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Geiger-mode avalanche detectors
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VBIAS > VBD
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SPAD

a.k.a. Single-Photon Avalanche Diodes (SPADs), SiPM cell
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Geiger-mode avalanche detectors
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events

1 primary generated electron-hole pair:

very large current pulse ~105 - 106

electrons
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CMOS SPAD characteristics

Features:

 Single-photon sensitivity → shot noise limited

 Excellent timing resolution: ~100 ps FWHM

Monolithic integration of SPAD and 

processing electronics

Arrays →   single-photon imaging

CMOS:
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CMOS SPADs: early example at EPFL
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A. Rochas et al., Proc. SPIE 2003

Process: CMOS 0.8μm

Area: 30μm2

Peak PDE: 20%

DCR: 300 Hz 

Timing resolution: 50 ps FWHM
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CMOS SPADs: deep submicron
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J. Richardson et al., IEEE Trans. Electron Dev. 2011

Process: CMOS 130 nm

Area: 50μm2

Peak PDE: 33%

DCR: 40 Hz 

Timing resolution: 237 ps FWHM
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CMOS SPADs: high efficiency
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Process: CMOS 350nm

Imaging with custom 

implantation

Area: 700μm2

Peak PDE: > 50%

DCR: 50 Hz 

Timing resolution: 142 ps FWHM

D. Bronzi et al., Proc. IEEE ESSDERC 2012
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Summary and comparison with SiPM
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With customization, CMOS can approach SiPM performance

SiPM:

For major manufacturers

PDE > 70% (single cell, not

considering FF)

DCR ~ 50 kHz/mm2

For a complete overview, see D. Bronzi, et al., IEEE Sensors J. 2016
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SPAD array applications

 Time-Of-Flight optical ranging, LIDAR

 Fluorescence spectroscopy

 Raman spectroscopy

 Gamma ray detection (PET)

 Quantum cryptography

 …
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Time-of-Flight optical ranging

C. Niclass et al., IEEE J. Solid-State

Circuits, 2013
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Automotive LIDAR developed

by Toyota

• 180nm CMOS

• SPAD array with integrated TDCs

• 70% array Fill Factor

• Distance range: 100 m
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Fluorescence microscopy

M. Popleteeva et al., Opt. Expr, 2015
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Label-free imaging of unstained liver tissue 

excised from a tumorogenic murine model

Intensity Color Lifetime

Multi-parametric fluorescence imaging

• 350nm CMOS (AMS)

• 4-line SPAD array

• Sub-ns gated counters

• 36% Fill Factor
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Digital SiPMs for PET

L. Braga et al., IEEE J. Solid-State Circuits, 2014

16

SPADNET project (EU FP7)

• 130nm CMOS process

• Large pixels including 180 SPADs

(Mini-SiPM)

• integrated TDCs

• 42.6 % pixel Fill Factor
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First consumer products: ST ToF sensor
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Proximity sensor based on SPAD array and pulsed VCSEL

• Presented in 2014

• Mobile applications

(mounted on iPhone7)

• Low power

• Short range (15 cm)
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SPAD image sensor
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C. Veerappan et al., ISSCC 2011

MegaFrame EU project (FP6)

• 160 x 128 pixel array

• Technology: 130nm CMOS

• In-pixel Time-to-Digital Conv.

• 140ps timing resolution

• Pixel pitch: 50um

• Fill factor: 1%
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Improving the Fill Factor
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I. Gyongy et al., IEDM 2016

• 16μm x 16μm pixel

• 65nm CMOS

• binary pixel

(7 transistors)

• SPAD deep nwell sharing

• Improved SPAD GR

61% Fill Factor
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Deep APD
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Panasonic project

• 110nm CMOS

• Backside illumination

• Avalanche multiplication

region below electronics

• Pixel pitch 3.8μm

• 4 transistors / pixel

• Linear and binary mode

M. Mori et al., ISSCC 2016
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3D integration

21

High density interconnections successfully demonstrated 

for image sensors

electroiq.com

Sony 13 Mpixel stacked image 

sensor (2013)
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3D-integrated SPAD image sensor 1
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MIT Lincoln Laboratory

• 25μm pitch

• 180nm CMOS + 

custom (APDs)

• 7-bit counter/pixel

• Backside illumination

10 - 20% detection efficiency

(limited by optical cross-talk)

B. Aull et al., IEEE Sensors J., 2015
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3D-integrated SPAD image sensor 2
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T. Al Abbas et al., IEDM 2016

• 7.83μm pitch

• 65nm CMOS (top) + 

40nm CMOS (bottom)

• 2 6-bit counters/pixel

• Backside illumination

45% Fill Factor



CERN, January 20, 2017

Outline

 Introduction

 CMOS-integrated single-photon detectors: 

an overview

 APiX: Geiger-mode avalanche pixel detectors 

for ionizing particles

 Conclusion and future perspectives 

24



CERN, January 20, 2017

APiX particle detector concept

 Two Geiger-mode avalanche detectors in coincidence:

DCR = DCR1 x DCR2 x 2DT 

 In-pixel coincidence: integrated electronics is needed:

CMOS avalanche detectors

Discriminators

Coincidence 

detector

Quenching Particle 

detection

Dark counts

25

V. Saveliev, US Patent. 8,269,181, 2012                 N. D’Ascenzo et al., JINST 2014
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SPADs in 150nm CMOS process

Type2:

 Deep graded junction

 Active thickness ~ 1.5μm

Type 1:

 Shallow step junction

 Active thickness ~ 1μm

L. Pancheri, D. Stoppa, ESSDERC 2011

 Standard CMOS process – no modifications

 Avalanche diodes in deep nwell: isolated from substrate

26
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Photo-Detection Efficiency

L. Pancheri et al., J. Selected Topics in Quantum Electron, 2015
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Single-photon timing resolution
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Proof-of-concept demonstrator

2-layer pixel cross section:

• Electronic readout on both layers

• Metal shielding from optical cross-talk

• Vertical interconnection by bump bonding

29
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Pixel architecture

 High voltage VbSPAD applied at nwell

 Maximum voltage at node A: Vov = VbSPAD – VBD

 Small capacitance at node A

 Passive quenching with constant current recharge

30
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Pixel architecture

 Front-end transistors: 3.3V  Maximum overvoltage 3.3V 

 Digital circuitry: 1.8V compact – fast – low-power

31
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Pixel architecture: enable register

Pixels can be individually disabled:

 M2 disables recharge

 Output and gate blocks output pulses

32
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Pixel architecture: coincidence

 Coincidence with top-layer pixel

33



CERN, January 20, 2017

Pixel architecture: coincidence

Accidental coincidence
Real coincidence

34
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Pixel architecture: monostable

 Pulse shortening: reduces the rate of accidental coincidence

 Programmable pulse width: 750ps, 1.5ns, 10ns

35
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Pixel architecture: storage

 Global shutter operation:

 Fast transfer from memory to output register 

 Simultaneous accumulation and data output

36
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2-level pixel schematic

Top pixel: subset 

of bottom pixel
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Sensor architecture: row-wise OR

Test output outOR: 

combination of all the active 

(enabled) pixels in the row

38
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Row-wise coincidence circuit

 Test coincidence in 

the sensor plane

 m and n can be 

arbitrarily selected

39
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Sensor floorplan

Wire bonding pads on chip 2: 

pre-integration test.

Final assembly

Bottom chip Top chip

Bottom chip

Top chip

40
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Pixel array

Pixels with different detector area

(unshielded)

Pixels with shielded 

detectors

 16 x 48 pixel array

 Pixel size: 50μm x 75μm

 Splittings in detector type and area

Bump bonding pad

 43μm

x 

45μm

 40μm

x 

40μm

 35μm

x 

35μm

 30μm

x 

30μm
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Bottom chip - Micrographs

Shielded

Unshielded
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Sensor micrographs

Bottom chip Top chip
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Experimental results - summary

Characterization of single-layer sensors:

• Core supply current (at 1.8V): 8mA

• Breakdown voltage uniformity

• Dark count rate

• In-plane coincidence

• Timing resolution

• Cross-talk

Vertically integrated sensors with bump bonding (IZM):

• Coincidence dark counts

• Test with beta source

• Test beam

44
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Breakdown voltage uniformity

 Measurements on 

5 sample chips x 2 types x 196 devices per chip

 Very good uniformity on-chip (s < 20mV)

 Large difference (1V) between different chips for type 1

45
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DCR distribution

46

• DCR distribution spans 2 orders of magnitude at RT

• Median value at 20°C:  2.8kHz   - MHz/mm2

Active area: 43μm x 45μm 
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DCR temperature dependence

Trap-assisted tunneling: EA < EG/2

 Devices with 43μm x 45μm active area, but different DCR

 Measurements from -30°C to 50°C with 10°C steps

 Overvoltage: VOV = 3.3V

47
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DCR temperature dependence

SRH generation EA ~ EG/2

48
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DCR temperature dependence

Injection from neutral regions: EA ~ EG

49
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DCR temperature dependence

Band – to – band tunneling: EA  0

50
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Coincidence detection

Count rate in coincidence between

two pixels in the same column

Normalized rate: 𝐶𝑅𝑀𝑒𝑎𝑠

2 ∙ 𝐶𝑅1 ∙ 𝐶𝑅2 ∙ ∆𝑇

1    2     3    4     5    6     7

Cross-talk

Cross-talk
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Timing resolution

VEX = 1V

208ps FWHM

IR laser (780nm)

50ps FWHM

Timing histogram between laser trigger 

and sensor coincidence output

N.B. Design not optimized for timing

Row coinc.

output

Diffuser

Sensor

2 pixels enabled

52



CERN, January 20, 2017

 Crosstalk coefficient 

CRm = DCRe ∙ DCRd ∙ 2∆T + K ∙ ( DCRe + DCRd)

 Emitter

(fixed)

 Detector

(scan)

Crosstalk characterization

Crosstalk map – Type 1, 25µm thickness

53
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Crosstalk vs substrate thickness

54
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Dark Count Rate and cross-talk

Die thickness: 280 µm

Median DCR increase of 70% due to cross-talk:

from 2.8kHz to 4.8kHz

Large detectors

T = 20°C

VEX = 3.3V

A. Ficorella, et a., Proc. IEEE ESSDERC, 2016
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Vertically-integrated assembly

56

Dark Count Rate vs. coincidence time DT 

DCRCOINC = DCR1 x DCR2 x 2DT 

DT = 10ns

DT = 1.5ns

DT = 0.75ns

T = 20°C

DCRCOINC = 27 counts/s mm2
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b-source measurements

57

90Sr β source – 37kBq at 2mm distance from sensor

b count rate  ~10,7 Hz/mm2

VEX = 2V     T = 5°C      Dt = 0.75ns

~ 40 mHz/pixel
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Test beam at CERN

58

• Test at CERN SPS north area facility (H4 beam line)

• Two APIX under test + auxiliary Beam Tracker detector

• Positrons and π+ beams at 50, 100, 150, 200 and 300 GeV
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Test beam – hit maps

59

Noisy pixel disabled Unshielded pixels disabled



CERN, January 20, 2017

APiX - Summary

Strengths:

- Can be thinned to a few microns: low material budget

- Timing resolution

- Low power consumption

- Early signal digitization

Weaknesses:

- Radiation tolerance (still to be assessed)

- Efficiency: guard ring and in-pixel electronics

- Cost and availability of 3D integration technologies

60
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Current - future work

 Current prototype:

– Test beam data analysis (in progress)

– Radiation hardness studies

 Design of new prototype:

– Improved fill factor

– Larger array

– Optimized timing

– Optimized power consumption

61
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Summary

62

• Higly parallel SPAD systems require high-density digital

circuit for high efficiency

• SPAD technology in deep sub-micron processes is

evolving driven by consumer applications: investments

• Maximum efficiency: 3D integration. Optical cross-talk 

is still an issue in systems with very high FF

• Concept of charged-particles direct detection with 

Geiger-mode detectors in coincidence is feasible

• Efficiency is still an issue, but timing can be very good

• Development in deep-submicron SPADs and 3D 

integration can the key for a full exploitation of this

concept
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