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Diocotron mode"

"
"
Hollow electron beam  => Diocotron  instability!

Where does the name comes from?"
"
Diocotron comes from  Greek  “pursue, chase”"
"

This talk is about stable diocotron wave NOT diocotron instability of hollow plasma"



Diocotron wave"
Let’s consider the simplest case: monotonically decreasing density profile "

Long “rigid” plasma  “Penning-Malmberg”"

n"

r"
Density perturbation:    "δn(r )exp{i(mθθ +kzz −ωt )}
mθ =1 mθ = 2 mθ = 3

B!

V" V"

r"

z"

B!

θ	




Replace the wall by an equal and opposite image charge such that 
the potential at  r=Rw  is constant"

“Infinitely” long plasma column mθ=1"

NLq"RW"

D"

B!

NLq"

D"
B! S"

-NLq"

Let’s find out S such that φ(Rw,θ)=constant"



Potential of  ∞ line charge"
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Electric field from a line charge"

Using Gauss’ law" E =
ΣQ

2πε0rL
 = NLq

2πε0r

The image charge electric field at r=0 is:" Ei  = −NLq
2πε0  S

The ExB drift velocity of the (real) charge in the electric field of the image charge is:"

vd  = Ei
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The infinite length small amplitude diocotron frequency is:"
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The	  diocotron	  frequency	  is	  the	  rota.on	  frequency	  of	  a	  plasma	  extending	  to	  the	  wall	  
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The diocotron frequency is frequently expressed in term of the rotation frequency"



Higher order diocotron mode"
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The mθ=2 mode is close to the rotation frequency"

“square profile” !
plasma rotation frequency!



The diocotron plasma mode is a negative energy mode!"

The image charge have opposite sign of the “real” charge"

The plasma is attracted towards its 
image charge."
The electrostatic energy decreases 
as the mode amplitude increases."
Kinetic energy is negligible."
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Increasing D reduces S"

How much electrostatic energy to displace the plasma by D in the image 
electric field?"
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The diocotron mode can be destabilized by dissipation! "

Power dissipated in the load  " P =
1
2

 I2 ReZ

Energy in the wave: WES"

“Resistive  growth”"

The growth rate "  γ= P
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Use feedback circuit to damp the mode "

Diocotron mode is a tool to move the plasma off axis "
"
•  phaser picture (before CCD image of plasma)"
•  load off axis multi-trap (Surko’s  multicell)"

Bandpass 
filter "

Phase  
shift "



Valid for  infinite length, small amplitude!f∞dio =  NLq  
4π 2ε0  Bz  RW

2

The diocotron frequency can be used to measure the line density"

We have to be careful here"

For a measured NL and a measured  diocotron frequency, !
the infinite length equation gives a frequency too small  by a factor of 2 or 3!
for a plasma  Lp /Rp ~2!
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Large amplitude diocotron"
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Non-linear correction"

For large displacement, the column distorts into an elliptical cross-section"

C.F. Driscoll and K.S Fine Phys. Fluids B, 2, 1359 (1990)"

K.S. Fine, C.F. Driscoll and J.H. Malmberg, PRL, 63, 2232, (1989)"
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Confining potential add to the force due to the image charge  "

Finite length diocotron"

Ftot =Fi +Fc

fdio
f∞

=
Ftot
Fi ,∞

Image" confinement "
voltage"

Confining potential push the plasma in the z-direction.  
This result in a radial force on a off axis plasma."

“Plasma electrostatic pressure” 	  

“Plasma kinetic pressure”!

“finite length on image charge”!
K.S Fine and C.F. Driscoll Phys .Pla. 5, 601,(1998)"
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“The kinetic pressure is small 
for plasma” !
“Large for few particles”!

To obtain the small-amplitude mode frequency, f , a se-
ries of measurements are taken at different amplitudes. The
finite amplitude frequency, f A , and amplitude, A , are mea-
sured from the received sector probe signal, and 100 shots
are averaged at each amplitude. The small amplitude fre-
quency f is then obtained from a fit to f A5 f (11bA2),
where b and f are fit coefficients.

To measure the number of electrons per unit length, N ,
we use a Gauss’ Law probe. This is simply one cylindrical
electrode in the containment region that is connected to an
amplifier. When the electrons are dumped axially, a voltage
of magnitude Q/C appears on this electrode, where Q
52eNLe , Le is the electrode length, and C is the electrode
capacitance to ground. Care must be taken that this electrode
is well away from the column ends, and that the resulting
voltage does not trap electrons. The total number of elec-
trons, N tot , is measured by the collimator and collector elec-
trodes, as described previously. The plasma length can then
be estimated from Lp5N tot /N.

Figure 4 plots the measured ~small amplitude! frequen-
cies f / f` versus Rw /Rp , obtained at a magnetic field of 188
G. For these experiments,10 it is difficult to vary one param-
eter alone. In Fig. 4, the length changes from 8.3 Rw to 10.2
Rw , and the plasma temperature varies from 0.5 eV to 3.2
eV as Rp is varied. Nevertheless, for each column, we use
the measured values of Rp , Lp , N and T in Eq. ~24! to
calculate the predicted frequency for each experimental
point, then connect the calculated points by straight lines.
The agreement with the model is quite good, with the biggest
discrepancy being 3% of f` .

Figure 4 also compares the data to our force-balance
model with T50, and to the cold fluid wave-coupling model
of Prasad and O’Neil.7 The T50 curve is substantially be-
low the data, because the thermal pressure on the ends is a
significant fraction of the electrostatic pressure: for the nar-
row, low density plasma with Rw /Rp54, we obtain T/Ne2
50.6. The Prasad and O’Neil wave-coupling theory predicts
about twice the measured frequency shifts, and is apparently
not applicable for these experiments: the theory implicitly
assumes a ‘‘floppy’’ plasma with nb!nr , whereas the ex-
periments are on ‘‘rigid’’ plasmas with nb*nr . The ques-
tion of whether significant coupling can occur between the

kz'0 diocotron mode and the Landau-damped kzfi0 plasma
modes could perhaps be addressed with experiments on pure
ion plasmas, which tend to be in the floppy regime.

As an erratum, we note that the correspondence sug-
gested by the original comparison10 of these measurements
with the theory of Prasad and O’Neil was erroneous: in Fig-
ure 5.5 of Ref. 10, an ‘‘inverted’’ length factor was used in
calculating the theory, so the displayed theory curve is too
low by a factor of (10Rw /Lp)25(10/8)2. Our realization
that the theory of Prasad and O’Neil is not applicable to the
experimental regime of nb.nr led to development of the
present model.

We have also measured the variation of frequency with
temperature, as shown in Fig. 5. The temperature is varied by
heating the column by alternately compressing and expand-
ing its length for a few cycles.11 By varying the number of
heating cycles, the temperaure can be increased by controlled
amounts. Data taken for three different column radii show
close agreement with the model, with the largest frequency
deviations being 4% of f` . The measurements were taken at
a magnetic field of 376 G, with column lengths varying from
6.9Rw to 8.2Rw .

Finally, we have measured the variation of frequency
with column length. This measurement is somewhat more
involved than the previous ones. The Gauss’ Law technique
is not accurate for the shorter lengths, because the measure-
ment electrode must be away from the column ends. Rather,
we obtain the length from an (r ,z) solution of Poisson’s
equation with the measured z-integrated charge profile
Qz(r), the measured temperature profile T(r), and the
known boundary conditions. To obtain the electron density
n(r ,z), we assume

n~r ,z !5n~r ,0!exp@e~f~r ,z !2f~r ,0!!/T~r !# . ~25!

In essence, this assumes that the electron plasma is in local
thermal equilibrium along each field line. We use a computer
code to obtain the self-consistent n(r ,z) and f(r ,z) given
the measured Qz(r), T(r) and wall potentials f(Rw ,z).
Once n(r ,z) has been obtained, we define the central line
density by N[*d2r n(r ,z50).

In addition, the magnetic field tilt transport only works
for the longest columns, so the short columns must be first

FIG. 4. Measured m51 frequency versus column radius ~shown as points!,
compared to our model Eq. ~24! ~solid line!. Also shown are our model with
T50 ~dotted line!, and the predictions of the theory of Prasad and O’Neil
for ‘‘nonrigid’’ plasmas6 ~dashed line!.

FIG. 5. Measured m51 frequency versus electron temperature, for plasmas
with 3 different radii. The model of Eq. ~24! is shown by the solid lines.
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tilted while long, then cut axially. This cutting process inevi-
tably results in columns that are not as uniform in density as
those plotted in Fig. 3.

Figure 6 shows the measured dependence of the dio-
cotron frequency on plasma length Lp . For columns Lp
>2Rw , the comparison to the present model is good, with
the largest variation from the model being about 5% of f` .
The variation is up to 10% for the shorter length columns. Of
course, the model assumes that the columns are long, so that
the end confinement fields do not overlap at the axial center.
How much of the disagreement comes from the breakdown
in the model as compared to the less ‘‘square’’ radial profiles
is not known.

VI. THE MAGNETRON MODE INCLUDING IMAGE
FORCES

There have been a number of experiments in recent
years that trap very small (Rp!Rw) and very short (Lp
!Rw) charge clouds.12 In this limit, the radial confinement
force dominates the m51 orbital motion of the cloud, and
the image charge forces are typically not even included in
the calculation of the frequency. However, this situation is
really just the opposite limit (L!Rw) of the columns already
considered, and the image charge electric fields will appear
as additional forces which increase the magnetron frequency.
Here, we derive the frequency shift due to these image
charges.

Consider a small cloud of electrons contained in cylin-
drical geometry where the length of the grounded section ~B
in Fig. 1! is short. Assume that the cloud has total charge
Q52eN tot , and that the cloud is small enough that we can
consider it to be a point charge. The confinement potential
near the trap center will have the form

fc~r ,z !5fc~0,0!2a~z22~1/2!r2!, ~26!

where the factor of 1/2 in front of r2 is necessary to satisfy
Laplace’s equation. The charge cloud orbits the trap axis due
to the magnetron motion, and may also oscillate harmoni-
cally in z . For a cylindrical wall, the coefficient a can be
calculated by expanding fc(r ,z) in a Bessel expansion

fc~r ,z !52Vc(
n51

` 2
jonJ1~ jon!
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Rw

D
3coshS jon z

Rw
D e2 jonL/2Rw, ~27!

where 2Vc is the confinement potential at the two ends, and
jon is the n-th zero of the J0 Bessel function. Note that Eq.
~27! is only valid in the range 2L/2,z,L/2. Near (r ,z)
50, the potential behaves as Eq. ~26! with
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2
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where the approximation is valid in the limit L/Rw!0.
The image charge potential will add to the confinement

potential. From symmetry, the images will not result in any
net force in the z-direction for uniform radius cylinders, and
the harmonic oscillation in z will not be changed. There will
be a radial electric field from the image charges, and we
calculate this using the part of the Green’s function due to
images @Eq. ~18!#. For a charge Q offset from the axis by
distance D , the image potential at u50, z50 is
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where the approximation is valid to first order in (D/Rw).
Using the small argument expansion for I0 and I1 we find

f i~r !'f i~0 !2
Q
p F12 r2E0`dk k2 K0~kRw!

I0~kRw!

1rDE dk k2
K1~kRw!

I1~kRw! G , ~30!

where f i(0) is a constant.
The integrals can be evaluated numerically to obtain

f i~r !'f i~0 !2
Q

pRw
3 F0.6469r22 12.5033rDG . ~31!

Finally, the m51 frequency can be calculated from
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Here, we see that the confinement force is proportional to
Vc , while the image force is proportional to total charge Q ,
unlike the case of a long column.

This image charge correction may be 1% even for a
modest number of charges. As an example, consider 105

FIG. 6. Measured m51 frequency versus column length ~points!, compared
to our model Eq. ~24! ~solid line!. Also shown are our model with T50
~dotted line!, and the predictions of the theory of Prasad and O’Neil for
‘‘nonrigid’’ plasmas ~Ref. 6! ~dashed line!.
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Experimental test of finite length effects"



Magnetron mode"

For small short plasma the confining potential dominates"
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Plasma wave"

Long plasma in a “Penning-Malmberg” trap  Trivelpiece Gould mode "

Ez=0 at the wall "
E is radial at the wall"

Infinite plasma"
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Ezis reduce by the conducting the wall "

fTG < fLangmuir"
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Continuity "

Newton"

Poisson"
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Keep only z dynamics	  

Density perturbation:    "
δn(r )exp{i(mθθ +kzz −ωt )}

Keep all k in Poisson eq. 	  

“cold Trivelpiece Gould mode”!
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2
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With thermal pressure" “Trivelpiece Gould mode”!
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2 1+ 3
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If we kept all k not only kz, we would get 	  

Standard plasma wave in unmagnetized, 
infinite plasma:  “Langmuir wave”!
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Magnetized  
plasma inside "
conducting tube"

Langmuir"
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Standing plasma wave"

In the radial direction the potential vanish at the wall. "
"
     must satisfy:"k⊥

S.A. Prasad and T.M. " Phys. Fluids 26, 665 (1983)!
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Finite length TG modes"

keff =  kz +α1Rp +α2RW

For a long column “acoustic” dispersion relation"
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Jennings J.K.; Spencer R.L.; Hansen K.C . Phys. Plas. , 2, 2630, (1995) ""
"

mθ≠0 mode are Doppler shifted by the rotation frequency!
This can be useful for some rotating wall application!
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to zero when kz reaches to zero.

In this thesis, we identify the TG mode by 3 mode numbers: mz, m✓, mr. A

cartoon of the lowest 3 modes are shown in Figure 3.2. For mz and mr, the number

of nodes gives the mode number. For m✓, number of peaks in �n versus ✓ gives the

mode number m✓. In this thesis, we will focus on m✓ = 0, mr = 1 and mz = 1, 2, 3

because these have the strongest coupling to our cylindrical wall antennae (Figure

2.1.

δn

mz mode mr modemθ mode

m
z
=1

m
z
=3

m
z
=2

δn

m
θ
=1

m
θ
=3

m
θ
=2

rR
p

δn

z
m
r
=1

m
r
=3

m
r
=2

~Lp

Figure 3.2: Cartoon of �n in the directions of z, ✓ and r.

In the limit of kz�D ⌧ 1 and Rpkz ⌧ 1, the frequencies of the Trivelpiece-

Gould mode resonances for m✓ = 0 and mr = 1 can be approximated as:

!m ⇡ !p

✓
Rp

Rw

◆
(Rwkz)


1

2
ln

Rw

Rp

�
1/2

"
1 +

3

2

✓
v̄

v�

◆
2

#
, (3.1)

with damping

� ⇡ �
r

⇡

8
!

⇣v�

v̄

⌘
3

exp

⇢
�1

2

⇣v�

v̄

⌘
2

�
(3.2)

The wave frequencies scale with the plasma frequency fp ⌘ !p/2⇡ = 28 MHz

(n/107 cm�3)1/2, reduced by the fill ratio Rp/Rw and by the trap radius compared

Higher mz results !
in higher frequency	  

Higher mr results !
in lower frequency	  

All these m"

Higher mθ results !
in lower ω - mθωE	  



analyzer which automatically tracks the signal frequency,
with a bandwidth of 300 Hz. The signal frequency is ramped
in 100 seconds from 0.5 to 2.5 MHz.

Figure 3!a" shows enhancements in the received signal
of up to 40 dB when the drive frequency corresponds to a
plasma mode frequency. The mode identifications in Fig. 3
use the notation (m# ,mz ,mr); these identifications are ob-
tained from numerical solutions of Eq. !3". In Fig. 3, the
‘‘noise floor’’ is about !130 dBm, corresponding to a re-
ceived wall voltage of 0.07 $Vrms . Here, ‘‘background’’
noise peaks which appear in the absence of a plasma or in the
absence of a launched signal have been subtracted from the
data. The plasma used here had parameters Lp!35 cm, Rp
!0.25 cm, n0!4"108 cm!3, T!0.1 eV, and N tot!2.7
"109; during the 100 second scan n0 decreased slightly, but
N tot remaining constant since Rp#Rw .

Figure 3!b" shows a similar transmission experiment
performed on a magnesium ion plasma. Here, the plasma is
kept from expanding by the continuous application of a f w
$20 kHz, Aw$0.4 V, m#$%1 phased rotating wall drive
using the sectors on S11a, c, e, and g; this balances the
inherent asymmetry drag on the plasma by coupling to the
!1,1,1" mode, as will be described in the next section. A
smaller m#$&1, A$25 mV signal is applied using sectors
S11b and f, and the signal frequency is ramped from 0 to 100
kHz in 100 seconds while listening to sector S11d with the
spectrum analyzer. As for the electron plasma, strong en-
hancement in the received power is observed when the signal
frequency f corresponds to a plasma mode. Here, the re-
ceived signal at f$ f w$20 kHz is off-scale in amplitude, and
has been subtracted from the data along with the background
peaks. The plasma used here had parameters n0!4.3
"107 cm!3, Lp!14.5 cm, Rp!0.66 cm, and T!0.1 eV.

Verification of the m# and mz mode identifications of
Fig. 3 was obtained by varying the antenna geometry used
for transmission and reception. For example, the m#$!1
modes are no longer observable when a forwards-phased
(m#$%1) drive is used; similarly, the m#$%1 modes are
no longer observed when a reverse-phased (m#$!1) drive
is used. Also, we verified that these m#$&1 modes are not
excited by a m#$0 or m#$2 drive. For the electron plasma
of Fig. 3!a", when driving m#$&1 modes and listening with
sectors S11f, S11g, and S5d connected together, the odd mz
modes are observed to drop by about 15 dB, while the even
mz modes were observed to rise by about 5 dB. Conversely,
listening with sectors S11f, S11g, and S5b connected to-
gether causes the even mz modes to drop by about 15 dB
while the odd mz modes rise by about 5 dB.

Additionally, for the ion plasma, coherent detection of
the ion fluorescence at a given mode frequency was used to
verify the expected radial mode shapes of the m#$0 and
m#$1 modes as well as the odd vs even nature of the mz
$1, 2, and 3 modes.

The m#$0 ion modes seen in Fig. 3!b" are driven by
small !unwanted" imbalances in the nominally m#$&1 ap-
plied signal; m#$0, mr$1 modes are easily driven in these
plasmas. The identification of these modes is obtained from
independent transmission experiments using a m#$0 drive,
and also from numerical predictions. The associated modes

with higher radial mode number, such as !0,2,2" and !0,1,2"
are not observed here but are observed when a stronger m#
$0 drive is applied to the plasma. For electrons, the !0,1,1"
and !0,2,1" modes occur at about 5 and 10 MHz, respec-
tively.

We find that the measured frequencies of m#$0 and
m#$1 modes are typically within about 10% of the numeri-
cal solutions of Eq. !3"; for m#$2 modes, the agreement is
typically within 30%. The approximate square profile disper-
sion relation, Eq. !4", gives the m#$0 mode frequencies to
within about 10%, but often differs by 50% or more for the
m#$1 or m#$2 modes.

It is of interest to note in Eq. !4" that %!m#%E
&%pRpkz&NL

1/2Lp
!1 , where NL'N tot /Lp is the line-charge

density. We thus expect the Doppler-shifted mode frequen-
cies to be inversely proportional to plasma length for fixed
NL . This scaling is verified experimentally: in Fig. 4, we
plot the mode frequencies observed in transmission experi-
ments versus NL

1/2Lp
!1 . The drive amplitude in these experi-

ments is small (Aw(25 mV", so the temperature remains
low (T!0.1 eV". The symbols correspond to the measured
mode frequencies. In Fig. 4!a", electron plasmas with lengths
Lp!17.5, 23.4, 35.0, and 40.9 cm were used; the corre-
sponding line-charge density was nearly constant, with NL
!10.0, 9.0, 8.3, and 7.6"107 cm!1; and the EÃB rotation
frequency was f E!150 kHz. The curves through the data are
the numerical predictions solutions of Eq. !3"; dashed curves
represent even mz modes, while solid curves represent odd
mz modes. It can be seen that the observed modes are rea-
sonably well described by the numerical solutions. Also, the
near-linearity of the numerical curves shows that the ap-
proximation %!m#%E&NL

1/2Lp
!1 is reasonable for these

plasmas.

FIG. 4. Observed mode frequencies f of m#$&1 modes as a function of
plasma length Lp , demonstrating f! f E&NL

1/2Lp
!1 . Measured frequencies

!marks" are well-predicted by the numerical solution of modes !lines".

2781Phys. Plasmas, Vol. 7, No. 7, July 2000 Confinement and manipulation of non-neutral plasmas . . .

14 Jul 2000 Downloaded to 132.239.69.90. Redistribution subject to AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.

TG modes travel forward or backward 
on the rotating plasma column!

 ( mθ, mz, mr ) !

Higher order TG modes "

 Phys. Plasmas 7, 2776 (2000)"



Waves in non-neutral plasma!

•  Diocotron wave  "-simple infinite length model  
" " " " " "-finite length, finite amplitude corrections"

•  Plasma wave    "-Trivelpiece-Gould (TG) wave  
" " " " " "-Thermally excited TG wave  
 "

•  Cyclotron wave ""

François Anderegg!
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and the cylinder used as a antenna has La = 11.7 cm. The load impedance on

IV (or EV) is R` = 690 ⌦ in parallel with C` = 440 pF (or 190 pF). Plasma

parameters were B = 3T, Lp=41cm, n
0

= 107cm�3 and Tp = 0.15eV.
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Figure 3.4: Spectrum of mr = 1, m✓ = 0, mz = 1, 2, ..., 5 Trivelpiece-Gould modes

for 3 drive amplitudes including no drive, i.e. thermally excited.

Figures 3.4(a) and 3.4(b) show the spectrum of azimuthally symmetric m✓ = 0

standing Trivelpiece-Gould modes excited by wall excitations of V
exc

= �80 dbm

(22 µV) and -100 dBm (2.2 µV) at frequencies f = 0.01� 10 MHz.

TG modes are easy to excite"

TG modes are excited at very !
low level by thermal fluctuations!
	  
Provide effective diagnostic tool.!

Phys.	  Rev.	  Le1.	  90,	  115001	  (2003)"



Thermally excited  TG plasma modes"

As the plasma temperature Tp increases:"
"- Landau damping increases"
"- Mode frequency increases"

"- “Area under the mode increases” "
PRL, 90, 115001 (2003)"



 

 

 • thermal e- motion in the plasma   
excited by ”reverse Landau damping”      “Cerenkov radiation” 
 • noise in the load 
 
 

Non-Neutral plasma can relax to a state of thermal equilibrium in the rotating frame."

Plasma mode is"

 

 

 
 
damped by • Landau damping  
 • Load dissipation 
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N. Shiga et al, Phys.Plas, 13,022109, (2006)"



Plasma temperature from thermally excited mode"

The plasma temperature is non-destructively 
determined by ”listening” to plasma fluctuations."

 Use a room-temperature amplifier"

Phys. Plas. 10, 1556 (2003)"



Waves in non-neutral plasma!

•  Diocotron wave  "-simple infinite length model  
" " " " " "-finite length, finite amplitude corrections"

•  Plasma wave    "-Trivelpiece-Gould (TG) wave  
" " " " " "-Thermally excited TG wave  
 "

•  Cyclotron wave ""

François Anderegg!



Cyclotron modes are a useful tool for identification of impurities ion "

Thermal cyclotron spectroscopy."

• 	  Heat	  resonantly	  impurity	  ions	  at	  their	  cyclotron	  frequency	  

• 	  Hot	  impurity	  ions	  heat	  Mg24	  through	  collisions	  

• 	  Fluorescence	  of	  the	  Mg24	  cooling	  laser	  beam	  increases	  

•  Heat resonantly impurity ions at their cyclotron frequency"

€ 

fci ≅
qB
mi

•  Hot impurity ions heat Mg24 through collisions"

•  Fluorescence of the Mg24 cooling laser beam increases"
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Centrifugal 	

Force	
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If Er = 0 then f1
(s ) = Fc
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But Er is generally non-zero due to space charge, image charge, and trap potentials"
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Cyclotron wave"
For single particle the cyclotron frequency is " Ωc =  2πFc  =  q B
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Radial force balance (mθ =1)"



Center of Mass Mode Frequency (mθ=1)!
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Surface Cyclotron Modes"
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Charge Fraction	

of Species s	


R. W. Gould, Phys. Plasmas 2, 1404, (1995) "

Doppler Shift	


Shift from	

Plasma Potential	


Solve Vlasov-Poisson equation for an cos(mθ) perturbation in the fE frame	
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Uniform Density Surface Wave Theory"

Center of Mass mode in a single species plasma 	


Dubin , Phys. Plasmas 20, 042120 (2013)"



Cyclotron Mode Frequencies vs. fE"

Majority Species 24Mg+	
 Minority Species 26Mg+	
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•  Diocotron wave   "- measure NL  
 "

- control position of the plasma in trap  
"

•  Plasma wave    "- useful for RW application  
 
" " " " " "- Thermally excited: Temperature diagnostic"
" 
"

•  Cyclotron wave "- measure the plasma composition  
 
" " " " " "- measure the magnetic field "

Summary"

Publications can be found at nnp.UCSD.edu!

Francois Anderegg



