Solenoid Compensation Scheme for FCC-ee FF

S. Sinyatkin Budker Institute of Nuclear Physics

20 January 2017, CERN

What was done

•The solenoid fringe field effect is estimated for various solenoid models:

- compensating and main solenoid lengths are varied, the sum is kept unchanged;

- compensating solenoid length is varied, the main solenoid length is kept unchanged.

- L_star vs. L_main_sol at $\varepsilon_v = const$
- •Update of solenoid geometry for $L^* = 3$ m and 2.2 m.
- •Checked MAD calculations (EMIT module) of emittance.

2016 Parameters

parameter		FC	C-ee		
energy/beam [GeV]	4	5	120	175	
bunches/beam	91500	30180	770	78	
beam current [mA]	14	50	30	6.6	
energy loss/turn [GeV]	0.0	03	1.67	7.55	
synchrotron power [MW]	100				
RF voltage [GV]	0.2	0.4	3.0	10	
rms bunch length (SR,+BS)	1.6,	1.2,	2.0,	2.1,	
[mm]	3.8	6.7	2.4	2.5	
rms emittance $\epsilon_{x,y}$ [nm, pm]	0.1, 1	0.2, 1	0.6, 1	1.3, 2.5	
β [*] _{x,y} [m, mm]	1, 2	0.5, 1	1, 2	1, 2	
long. damping time [turns]	13	20	72	23	
crossing angle [mrad]	30				
beam lifetime [min]	185	94	67	57	
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	70	207	5.1	1.3	

FCC-ee MDI Workshop Jan. 16, 2017 K. Oide (KEK)

Parameters

Circumference [km]	99.98	34			
Vending radius of arc dimple [km]	11.190				
Number of IPs / ring	2				
Crossing angle at IP [mrad]	30				
Solenoid field at the IP [T]	±2				
٤* [m]	2.2				
Ebeam [GeV]	45.6	175			
SR energy loss per turn [GeV]	0.0346	7.47			
Current / beam [mA]	1450	6.6			
Bunches / ring	30180 (91500)	81			
P _{SR,tot} [MW]	100.3	98.6			
ε _x [nm]	0.86	1.26			
β* _x [m]	0.5 (1)	1 (0.5)			
β*, [mm]	1 (2)	2 (1)			

FCC-ee MDI Workshop Jan. 16, 2017 K. Oide (KEK)

Original Final Focus layout

- 1 Half of main solenoid length $L_main/2$ (1 m, length of magnetic field area on reference trajectory)
- 2 Length of compensating solenoid *L_comp* (0.7 m)
- 3 Overlap of compensating and screening solenoids
 L_over (5 cm)
- 4 Length of screening solenoid L_screen (3.95 m)

Transverse half size:

- compensating cylindrical

solenoid R = 0.1 m

- screening solenoid R = 0.15 m

Variation of main and compensating solenoids lengths (1)

B_main*L_main+2*B_comp*L_comp=0

L_total=L_main+2*L_comp=const=4 m (geometric length)

Conditions:

B_sol*L_main+2*B_comp*L_comp=0

L_main+L_comp=const=2 m (geometric length)

Bx~ (L_total_h-L_comp)²/L_comp

Estimation of vertical emittance dependence on compensating solenoid length (1).

Conditions:

B_sol*L_main+2*B_comp*L_comp=0

L_tot=L_main+L_comp=const=2 m (geometric length) $I_{5,y} \sim h_y^{5} \sim B_x^{5}$

Variation of main and compensating solenoids lengths*(1)

Main solenoid								
Half geometric length, m	1	1.1	1.2	1.3	1.4	1.5		
Half magnetic length, m	0.912	1.001	1.089	1.176	1.257	1.342		
Comp. solenoid								
Geometric length, m	1	0.9	0.8	0.7	0.6	0.5		
Magnetic length, m	0.856	0.786	0.711	0.631	0.547	0.466		
Energy E, GeV	45	45	45	45	45	45		
Betatron tunes								
qx	0.100	0.100	0.100	0.100	0.100	0.100		
qy	0.268	0.278	0.290	0.307	0.328	0.356		
Emittance, pm*rad	87.78	87.7	87.6	87.3	87.0	86.4		
Ver. Emittance, pm*rad	0.19	0.42	0.96	2.39	6.51	21.12		
Emittance Ratio (v./h.)	0.0022	0.0048	0.0110	0.0274	0.0748	0.2444		
Energy spread	3.82E-04	3.85E-04	3.90E-04	4.01E-04	4.20E-04	4.64E-04		
Energy loss, MeV	35.06	35.10	35.15	35.24	35.37	35.61		

Variation of compensating solenoids length (2)

- B_sol*L_main+2*B_comp*L_comp=0
- L_main+L_comp is variable
- *L_main=*±1 *m* (geometric length)

Variation of compensating solenoids length (2)

- B_sol*L_main+2*B_comp*L_comp=0 L_main+L_comp=var.
- L_main=2 m (geometric length)

Variation of compensating solenoids length(2)*

Conditions:

B_sol*L_main+2*B_comp*L_comp=0 L_main/2+L_comp=const=2 m

 $I_{5,y} \sim h_y^{5} \sim B_x^{5}$

*-Equivalent model is used for MAD simulation

Variation of compensating solenoid length(2)*

Main solenoid									
Half geometric length, m	1	1	1	1	1	1			
Half magnetic length, m	0.912	0.906	0.902	0.893	0.885	0.874			
Comp. solenoid									
Geometric length, m	1	0.9	0.8	0.7	0.6	0.5			
Magnetic length, m	0.856	0.776	0.710	0.608	0.532	0.447			
Energy E, GeV	45	45	45	45	45	45			
Betatron tunes	Betatron tunes								
qx	0.100	0.100	0.100	0.100	0.100	0.100			
qy	0.269	0.270	0.270	0.271	0.271	0.272			
Emittance, pm*rad	87.78	87.8	87.7	87.7	87.7	87.6			
Ver. Emittance, pm*rad	0.19	0.20	0.21	0.25	0.31	0.44			
Emittance Ratio (v./h.)	0.0022	0.0023	0.0024	0.0028	0.0035	0.0050			
Energy spread	3.82E-04	3.81E-04	3.82E-04	3.83E-04	3.85E-04	3.89E-04			
Energy loss, MeV	35.0641	35.0619	35.0766	35.0880	35.1087	35.1385			

Update of solenoid geometry (3)

Vertical emittance vs. effective length of main solenoid (3)

E = 45 GeV $L_star = 3 \text{ m}$ $b_{x_{IP}} = 0.5 \text{ m}$ $b_{y_{IP}} = 1 \text{ mm}$

β_{y_IP} vs. main solenoid length (3)

E = 45 GeV

$$\varepsilon_{y_new} = \varepsilon_y \cdot \frac{\beta_{y_nIP}}{\beta_{y_nIP_new}}$$

L_star = 3 m

 $Em_y = 0.5 pm^*rad$

Ver. Emittance & Change of free space for detector (3)

Parameters	Original*		Geometry Update						
E, GeV	45								
Cross angle (tot), rad	0.03	0.03 0.026							
Compensating solenoid									
R_in, m	0.100	0.100	0.145	0.157	0.164	0.170	0.186		
R_end, m	0.100	0.171	0.256	0.256	0.256	0.256	0.256		
L, m	0.7	0.7	1.1	0.989	0.915	0.856142	0.7		
L_free_space, m	0.001	0.094	0.134	0.155	0.176	0.184	0.221		
Screening solenoid									
R_sc_sol,m	0.171	0.180	0.269	0.271	0.274	0.274	0.278		
Main solenoid									
В, Т	2.01	2.01	2.00	2.00	2.00	2.00	2.00		
L_main/2, m	1.00	1.00	1.450	1.561	1.635	1.694	1.850		
Optics									
bx_IP, m	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
by_IP, m	0.001	0.001	0.001	0.001	0.001	0.001	0.001		
l2_sol, m^-1	1.94E-06	1.19E-06	1.56E-06	2.11E-06	2.63E-06	3.09E-06	4.97E-06		
l5y_sol, m^-1	3.42E-14	8.38E-15	3.82E-14	1.05E-13	2.15E-13	3.70E-13	1.68E-12		
Emy_sol, m*rad	1.69E-13	4.14E-14	1.88E-13	5.21E-13	1.06E-12	1.83E-12	8.29E-12		
Emy_sol/Emx	1.82E-03	4.48E-04	2.04E-03	5.64E-03	1.15E-02	1.98E-02	8.98E-0 <u>2</u>		
Uo_sol, keV	111.8	69.0	89.9	121.7	151.8	178.6	287.0		

Optimisation of edge field area (4)

Lattice (Oide) FCCee_t_85_by2: (R / L)

• QC1_1: L= 0.7 m K1=-75 / -75 T/m

• QC1_2: L= 1.4 m K1=-173 / -166 T/m

• QC2_1: L= 1.25 m K1= 72 / 46 T/m

• QC2R2: L= 1.25 m K1= 28 / 64 T/m

1 - Area (1/2) of main solenoid magnetic field on reference trajectory L_main_sol/2 = 1 m

2 – Length of compensating solenoid L_comp_sol = 0.8 m

3 – Free space between compensating and screening solenoids L_free_space = 6 cm

compensating solenoid
R = 0.1 / 0.18 m
screening solenoid
R = 0.19 m

Optimisation of edge field area (4)

Optimisation of edge field area (4)

Field distribution (4)

Transverse half size:

- main solenoid field

- $L_{geom} = 1 m, B_s = 2 T$ - compensating solenoid - $\vec{R} = 0.1 / 0.18 \text{ m}$, $L_{geom} = 0.8 \text{ m}$, $B_s \sim 2.6 \text{ T}$ - screening solenoid -R = 0.19 m, $L_{geom} = 2.15 \text{ m}$

21

Field distribution (4)

Edge field in quad area: $B_s < 0.02 T B_x < 0.002 T$

It is necessary additional corrections of screening area and steel yoke area.

MADX optic model of solenoids (4)

s, m

- Piecewise elements have been inserted into 2.2 m (distance from IP to QC1_1)
- Solenoids are presented by thick elements.
- Skew components are thin elements.
- Radial and vertical fields are presented by thin elements with nonzero length to carry out emittance calculation by EMIT module (Lrad = 2.2/N, N – slices number). 23

Beam Orbit at IR (4)

[*10**(-3)]

≿

Critical photon energy (E=175 GeV): ϵ_c up to 4.9 MeV Radiation angle ~ \pm 0.15 mrad

$$B_{x_max} = 0.21 T$$

Check of emittance calculation (4)

- Formula $I_2 = 6.07*10^{-4} \text{ m}^{-1}$ $I_{5y} = h_y^3 \oint H_y(s) ds =$ $= 5.13 \cdot 10^{-14} m^{-1}$ $\varepsilon_y = 3.83 \cdot 10^{-13} \cdot \frac{\gamma^2}{J_y} \cdot \frac{I_{5y}}{I_2} =$ $= 0.48 \ pm*rad$
- MAD calculation (EMIT module) $E_y = 0.46 \text{ pm}^*\text{rad}$
- Deviation between MAD calculation and formulas increases at short comp. solenoid (strong comp. field)

Tilt of eigen oscillation modes (4)

Beam parameters (E = 45 GeV) (4)

Cross angle (tot), rad	0.03
Free space, cm	6
Main solenoid	
Half geometric length, m	1
Half magnetic length, m	0.898
Comp. solenoid	
Geometric length, m	0.8
Magnetic length, m	0.697
Radius, m	0.1 / 0.18
Screening solenoid	
Geometric length, m	2.13
Inscribed radius, m	0.19
Betatron tunes	
Qx	0.08
qy	0.14
Emittance, pm*rad	82.7
Ver. Emittance, pm*rad	0.049
Emittance Ratio (v./h.)	0.00059
Energy spread	2.4E-04
Energy loss of particle per turn, MeV	32.64
Energy loss of particle (in solenoids), keV	76.5

1 – Area (1/2) of main solenoid magnetic field on reference trajectory L_main_sol/2

2 – Length of compensating solenoid L_comp_sol

3 – Free space between compensating and screening solenoids L_free_space

L_star vs. L_main_sol (5)

L_star vs. L_main_sol (5)

Parameters	Unit									
E, GeV		45								
L_star, m	2.171	2.171 2.497 2.860 2.342 2.686 3.10								
Compensating so	olenoid									
R_in, m	0.125	0.137	0.137 0.151		0.137	0.151				
R_end, m	0.199	0.228	0.263	0.214	0.248	0.289				
L, m	0.736	0.906	1.119	0.884	1.103	1.376				
L_free_spaice, m	0.120	0.125	0.132	0.110	0.118	0.126				
Screening soleno	id									
R_sc_sol,m	0.211	0.241	0.276	0.225	0.260	0.301				
L_sr_sol, m	1.884	1.589	1.239	1.746	1.399	0.988				
Main solenoid	Main solenoid									
В, Т		2.00								
R_main, m			3.	82						
L_main_sol /2, m	1.25	1.37	1.50	1.25	1.37	1.50				
Lattice										
bx_IP, m			0	.5						
by_IP, m			0.0	01						
l2_sol, m^-1	2.58E-06	2.40E-06	2.23E-06	2.01E-06	1.88E-06	1.74E-06				
l5y_sol, m^-1	1.03E-13	1.02E-13	1.02E-13	5.12E-14	5.04E-14	5.03E-14				
Emy_sol, pm*rad	0.51	0.50	0.51	0.25	0.25	0.25				
Emx, m*rad	9.24E-11	9.24E-11	9.24E-11	9.24E-11	9.24E-11	9.24E-11				
Emy_sol/Emx	5.49E-03	5.46E-03	5.47E-03	2.74E-03	2.69E-03	2.69E-03				
Uo_sol, keV	148.8	138.6	129.0	116.3	108.3	100.8				

30

 ϵ_{v} vs. $L_{comp sol}$ (6)

• $L_{main_{sol}}/2$ – Length (1/2) of main solenoid magnetic field area on reference trajectory

- L_comp_sol Length of compensating solenoid
- L_{star} distance between IP and first edge of QD0
- $B_{s_center} = 2 \text{ T}; \quad \int B_s(s) ds = 0; B_{s_QUAD} < 0.01 \text{ T}; \text{ For 2 IPs};$

Misalignments of elements

(E =175 GeV; After CO & SQ correction)

Element	dx,y,um	Tilt, mrad	CO before corr.	D _y , mm	Qx	Qy	ε _x , nm*rad	ε _y / ε _x , %
ARC BPM	100	0	+	5.5	0.003	0.041	1.40	0.66
FF BPM	25	0	+	3.2	0.000	0.002	1.39	0.20
CCS_XY BPM	50	0	+	7.8	0.002	0.043	1.40	0.72
Dipole	-	0.2	+	2.6	0.000	0.000	1.39	0.14
Quads	100	0	-	3.3	0.003	0.063	1.46	0.12
FF Quads	25	0	-	4.0	0.000	0.000	1.40	0.38
CCS_XY Quad	100	0	-	1.8	0.002	0.024	1.40	0.07
Sextupole	100	0	+	3.1	0.005	0.009	1.42	0.26
CCS_XY Sext	100	0	+	1.8	0.004	0.082	1.40	0.28
Total	*	*	-	7.0	0.011	0.048	1.46	1.44

* - all misalignments included.

Preliminary misalignments results for IP

Summary

- Vertical emittance lightly increases when compensating solenoid length decreases with unchanged main solenoid length.
- Vertical emittance strongly increases when main solenoid length decreases with unchanged compensating solenoid length.
- The screening solenoid should be matched with the compensating solenoid to reduce magnetic field in area of FF quads.
- The distance between the compensating solenoid end and QD0 quadrupole should be more than 30 cm ~ compensating solenoid diameter of second edge.
- Slicing for MADX allows to take into account fringe fields of the solenoids more precisely.
- Vertical emittance blow up estimation at the solenoid fringe field corresponds to that calculated by Mike Koratzinos.