

Charged Particles for Antihydrogen

Physics with Trapped Charged Particles Ecole de Physique des Houches, January 20, 2015

Brief History of Antihydrogen

nature

1996: CERN: First Antihydrogen (beam)

2002: ATHENA: Firs

वा 🎝

- 2010: A
- 2011: A
- 2012: A 2013: A

measureme

2014:ALPH

JULY 2011 VOL 7 NO 7

/naturephysics

8.276 сн

What is antimatter?

• Particles have "twins" same mass, opposite charge

What is antimatter?

• Neutral antimatter atoms

What is Antimatter?

• Watch out when they meet their twin!

What is Antimatter?

Annihilations

- Positron / Electron: photons (511 keV)
- Antiproton / Proton: Many possibilities Pions, etc.

positron / electron Annihilation proton / antiproton Annihilation

Why make Antihydrogen

- Physical laws identical under CPT transformation: Antihydrogen must be identical to Hydrogen!
- Baryon Asymmetry: The universe seems made almost entirely of matter! Really? Why?
- Gravity: How does antimatter respond to gravity? Weak equivalence principle! Insights for quantum gravity? Dark Energy ?
- Note: ANY difference between H and H will imply new physics!

Energi Budget of the Universe

Forgot one purpose?

- Starships!? "only" I ton to go to alpha centauri!
- Bombs!? "only" I/4g to blow up the vatican!
- FORGET IT :
- \overline{p} fundamental limit : $p \rightarrow 10^{-6} \overline{p} @ 20 \text{ GeV/c}$

storage bette the neutrals : $n < \frac{\epsilon_0 B}{2m}$ nergy to mass world energy for 5 time v machine efficiency : 50000G yea

MAY 2009

Why/how does H help?

- Only pure antimatter system so far!
- Antihydrogen is neutral!
- Spectroscopic techniques can be brought to bear.
- Ex: H-H comparison by Is-2s two photon spectroscopy.

Charged Particle Traps

• All our traps are Penning-Malmberg traps

Where do Positrons come from?

• Fairly Easy: Positive β^+ decay in radioactive isotopes

- Potassium-40 in Bananas: ~ 15 Positrons / sec
- We use Sodium-22 source: ~ 10 M / sec

"I am a banana!" Don Hertzfeld

T.J. Murphy, C.M. Surko, Phys. Rev. A 46 (1992) 5696.

Positron Accumulation

- Accumulation rate : ~ 10⁶ e⁺/sec
- Transferred (sans gas!) and cooled :
 ~ 150 x 10⁶ e⁺ / 5 min.
- In practice we use 2-5 x 10⁶ e⁺ in each experiment.

Where do Antiprotons come from?

- Energetic proton creates Proton/Antiproton pair
- Charge/Mass selected 3.7 GeV/c26 GeV/c (and other stuff) Cern Proton Synchrotron

Maury. S.

Antiproton Decelerator

Gabrielse, G. et al. Phys. Rev. Lett. Antiproton Catching

Result : ~ 60000 cooled \overline{p} / AD shot (every ~100s)

ALPHA, J. Phys. B

Antiproton Capture

• Why ? : Cyclotron radius....

Annihilation Detection

- Si-strip detection
- Vertex resolution ~ Imm
- Efficiency ~ 50% Si-strips Electrode wall

Reconstructed track

(Anti)Atom Trap

- Atoms can be trapped on their magnetic dipolement. $U = -\bar{\mu} \cdot \bar{B}$
- Atoms can be trapped in a 3D magnetic minimum.

Plasma in Multipole I

• The azimuthal symmetry of the Penning-Malmberg trap is broken by the neutral trap multipole.

• There is a critical radius beyond which particles will hit the wall which depending on octupole strength and particle (antiproton) orbit length.

Plasma in Multipole II

• Even well below the critical radius we see heating effects!

0.7mm radius e⁻ plasma in short well, r_{crit} > 12 mm

• We need small antiproton and positron plasmas. [Note: Also the equilibrium-rotation means small is good]

ALPHA, PRL

'Sympathetic' compression

Multipole Choice

ALPHA, Nucl. Inst. & Meth.A

0

ALPHA Octupole

Directly on vacuum chamber

Minimize material (multiple scattering)

Maximize field in vacuum

Eggleston, D. L.,

Measuring Temperatures

 Dump particles to a detector and record number versus well depth.

• Use scintillator/PMT for \overline{p} and MCP for e^+/e^- .

J. Fajans Talks

Temperature Measurement

• For about 40000 antiprotons.

• But, 300K !?, is it good enough ?

J. Fajans Talks

Hilico Talks

Evaporative Cooling

• Let the hot particles, with <u>more</u> than the average energy, evaporate and the remaining will be colder

 In a Penning trap particles escape only along the axis and essentially on the axis as the potential is the most shallow there. => 9 ± 4 K antiprotons!

Radial expansion with EVC

Shallower Wells \longrightarrow

Note: We're losing a lot of \overline{p} , but the number N_0 below IK is in fact Nincreasing. $N_0 = \langle r^2 \rangle$

$$\frac{1}{N} = \frac{1}{\langle r_0^2 \rangle}$$

∧/_ /<u>-</u>2∖

Drive on cloud of antiprotons?

 Counterintuitively, when plasma is cold and dense: Behaves as a single particle to drive

Antihydrogen trapping

Mirror Trapping

- But \overline{p} are not (necessarily) \overline{H} !
- \overline{p} can be trapped by magnetic fields as their motional magnetic moment is an adiabatic invariant! $U = -\overline{\mu} \cdot \overline{B}$
- Their trapping depends on their energy

$$\alpha = \left(\frac{v_{||}}{v_{\perp}}\right) = \sqrt{\frac{B_{max}}{B_{min}} - 1}$$

• To avoid these we apply clearing fields before the trap is turned off.

T. Pedersen Talks

Procedure to check \overline{p} is \overline{H}

- Clean-out not guaranteed (>20eV)
- Heat the positrons and turn of antihydrogen production.
- We distinguished charged particles from neutral using a bias-field (during quench) which does not influence the neutrals!

Trapping Results

No spatial bias in signal; Heating 'turns off' signal
 38 Antihydrogen atoms trapped! Background 1.4±1.4

No Bias Left Bias Right Bias (* Heating)

Nature

Long time confinement

Nature Physics

Why "only" ~1 per exp. ?

- Antiprotons from AD decelerated to 5.3 MeV
- Trap potentials < IkeV
- Plasma potentials 30mV (p) 10V (e⁺)
- Neutral trap depth 50 μ V (0.6 K)

- \overline{H} must be cold to be trapped!
- Many techniques developed to reduce energy.
- BUT : Even I atom can be interrogated!

Quantum Transitions

- Trapped atom(s) in the ground state even if there's only one it is a platform for starting to compare antihydrogen and hydrogen.
- Diagnostic of one \overline{H} : Annihilation detection
- Method : Lose \overline{H} resonantly from trap spin flip.

Microwave Spectroscopy

GRALLAT

microwave spectroscopy

Appearance Measurement

NB: 313 attempts 20min each - 104h - 2w (no hickups)

Nature, March 7th (2012)

Thank you for listening