Rotating Wall Technique

Part 1

Basic Physics Idea

Part 2

Result from various experiments

Part 3

Centrifugal separation

François Anderegg

Rotating Wall Technique

Part 1

Basic Physics Idea

Part 2

Result from various experiments

Part 3

Centrifugal separation

François Anderegg

Angular momentum is conserved

$$P_{\theta} = \sum_{j} m \mathbf{v}_{\theta j} \ r_{j} + \frac{q}{c} A_{\theta} r_{j}$$

Non-neutral plasmas are confined

Here theory assumed "perfect azimuthal symmetry"

$$A_{\theta} = \frac{Br}{2}$$

Phys. Rev. Lett. 44, 654 (1980)

Methods to add (remove) angular momentum

- 1) Sideband technique "axialisation" Single particle technique (not for plasma) Friday presentation Quadrupole drive at $\omega_z + \omega_m$ and damping at ω_z
- 2) Radiation pressure from laser *Torque on plasma*

Friday presentation: Richard Thompson

3) Rotate the apparatus at the plasma rotation frequency.

10kHz to MHz rate !!! (not practical)

Practical solution: Azimuthally sectored electrodes

Solution applied a rotating electric field which "imitate" a rotating wall

8 - sectors

Sine waves applied to sector 1, 3, 5, 7 Traces of sector 2, 4, 6, 8 not shown.

Potential on a sector
$$\phi_j(\theta, t) = A_{RW} \cos\left[m_{\theta}(\theta_j - 2\pi f_{RW} \cdot t)\right]$$

Spatial harmonics due to finite sector size

Example: 4 sector drive $(m_{\theta} = 2)$ $A_{m_{\theta}=-2}/A_{m_{\theta}=2} = 1$ same amplitude ! 8 sector drive $(m_{\theta} = 2)$ $A_{m_{\theta}=-6}/A_{m_{\theta}=2} \cong 2/3$ 60% $m_{\theta} = 2$ \checkmark 40% $m_{\theta} = -6$ \bigstar

 $\tau_{\rm RW}$ = $\tau_{\rm ambient}$

Steady state

 $\tau_{\rm RW}$ > $\tau_{\rm ambient}$

compression

 $f_{RW} > f_E$

Thermodynamic argument Phys. Plasmas **5**, 2163 (1998)

Common sense !

Rotating wall is doing work on plasma => heat plasma

At a minimum:
$$2\pi f_{RW} au_{RW} = 2\pi f_E au_{ambient}$$

Unwanted spatial harmonics Imperfection in RW drive

=> Heat

High temperature plasmas have less coupling to the rotating electric field

High temperature => *less collisional* => *weaker coupling*

Need cooling

Typical forms of cooling use for RW

Cyclotron radiation Light particles: electron, positron radiation time = $\frac{-T}{\dot{T}} = \frac{9mc^3}{8e^2\Omega_c^2} \approx \frac{4.\text{ sec}}{B_{\text{Tesla}}^2}$

Collision with gas Heavy particles: ions

$$\dot{T} \simeq v_{iN} (T - T_N)$$
 $v_{iN} = 0.025 \text{ s}^{-1} \left(\frac{P_N}{10^{-9} \text{ Torr}}\right)$ (Mg⁺ on H₂)

Successful cooling of positrons using vibrational modes of large gas molecules Danielson et al. *Rev. Mod. Phys.*, 2015

Laser cooling

Limited to a few ions *"cyclone transition"*

Today and Thursday presentation: Caroline Champenois

How to couple the Rotating Wall to the plasma

Plasma shields the applied electric field ! (Debye shielding)

Work in the vicinity of a plasma mode Apply RW perturbation close to the end of plasma

Rotating Wall Technique

Part 1

Basic Physics Idea

Part 2

Result from various experiments

Part 3

Centrifugal separation

François Anderegg

UCSD Mg⁺ and e⁻ experiments

FIG. 5. Density compression rates and plasma heating for large amplitude $m_{\theta} = 1$ and $m_{\theta} = 2$ rotating drives. The compression peaks are associated with shifted (m_z, m_r) modes.

Strong torques applied by RW coupling to plasma modes (Trievelpiece-Gould)

Danielson/Surko strong drive regime

- ~ 10⁹ e⁻, B=5T, e⁻ cyclotron cooling τ_c ~ 0.16 s
- m_{θ} =1 rotating wall applied near end of plasma
- weak wall (0.1 V) compression at distinct frequencies, consistent with coupling to modes
- strong wall (1 V) compression at all frequencies, no apparent slip $f_{rot} \cong f_{RW}$

PRL **94**, 035001 (2005); POP **13**, 055706 (2006); PRL **99**, 135005 (2007)

steady density vs applied RW frequency

Danielson/Surko strong drive regime

- m_{θ} =1 rotating wall applied near end of plasma
- weak wall (0.1 V) compression at distinct frequencies, consistent with coupling to modes
- strong wall (1 V) compression at all frequencies, no apparent slip $f_{rot} \cong f_{RW}$
- critical drive strength observed
- maximum density $n_0 \approx 3 \times 10^9 \text{ cm}^{-3}$
- Strong drive regime characterized by

PRL **94**, 035001 (2005); POP **13**, 055706 (2006); PRL **99**, 135005 (2007)

steady density vs applied RW frequency

independant of n_0 and $v_{ee} > f_{bounce}$

• Increased cyclotron cooling, lower outward transport => enable access to strong drive regime

 $\underline{n_0}$

 n_0

NIST phase-locked rotating wall

Huang et al., PRL 80, 73 (1998); POP 5, 1656 (1998)

 $m_{\theta} = 1$

John Bollinger NIST

NIST phase-locked rotating wall

Huang et al., PRL 80, 73 (1998); POP 5, 1656 (1998)

time-averaged Bragg scattering strobed

- 10²<N<10⁶ laser-cooled Be⁺ ions
- T < 10 mK
- compression and no slip observed with both m_{θ} = 2 and m_{θ} = 1 walls
- rotating wall applied <u>uniformly</u> across axial extent of plasma !!

"Rotating brick"

 in steady state rotating wall and plasma (crystal) rotation are phase coherent

NIST phase-locked rotating wall Huang et al., PRL **80**, 73 (1998); POP **5**, 1656 (1998)

- Torque mechanism for $m_{\theta} = 2$ wall with crystalized plasma easy to understand
- $m_{\theta} = 2$ wall changes the potential in the rotating frame

$$q\varphi_{rot}(r,z) = \frac{m\omega_z^2}{2} \left(z^2 + \beta r^2\right) \qquad \beta = \frac{\omega_r \left(\Omega_c - \omega_r\right)}{\omega_z^2} - \frac{1}{2}$$

$$q\phi_{rot}(x, y, z)\Big|_{quad wall} = \frac{m\omega_z^2}{2} \left(z^2 + (\beta + \delta)x^2 + (\beta - \delta)y^2\right)$$

$$\delta \propto V_{wall}$$

 Plasma shape is a tri-axial ellipsoid; rotating boundary applies torque; shear forces in crystal transmit forces to interior

top-view image of a planar crystal showing distortion of the radial boundary with an m_{θ} =2

John Bollinger NIST

Other examples of rotating wall compression

• many other experiments...

Summary rotating wall

- Technique is very successful, allows essentially unlimited confinement time (weeks)
- Technique allows control of the plasma density
- The art of coupling to rotating perturbation to the plasma is still not understood completely.

Rotating Wall Technique

Part 1

Basic Physics Idea

Part 2

Result from various experiments

Part 3

Centrifugal separation

François Anderegg

Centrifugal separation

Radial force balance

$$0 = n_a \left[qE(r) + \frac{qB}{c} \omega_{ra}r + m_a \omega_{ra}^2 r \right] - \frac{\partial p_a}{\partial r}$$

 $\omega_{ra} = \omega_E(r) + \frac{c}{qBn_a(r)r} \frac{\partial p_a}{\partial r} - \frac{\omega_{ra}^2}{\Omega_{ca}}$

$$\otimes B$$
 \bigcirc_{ra} $F_{drag a}$

Pressure of species a $p_a = n_a T_a$

$$\omega_E(r) = \frac{E(r) c}{B r}$$

$$\Omega_{ca} = \frac{qB}{m_a c}$$

In general each species rotates at a different rate

$$F_{drag a} = \sum_{b} v_{ab} m_{a} r (\omega_{ra} - \omega_{rb})$$

$$F \times B \text{ drift} \implies \text{ radial flux}$$

$$\Gamma_{ra} = n_{a} \frac{c F_{drag a}}{q B}$$

$$F \times B \text{ drift} \Rightarrow \text{ radial flux}$$

$$\Gamma_{ra} = n_a \frac{c}{q} \frac{F_{drag a}}{q} B$$

$$= \sum_b \frac{D_{ab}}{T_a} \left[\frac{\partial p_a}{\partial r} - \frac{n_a}{n_b} \frac{\partial p_b}{\partial r} + n_a (m_b \omega_{rb}^2 - m_a \omega_{ra}^2) r \right]$$

$$D_{ab} = v_{ab} r_{c_a}^2 \quad \text{Diffusion coefficient}$$
When
$$\begin{cases} T_a(r) = T_b(r) = T \\ \omega_{ra}(r) = \omega_{rb}(r) = \omega_r \end{cases}$$
Flux stops

Rate of centrifugal separation

$$Rate \sim \frac{D_{ab}}{R_p^2} \sim 0.1 \text{s}^{-1} \left(\frac{n_0}{10^7 \text{ cm}^{-3}}\right) \sqrt{\frac{\mu(\text{amu})}{T(\text{K})}} \frac{1}{(B(\text{Tesla})R_p(\text{cm}))^2}$$

 Γ_a

 $F_{drag a}$

 ω_{Eb}

 ω_{Ea}

Using thermodynamics equilibrium properties

$$f_j = n_j \left(\frac{m_j}{2\pi kT}\right)^{3/2} \exp\left(\frac{-1}{kT}(H_j + \omega_r P_{\theta j})\right)$$

$$n_j(r) = n_j(0) \exp\left[\frac{-q_j}{kT}\left(\phi(r) - \frac{m_j}{q_j}\frac{\omega_r^2 r^2}{2} + \frac{B\omega_r r^2}{2c}\right)\right]$$

Only difference between species

Centrifugal separation important if

$$q \left| \frac{m_1}{q_1} - \frac{m_2}{q_2} \right| \omega_r^2 R_p^2 > kT$$

$$|m_1 - m_2|\omega_r^2 R_p^2 > kT$$

Separation length
$$l_{sep} \equiv \frac{kT}{|m_1 - m_2|\omega_r^2 R_p} < R_p$$

Complete separation $l_{sep} \ll \lambda_D$

Centrifugal separation of a Magnesium plasma containing impurities

Affolter et al. Physics of Plasma (2015)

Re-mixing rate of a Magnesium plasma

Summary centrifugal separation

Multispecies plasma are centrifugally separated if

$$|m_1 - m_2|\omega_r^2 R_p^2 > kT$$

The separation length is
$$l_{sep} \equiv \frac{kT}{|m_1 - m_2|\omega_r^2 R_p} < R_p$$

The separation complete when
$$l_{sep} \ll \lambda_D$$

For plasma close to thermal equilibrium, the **equilibrium densities** and the **separation rate** (remixing rate) is correctly described by the present theory.

Publications can be found at nnp.UCSD.edu

Simple Tutorial Problems

- 1) Calculate the ExB rotation frequency of a single species, uniform density plasma, of density 10⁷cm⁻3 in a 3Tesla magnetic field.
 - a) Consider an electron plasma
 - b) Consider a Magnesium ion plasma

 Estimate the minimum rotation frequency necessary to observe centrifugal separation of Magnesium 24 from Magnesium 25 for a temperature of 10K and a plasma radius of 5mm.