑N

𝑢I,N
𝑠N

𝑢�,N
𝑏N

𝑑k 𝑠k 𝑏k

𝑌g → 𝑌}g = 𝑉g,N𝑌g𝑈g,k
x
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The Yukawa Lagrangian

ℒabc = 𝑌efg𝑄N,e𝜙𝐷k,f + 𝑌efm𝑄N,e𝜙n𝑈k,f + 𝑌ef>𝐿k,e𝜙𝐸k,f + ℎ. 𝑐.

Now if we write the identity

𝑌}g

𝑌g = 𝑉g,N
x 𝑉g,N𝑌g𝑉g,k

x 𝑉g,k

And you plugin in the Lagrangian

ℒag =
𝑣
2�
𝑑̅N𝑉g,N

x 𝑉g,N𝑌g𝑉g,k
x 𝑉g,k𝑑k

𝑌}g
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The Yukawa Lagrangian

ℒabc = 𝑌efg𝑄N,e𝜙𝐷k,f + 𝑌efm𝑄N,e𝜙n𝑈k,f + 𝑌ef>𝐿k,e𝜙𝐸k,f + ℎ. 𝑐.

𝑑̅N� = 𝑑̅N𝑉g,N
x

dk� = 𝑉g,k𝑑k

from interaction basis
to mass eigenstate basis

ℒag =
𝑣
2�
𝑑̅N�𝑌}gdk� 𝑦�𝑐N

𝑣
2�
𝑐k

example: the charm mass 𝑚� = 	𝑦�
�
+�

charm
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The charge current Lagrangian

ℒset�� =
𝑔
2�
𝑢DN,e𝑉m,N

x 𝛾?𝑊-?𝑑N,e𝑉g,N
𝑔
2�
𝑑̅N,e𝑉g,N

x 𝛾?𝑊*?𝑢N,e𝑉m,N

Mass basis

𝑉m,N
x 𝑉g,N = ?

𝑉g,N
x 𝑉m,N =
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The charge current Lagrangian

ℒset�� =
𝑔
2�
𝑢DN,e𝑉m,N

x 𝛾?𝑊-?𝑑N,e𝑉g,N
𝑔
2�
𝑑̅N,e𝑉g,N

x 𝛾?𝑊*?𝑢N,e𝑉m,N

Mass basis

𝑉m,N
x 𝑉g,k =

𝑉g,N
x 𝑉m,k =

𝑉�]c
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The CKM matrix

- 4 parameters, 3 real + 1 phase
- It’s very close to the unitary matrix

- Highly suppressed from 1-3 generation

- 0.2 transition between 1-2 generation
- 0.04 transition between 2-3 generation

- 1,3 and 3,1 have phase

𝑉 ≈
1 0.2 0.004𝑒-ez�∘

−0.2 1 0.04
0.009𝑒-e++∘ −0.04 1
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The CKM matrix

𝑉 ≈
1 0.2 0.004𝑒-ez�∘

−0.2 1 0.04
0.009𝑒-e++∘ −0.04 1

𝑉 ≈

1 −
𝜆+

2 𝜆 𝐴𝜆, 𝜌 − 𝑖𝜂

−𝜆 1 −
𝜆+

2 𝐴𝜆+	

𝐴𝜆, 1 − 𝜌 − 𝑖𝜂 −𝐴𝜆+ 1
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The CKM matrix

𝑉 ≈

1 −
𝜆+

2 𝜆 𝐴𝜆, 𝜌 − 𝑖𝜂

−𝜆 1 −
𝜆+

2 𝐴𝜆+	

𝐴𝜆, 1 − 𝜌 − 𝑖𝜂 −𝐴𝜆+ 1

𝜆 ≈ 0.2 𝐴 ≈ 0.8
𝜌+ + 𝜂+ ≈ 0.15 𝜂/𝜌 ≈ 2.3
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Let’s now have a look at the data

𝐵𝑅 𝐷 → 𝐾𝜇𝜈 = 3.3×10-+

𝐵𝑅 𝐷 → 𝜋𝜇𝜈 = 2.38×10-,

𝐴�� 𝐾N → 𝜋𝑙𝜈 = 3.32×10-,

𝐴�� 𝐷 → 	< 10-+

𝐴�� 𝐵 → 𝐾𝜋 = 0.082

𝐵𝑅 𝐵 → 𝑋𝜇𝜈 = 10.86	×10-+

𝐵𝑅 𝐵 → 𝑋𝑒𝜈 = 10.86	×10-+

𝐵𝑅 𝐵 → 𝑋𝛾 		= 	3.5	×10-�

𝐵𝑅 𝐵 → 𝐷𝑙𝜈 = 2.19	×10-+

𝐵𝑅 𝐵 → 𝜋𝑙𝜈 = 1.49	×10-�

𝐵𝑅 𝐵 → 𝜇-𝜇* = 3	×10-Z

	𝐵𝑅 𝐾N → 𝜇-𝜇* = 7	×10-Z

𝐵𝑅 𝐷 → 𝜇-𝜇* < 6	×10-Z

𝐵𝑅 𝐽/𝜓 → 𝜇-𝜇* = 	0.06
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Tree level and loops

Tree level diagram 
Loop level diagram 
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Why there is no FCNCs in the Standard Model?

No FCNC in SM at the three level

Z, h, g, 𝛾
Who can contribute to have FCNC in SM at tree level?

All of them couple diagonally (to the same flavour) 
to fermions

Why?
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Is this diagram possible in the SM?

b
s

Z, h, g, 𝛾
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FCNCs @ one loop

𝐾/ 𝑑𝑠̅ 		↔ 𝐾�/ 𝑑̅𝑠
s d

sd J=UC,T

i=U,C,T

W WGIM mechanism
GIM suppression

𝐴 ∝ ∑ 𝑉eI𝑉eg∗ 𝑉fI𝑉fg∗ 𝑓(
𝑚e
𝑚¢

,
𝑚f
𝑚¢

)
𝑓 𝑚e,𝑚f ∝ 𝑚�

+/𝑚¢
+ 	

Nine amplitudes
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FCNCs @ one loop

𝐾/ 𝑑𝑠̅ 		↔ 𝐾�/ 𝑑̅𝑠
s d

sd J=UC,T

i=U,C,T

W W

𝐴 ∝
1

16𝜋+ 𝑉�I𝑉�g∗ + 	𝑚�
+

𝑚¢
+ ×𝑓£�¤ ≈ 10-¥

GIM mechanism
GIM suppression
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CP violation

In order to have CP violation the Lagrangian need to 
have a phase, i.e. it is not real

ℒset�� =
𝑔
2�
𝑢DN,e𝑉m,N

x 𝛾?𝑊-?𝑑N,e𝑉g,N + 	
𝑔
2�
𝑑̅N,e𝑉g,N

x 𝛾?𝑊*?𝑢N,e𝑉m,N

ℒset�� =
𝑔
2�
𝑑̅N,e𝑉m,N𝛾?𝑊*?𝑢N,e𝑉g,N

x +
𝑔
2�
𝑢DN,e𝑉g,N𝛾?𝑊-?𝑑N,e𝑉m,N

x

CP transformation

Only left-handed particles take part in charged-current interactions. 
Parity is violated by these interactions.

In nature we see CP violation only in weak interaction
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CP violation

In the SM CP is small: 𝐴��×𝐵𝑅 ≪ 1
To have a phase in the Lagrangian it is necessary 
the third generation

Any CP violation observables must involve all the 
CKM matrix elements and hence small elements  
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CP violation: The Jarlskog invariant

Independently by any parameterization any CP 
violation observable must be proportional to this 
invariant 

𝐽 = 𝑐.+𝑐+,𝑐.,+ 𝑠.+𝑠+,𝑠.,𝛿�]c ≈

Phase must be non zero
All the mixing angle should be no zero or 𝜋/2

𝛿�]c is large, CP violation is small due to mixing

𝜆z𝐴+𝜂
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The Unitarity triangle

∑𝑉eI𝑉eg∗ = 0 Unitarity relation of CKM matrix

A unitarity triangle

How many unitarity triangle in SM? 6

The area is equal to J/2
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The unitarity triangle

∑𝑉eg𝑉e�∗ = 0
The Unitarity triangle

𝑉mg𝑉m�∗

𝑉�g𝑉��∗

𝑉�g𝑉��∗

∝
∝
∝

1 ⋅ 	𝜆,

𝜆+ ⋅ 𝜆
1 ⋅ 	𝜆,

∑𝑉eI𝑉eg∗ = 0

All the CP violation measurement are related to J
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Let’s now have a look at the data

𝐵𝑅 𝐷 → 𝐾𝜇𝜈 = 3.3×10-+

𝐵𝑅 𝐷 → 𝜋𝜇𝜈 = 2.4	×10-,

𝐴�� 𝐾N → 𝜋𝑙𝜈 = 3.32×10-,

𝐴�� 𝐷 → 	< 10-+

𝐴�� 𝐵 → 𝐾𝜋 = 0.082

𝐵𝑅 𝐵 → 𝑋𝜇𝜈 = 10.86	×10-+

𝐵𝑅 𝐵 → 𝑋𝑒𝜈 = 10.86	×10-+

𝐵𝑅 𝐵 → 𝑋𝛾 		= 3.50	×10-�

𝐵𝑅 𝐵 → 𝐷𝑙𝜈 = 2.19	×10-+

𝐵𝑅 𝐵 → 𝜋𝑙𝜈 = 1.49	×10-�

𝐵𝑅 𝐵 → 𝜇-𝜇* = 3	×10-Z

𝐵𝑅 𝐾N → 𝜇-𝜇* = 7	×10-Z

𝐵𝑅 𝐷 → 𝜇-𝜇* < 6	×10-Z

𝐵𝑅 𝐽/𝜓 → 𝜇-𝜇* = 	0.06
𝐵𝑅 𝐾 → 𝜇-𝜈? = 	0.64
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What we have learned so far?

1) SM is constructed from data
2) FCCC are at the tree level in SM
3) FCNC are suppressed in the SM
4) CP violation times BR is small in SM

5) Charged currents with leptons are universal 
6) Charged currents with quarks are NOT universal (VCKM)
7) Transition from 3 -> 2 >> 3 -> 1 
8) Transition from 2 -> 2 >> 2 -> 1 
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Flavour Physics: how to practice? 

4.19 GeV 1.27 GeV

b C

s xx GeV
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Why do we practice Flavour Physics ? 

Prof. Antonio Masiero
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The indirect search of New Physics

Observed deviations from values expected 
according to the Standard Model will indirectly 

hint to the existence of New Physics

Why?



Cargese, 3nd BCD-ISHEP 2017                                                                51Angelo Carbone

Standard Model
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Beyond Standard Model
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Standard Model
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Beyond Standard Model
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If this the nature…
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…and  

SM predicts this
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…

…and you measure a value significantly different 
from SM (which is not the case so far)
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𝐵 → 𝜇-𝜇* @ LHCb

𝐵𝑅(𝐵I/ → 𝜇-𝜇*) = 3.0 ± 0.6-/.+*/., ×10-Z

𝐵𝑅 𝐵/ → 𝜇-𝜇* < 3.14	×10-./
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You win the Nobel prize…
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… but SM works perfectly!
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Where practice Flavour Physics?

Present:
• LHC

• LHCb high precision measurements
• but complemented in certain important channels by 

ATLAS and CMS

• NA62, kaon physics
• Search for the very rare decays   
• 𝐾* → 𝜋*𝜈̅𝜈 and 𝐾N/ → 𝜋/𝜈̅𝜈
• SM expectation 9.11 ± 0.71 ×10-.. and (3.00 ±
0.30)×10-..

• Next 5 years Belle-II and LHCb-upgrade
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The LHC

6.5 TeV x 6.5 TeV pp collisions
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The LHC

27 km in circumference
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64

The LHCb Detector
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Detector Geometry

•Complementary to ATLAS & CMS
•Much less expensive 

Fermilab Academic Lectures, May, 2014 65
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The Forward Direction at the LHC
• The primary pp collision produces 

a pair of bb quarks. They then 
form hadrons. In the forward 
region at LHC the bb production 
s is large 

• The hadrons containing the b and 
b quarks are both likely to be in 
the acceptance. 

• Essential for knowing if a neutral 
B meson started out as a B0 or B0, 
determined by “flavor tagging” 

• At ℒ = 2×1032	cm-+𝑠-., we get 
~10.+ B hadrons in 10¥ sec  

66

q B (rad)
q B (rad)

Production angle of
B vs B

130 µb
300 µb

Pythia production cross section  
(7 TeV)

h=-ln(tanq/2)

pT
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LHCb detector
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B-Vertex Measurement

f
sensors

R
sensors

Vertexing:
• trigger on impact	parameter
•measurement of	decay distance
&	decay time=d/v=md/p

Ds
Bs K+

K-

K+

p-
d~1cm

47	µm 144	µm

440	µm
Primary	vertex

Decay	time	resolution	=	40	fs

s(t)	~40	fs

Example:	Bs →	Ds K

Vertex	Locator (Velo)
Silicon	strip	detector	with
~	5	µm	hit	resolution
à 30	µm	IP	resolution

6
8
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Momentum and Mass measurement
Momentum	meas.	+	direction	(VELO):													
Mass	resolution	for	background	suppression

�
btag

Bs K+

K-

p+, 
K+

p-
Ds

Primary	vertex

𝐵I/ → 	𝐷I-	𝐾*	
Mass resolution
s ~15	MeV

Bo

m(DsK) (MeV)
5100                           5300                          5500                         5700
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Hadron Identification

�

RICH:	K/p identification	using	Cherenkov	light	emission	angle

RICH1:			5	cm	aerogel n=1.03
4	m3 C4F10 n=1.0014

btag

Bs K+

K-

p+,K+

p-
Ds

Primary	vertex

KàK	:	96.77	± 0.06%
pàK	:	3.94	± 0.02%

Bs	→	Ds	K
SS	flavour	
tagging

RICH2:			100	m3	CF4 n=1.0005
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Calorimetry and L0 trigger

e

h

Calorimeter	system	:		
• Identify electrons,	hadrons,	π0 ,γ
• Level	0	trigger:	high	ET electron and	hadron btag

Bs K+

K-
K+

p-
Ds

Primary	vertex

ECAL (inner modules):  σ(E)/E ~ 8.2% /√E + 
0.9%
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Muon identification and L0 trigger

µ

Muon	system:	
• Level	0	trigger:	High	Pt muons
• OS	flavour	tagging

btag

Bs K+

K-
K+

p-
Ds

Primary	vertex
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Triggering

• Trigger is crucial as σbb is less than 
1% of total inelastic cross section 
and B decays of interest typically 
have B ranching ratios of <10-5

• Hardware level (L0), search for 
high-pT    μ, e, γ and hadron 
candidates    

• Software level (High Level Trigger, 
HLT)

• Farm with O(29000) multi-core
processors)

• Very flexible algorithms, writes ~5 
kHz to storage

This is the bottleneck
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LHCb data taking history
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LHCb event display
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LHCb event display
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𝐵 → 𝜇-𝜇*
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𝐵 → 𝜇-𝜇*
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Search for new particles: latest new from 
Moriond (ATLAS and CMS)
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Summary slides of T. Gershon
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Summary slides of T. Gershon
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You can imagine the rest of the talk…

https://indico.in2p3.fr/event/13763/session/1
7/contribution/117/material/slides/1.pdf
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Test of standard model with FCNC
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FCNC: b → 𝑠 𝑑 𝜇-𝜇*

New heavy particles in SM extensions can appear in competing 
diagrams can affect branching ratios and angular distributions

Model independent description in effective field theory
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𝐵/ → 𝐾∗/𝜇-𝜇*

𝑃�e is an observable related to angular distribution of the decay
𝑞+ is di-muon effective mass squared



Cargese, 3nd BCD-ISHEP 2017                                                                86Angelo Carbone

Latest LHCb result: deviation to 3.4s
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Lepton universality in B decays

=?
𝑒*

𝑒-

𝐵* → 𝐾*𝜇-𝜇* 𝐵/ → 𝐾*𝑒-𝑒*

LHCb measured in this range 
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Lepton universality in B decays

= ? 𝑒*

𝑒-

𝐵* → 𝐾*𝜇-𝜇* 𝐵/ → 𝐾*𝑒-𝑒*

This result is with RUN-1 LHCb data
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What about SM prediction?

https://arxiv.org/pdf/0709.4174.pdf

Christoph Bobeth, Gudrun Hiller and 
Giorgi PiranishviliLet’s ask to the expert 

The answer is RK = 1
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Lepton universality in B decays with 𝐵/ → 𝐾∗/𝑙-𝑙*

= ?

𝐵/ → 𝐾∗/𝜇-𝜇* 𝐵/ → 𝐾∗/𝑒-𝑒*

Are you ready to know the new number?

𝑅]∗ =		
Central value: distance from the rock divided by the 
number of cigarettes smoked by Stephan in 2.5 hours

Errors : distance swam, by Jean, Gudrun and Joachim 
divided by the time (in minutes)
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Lepton universality in B decays with 𝐵/ → 𝐷∗*𝜏-𝜈~


