Lumi-monitor update and IR geometry

M. Sullivan for M. Dam Jan 26, 2017

Outline

- IR layout at start of workshop
- Some evolution
- Current layout
 - How Lumi-monitor fits in
- Next steps
- Summary

Detector geometry view

• Central chamber now 30 mm diameter but...

- Lumi-monitor not shown
- Tagging angles for LumiCal incorrect
- Beam pipe not optimized for LumiCal
- After Mogens presented the LumiCal and Mike Koratzinos presented the latest on the solenoid compensation
 - Settled on putting the LumiCal at 1.0-1.2 m from the IP

LumiCal at 1-1.2 m

Services are squeezed into 100-140 mrad cone to maximize SA acceptance

Note minimum angle of 50 mrad

Cross section: $\sigma = 24$ nb Geometric precision needed for absolute normalization to 10^{-4}

• δz = 53 μm

δr_{max} = 7.0 μm

Courtesy Mogens

- Mogens was asked how much radiation length of material can he stand in front of his detector and still function
 - -10% of RL

 Armed with this information went back to the drawing board

And first made a table of RL vs angle of incidence

X₀ mm

651.9 240.1

Al Au

Be

64.6

												well-	0.005
		1	Incident angle		Thickness		Be		AI		Thick	Au (5 um)	
		deg	mrad	rad	wall	actual	x/X _o	% x/X _o	x/X ₀	% x/X ₀	actual	x/X ₀	% x/X ₀
	Γ	0.5	8.73	0.008727	1	114.59	0.1758	17.6	0.4773	47.7	0.573	0.0089	0.9
		1	17.45	0.017453	I	57.30	0.0879	8.8	0.2386	23.9	0.286	0.0044	0.4
		1.5	26.18	0.02618	1	38.20	0.0586	5.9	0.1591	15.9	0.191	0.0030	0.3
		2	34.91	0.034907	1	28.65	0.0440	4.4	0.1193	11.9	0.143	0.0022	0.2
		2.5	43.63	0.043633	1	22.93	0.0352	3.5	0.0955	9.5	0.115	0.0018	0.2
		3	52.36	0.05236	1	19.11	0.0293	2.9	0.0796	8.0	0.096	0.0015	0.1
Tried this fir	st	4	69.81	0.069813	1	14.34	0.0220	2.2	0.0597	6.0	0.072	0.0011	0.1
		5	87.27	0.087266	1	11.47	0.0176	1.8	0.0478	4.8	0.057	0.0009	0.1
		6	104.72	0.10472	1	9.57	0.0147	1.5	0.0398	4.0	0.048	0.0007	0.1
		10	174.53	0.174533	1	5.76	0.0088	0.9	0.0240	2.4	0.029	0.0004	0.0

1	ncident an	gle	Thic	kness	B	e	AI		
deg	mrad	rad	wall	actual	x/X _o	% x/X _o	x/X ₀	% x/X ₀	
0.5	8.73	0.008727	0.5	57.30	0.0879	8.8	0.2386	23.9	
1	17.45	0.017453	0.5	28.65	0.0439	4.4	0.1193	11.9	
1.5	26.18	0.02618	0.5	19.10	0.0293	2.9	0.0796	8.0	
2	34.91	0.034907	0.5	14.33	0.0220	2.2	0.0597	6.0	
2.5	43.63	0.043633	0.5	11.46	0.0176	1.8	0.0477	4.8	
3	52.36	0.05236	0.5	9.55	0.0147	1.5	0.0398	4.0	
4	69.81	0.069813	0.5	7.17	0.0110	1.1	0.0299	3.0	
5	87.27	0.087266	0.5	5.74	0.0088	0.9	0.0239	2.4	
6	104.72	0.10472	0.5	4.78	0.0073	0.7	0.0199	2.0	
10	174.53	0.174533	0.5	2.88	0.0044	0.4	0.0120	1.2	

• Which led to

والحسر

0.005

HOMs

- Attempt to make minimum angle of incidence 3 deg (50 mrad)
 - Then chamber could be AI
- Showed this to Sasha and it was not well received
 - This makes the cavity larger and adds more HOM power to the region
 - Also the beam pipe bulge is only needed at the part of phi that is close to the other beam pipe

How about Be?

- So went back to RL table and decided to be more aggressive and ask for Be
 - Then we can go down to 1 deg of incident angle and still be below 9% of a RL. This is for a 1 mm thick beam pipe wall
 - Perhaps we can use a thinner wall?
- Using Be then gets us to this design

Shielding

- The question now arises about shielding the central detector from SR from the last bend magnet
- The LumiCal needs a window in the beam pipe where we can no longer put shielding
- For the Z running this may not be a big issue

 The photon energies are lower (Ave scattered=1.3 keV)
- But for the Top running this becomes an issue
 - Ave scattered is 390 keV
 - Effectively the central part of the beam pipe increases from +/-12.5 cm to +/-50 cm
 - This will increase the number of photons going into the central chamber (factor of 10? More?)
 - Simulation comparison will tell us the answer

Z scattered photon energy spectrum

Top scattered photon energy spectrum

What about the Higgs?

- Scattered SR photon energies will increase
- Needs to be looked at as a separate case
- More simulation runs with the GEANT4 model of the beam pipe
- Do we want/need the LumiCal for the Higgs?
- Stay tuned.....

Summary

- The LumiCal looks OK at the Z running
- We need a Be beam pipe for the LumiCal window in order to minimize the RL to the LumiCal and to minimize the HOM power in this region
- The LumiCal window will cause central detector SR backgrounds to increase at the Top running because of the high energy of the scattered photons