

FCC-ee Optics

FCC-ee MDI Workshop

Jan. 16, 2017 K. Oide (KEK)

Contributions for FCC-ee: M. Aiba, S. Aumon, M. Benedikt, A. Blondel, A. Bogomyagkov, M. Boscolo, H. Burkhardt, Y. Cai, A. Doblehammer, B. Haerer, B. Holzer, J.M. Jowett, I. Koop, M. Koratzinos, E. Levitchev, L. Medrano, S. Ogur, K. Ohmi, Y. Papaphilippou, P. Piminov, D. Shatilov, S. Sinyatkin, M. Sullivan, J. Wenninger, U. Wienands, D. Zhou, F. Zimmermann.

2016 Parameters

parameter	FCC-ee		CEPC		LEP2		
energy/beam [GeV]	4	5	120	175	45	120*	105
bunches/beam	91500	30180	770	78	1100	67	4
beam current [mA]	14	50	30	6.6	45.4	16.9	3
energy loss/turn [GeV]	0.0	03	1.67	7.55	0.062	2.96	3.34
synchrotron power [MW]		1	00		2.8	100	22
RF voltage [GV]	0.2	0.4	3.0	10	0.12	3.6	3.5
rms bunch length (SR,+BS)	1.6,	1.2,	2.0,	2.1,	3.9,	3.1,	12,
[mm]	3.8	6.7	2.4	2.5	4.0	4.1	12
rms emittance $\varepsilon_{x,y}$ [nm, pm]	0.1, 1	0.2, 1	0.6, 1	1.3, 2.5	0.62,2.8	2.45,7.4	22, 250
$\beta^*_{x,y}$ [m, mm]	1, 2	0.5, 1	1, 2	1, 2	0.1, 1	0.25, 1.4	1.5, 50
long. damping time [turns]	13	20	72	23	726	41	31
crossing angle [mrad]		3	30		30		0
beam lifetime [min]	185	94	67	57	79	20	434
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	70	207	5.1	1.3	3.6	2.96	0.0012

FCC-ee: 2 separate ring

CEPC: Partial double ring (PDR), 120*: high-lumi version

Strong-Strong beam-beam instability (FCC-ee @ Z)

- * x-z coherent instability is seen in early stage and beam size blow up.
- Residual x-z motion remains.
- Luminosity is reduced to 60% of the design.

Design constraints & assumptions (FCC-ee)

- \star C = 100 km, fits to the FCC-hh tunnel and footprint as much as possible.
- * 2 IPs / ring.
- * 30 mrad crossing angle at the IP with crab waist.
- Common lattice for all energies, except for the detector solenoid.
- * $\varepsilon_x \le 1.3$ nm @ 175 GeV, basically scaling with energy.
- ◆ ±2% momentum acceptance at 175 GeV to hold the large energy spread caused by beamstrahlung.
- Vertical emittance less than 2.5 pm at 175 GeV before collision.
- * $\beta_{x,y}$ * = (1 m, 2 mm) at 175 GeV, (0.5 m, 1 mm) at 45.6 GeV as the baseline.
- * Suppress the critical energy of the synchrotron radiation to the IP below 100 keV, up to 500 m upstream. No dipole magnets 100m upstream from the IP.
- "tapering" to cure the sawtooth at high energy.

Parameters

Circumference [km]	99.984			
Vending radius of arc dimple [km]	11.190			
Number of IPs / ring	2			
Crossing angle at IP [mrad]	30			
Solenoid field at the IP [T]	±2			
ℓ* [m]	2.2			
Local chromaticity correction	y-plane with crab sextuple effect			
Arc cell	FODO, 90°/90°			
Arc sextuple families	292 (paired)			
mom. comp. [10 ⁻⁶]	6.99			
Tunes (x/y)	387.08 / 387.14			
RF frequency [MHz]	400			
Ebeam [GeV]	45.6	175		
SR energy loss per turn [GeV]	0.0346	7.47		
Current / beam [mA]	1450	6.6		
Bunches / ring	30180 (91500)	81		
P _{SR,tot} [MW]	100.3	98.6		
ε _x [nm]	0.86	1.26		
$\beta_{x}^{*}[m]$	0.5 (1)	1 (0.5)		
β^*_y [mm]	1 (2)	2 (1)		
σ _{δ,SR} [%]	0.038	0.141		
σ _{z,SR} [mm]	2.6 @ V _c = 88 MV	2.4 @ V _c = 9.04 GV		
Synchrotron tune	-0.0163 @ V _c = 88 MV	-0.0657 @ V _c = 9.04 GV		
RF bucket height [%]	2.3 @ V _c = 88 MV	11.6 @ V _c = 9.04 GV		
Luminosity [10 ³⁴ /cm ² s]	210 (90)	1.3 (1.5)		

Half Ring Optics

- Above are the half optics $\beta *_{x/y} = 1 \text{ m} / 2 \text{ mm}$.
- 2 IP/ring.
- The optics for straight sections except for the IR are tentative, to be customized for infection/extraction/collimation/beam instumentation, etc.

FCC-ee Interaction Region

- The optics in the interaction region are asymmetric.
- The synchrotron radiation from the upstream dipoles are below 100 keV up to 450 m from the IP.
- The crab sextuples are integrated in the local chromaticity correction system in the vertical plane.

- The effect of detector solenoid field is locally compensated by counter solenoids.
- The solenoid field is shielded on the quadrupoles.
- If the compensation/shielding is perfect, their effects on the beam optics is minimal. No coupling, no vertical dispersion leak to the outside.

HOM trapping by the cavity structure at IP, FCC-ee

- HOM is trapped in the IP beam pipe, if all beam pipes are narrower than the IP, which needs to be larger that 40 mm (M. Sullivan).
- Heating, esp. at Z.
- Leak of HOM to the detector, through the thin Be beam pipe at the IP.

A solution: larger outgoing beam pipe & thinner final quads

- The most of HOM can escape to the outside through the outgoing beam pipe, which has a diameter not smaller than IP.
- L* depends on the design of the final quadrupole.

Asymmetric L* at the FCC-ee IP

Asymmetric L*

Symmetric L*

- Even with the asymmetric L*, the optics, so as the chromaticity, look similar.
- The solenoid compensation is unchanged: locally compensated up to 2.2 m from the IP.
- Longer L* downstream has no merit on the luminometer.

The Arc Cell (FCC-ee)

- ♣ Basically a 90/90 degree FODO cell.
- * The quadrupoles QF/QD are 3.5 m/1.8 m long, respectively, to reduce the synchrotron radiation. They also depends on the design of quads and the beam pipe (A. Milanese, F. Zimmermann).
- ❖ All sextupoles are paired with -*I* transformation.
- * 292 sextupole pairs per half ring.

- The usage of the straights on the both sides of the RF is to be determined.
- ❖ If the nominal strengths of quads are symmetrical in the common section, it matches to the optics of both beam.
- * This section is compatible with the RF staging scenario. For lower energy, the common RF and cross over will not be necessary.

The Sawtooth & Tapering (FCC-ee @ 175 GeV)

- The change of the orbit due to energy loss along the arc causes serious deformation on the optics, causing the loss of the dynamic aperture.
- * Everything can be cured almost completely by "tapering", i.e. scaling the strengths of all magnets along the local energy of the beam: this is one of the best merits of a double-ring collider (F. Zimmermann).

Dynamic Aperture satisfies the requirements (FCC-ee).

All effects in the next slide are included except for radiation fluctuation and beam-beam. Effects by the radiation fluctuation will be shown in the later slides.

Effects included in the dynamic aperture survey

Effects	Included?	Significance at $t\bar{t}$
Synchrotron motion	Yes	Essential
Radiation loss in dipoles	Yes	Essential – improves the
		aperture
Radiation loss in	Yes	Essential – reduces the
quadrupoles		aperture
Radiation fluctuation	Yes	Essential
Tapering	Yes	Essential
Crab waist	Yes	transverse aperture is
		reduced by $\sim 20\%$
Solenoids	Yes	minimal, if locally
		compensated
Maxwellian fringes	Yes	small
Kinematical terms	Yes	small
Beam-beam effects	Yes (D. Zhou)	affects the lifetime for
(strong-weak model)		$\beta_y^* = 1 \text{ mm}$
Higher order	No	Essential, development of
fields/errors/misalignments		correction/tuning scheme is
		necessary

Several effects on the dynamic aperture

Several effects on the dynamic aperture (2)

The reduction of the vertical aperture for $\beta^*_y = 1$ mm is due to the synchrotron radiation in the final quads.

Effect of Radiation Fluctuation

 $E = 175 \text{ GeV}, \, \beta_{x,y} = (1 \text{ m}, 2 \text{ mm})$

Radiation damping only

Radiation damping + fluctuation

- (Right figure) 100 samples are taken to evaluate the dynamic aperture with radiation fluctuation.
 - Within the lines: particles survive for 75% of the samples.
 - Error bars correspond to the range of survival between 50% and 100% of the samples.
- It may reasonable that the 50% loss corresponds to the original aperture.
- The thickness between 50% and 100% survival can be attributed to the fractal structure of unstable orbits or resonances in the phase space.

Effect of Radiation Fluctuation (2)

 $E = 175 \text{ GeV}, \beta x, y = (0.5 \text{ m}, 1 \text{ mm})$

Radiation damping only

Radiation damping + fluctuation

- (Right figure) 100 samples are taken to evaluate the dynamic aperture with radiation fluctuation.
 - Within the lines: particles survive for 75% of the samples.
 - Error bars correspond to the range of survival between 50% and 100% of the samples.
- The reduction of the 100% survival aperture is more significant than $\beta x,y = (2 \text{ m}, 2 \text{ mm})$. However, it still maintains $\pm 2\%$ momentum acceptance.

Beam-beam effect + Lattice (FCC-ee, D. Zhou)

2. Simulations: SAD: ttbar

- \triangleright Luminosity for $\beta_x^*=0.5$ m, $\beta_y^*=1$ mm
 - Lattice ver. FCCee_t_65_26
 - Small gain from CW
 - Small loss(order of a few percents) due to BB+LN
 - Allow lower beam current to achieve the same lum.

The new layout for FCC-hh

- * The short straights B,L/F,H came closer to the IP A/G by about 550 m.
- The length of straights D and J becomes shorter by about 1.4 km each.
- * The circumference: FCC-hh: 97.75 km = 11/3 of LHC. FCC-ee (this design): 97.747 km
- The average radius of curvature was nearly unchanged.
- The usage for each straight sections are changed as in the figure.

The new FCC-ee with the new layout

- * The wiggling in Δx_{hh} in the arc of new geometry may be due to coarse data points in the new layout file.
- The separation between e+e- rings was set to 32 cm for the new layout. It was 60 cm before.

Dynamic Aperture @ 175 GeV

$$\beta^* x, y = (1 \text{ m}, 2 \text{ mm})$$

β^*x , y = (0.5 m, 1 mm): in progress

- The dynamic aperture at 175 GeV looks OK.
- Solenoids have been temporarily removed.
- Optimization for 45.6 GeV is to be done with smaller β^*x option (see next).

Synchrotron Radiation around IP

 β *x,y = (0.5 m, 1 mm) 175 GeV, 6.6 mA

Strong-strong beam-beam instability

- The same σ_x =10 μ m, larger crossing angle for SuperKEKB.
- SuperKEKB ε_x =3.2nm, β_x =3.2cm FCCee-Z ε_x =0.2nm, β_x =50cm

• Change ε_x =2nm, β_x =5cm. Coherent instability disappears!

Let's try $\beta_{x,y}^* = (10 \text{ cm}, 1 \text{ mm})!$

Divide QC1 into three independent pieces. (suggested by D. Shatilov)

	L (m)	B' @ tt	B' @ Z
QC1L1	1.1	-92.9	-102.4
QC1L2	0.9	-94.9	+44.1
QC1L3	1.3	-92.6	+11.4
QC2L1,2	1.25	+62.6	+6.0

	L (m)	B' @ tt	B' @ Z
QC1R1	1.1	-92.9	-113.8
QC1R2	0.9	-99.9	+67.6
QC1R3	1.3	-97.6	+29.0
QC2R1,2	1.25	+71.6	-5.4

Chromaticity

$\beta_{x,y}^* = (1 \text{ m}, 2 \text{ mm}) @ \text{ tt}$			$\beta_{x,y}^* = (10 \text{ cm}, 1 \text{ mm}) @ Z$			
QC2L2	-29.886	307.593	QC2L2	-51.790	85.567	
QC2L1	-20.901	420.427	QC2L1	-45.996	95.085	
QC1L3	11.316	-1094.099	QC1L3	-64.450	253.302	
QC1L2	3.125	-782.073	QC1L2	-93.626	1025.826	
QC1L1	1.616	-630.295	QC1L1	74.290	-4368.569	
QC1R1	1.616	-630.295	QC1R1	85.080	-4718.832	
QC1R2	3.296	-821.146	QC1R2	-151.447	1337.262	
QC1R3	12.126	-1128.264	QC1R3	-138.103	570.983	
QC2R1	-24.640	441.618	QC2R1	20.762	-119.437	
QC2R2	-34.239	309.613	QC2R2	17.759	-130.909	

IR Optics

- * Only quadrupoles between dispersion suppressors are used to rematch β^* .
- * Solenoids are temporarily removed.

Dynamic Aperture

$$\beta_{x,y}^* = (1 \text{ m}, 2 \text{ mm}) @ \text{ tt}$$

- * The momentum acceptance with $\beta_{x,y}^* = (10 \text{ cm}, 1 \text{ mm}) @ Z \text{ has shrunk to} \pm 1.6\%$, which is still allowable for beamstrahlung and injection @ Z.
- * Further optimization should be done for the division of QC1.

Summary

- * The baseline optics for FCC-ee has been presented, satisfying requirements on layout/luminosity/dynamic aperture/synchrotron radiation.
- Detailed matching to the new FCC-hh arc will be done when the FCC-hh optics is ready.
- * The optics near the IP should be finalized considering synchrotron radiation background, HOM trapping, design of quadrupole, compensation solenoid, luminometer.
- * The mitigation for the strong-strong instability at Z needs further investigation on the choice of parameters (β *x, emittances, etc.). This will have a big impact on the optics near the IP.