
Problem	set	for	Penning	trap	lectures	
	
Richard	Thompson,	Imperial	College	London	
	
Question	1	
	
Starting	from	the	Lorentz	force	on	a	charged	particle	in	static	electric	(E)	and	
magnetic	(B)	fields,	

	
F	=	e(E	+	v×B)	
	

with	an	electrostatic	potential		
	
	 ϕ(r)	=	A(2z2	−	x2	–	y2),	
	
find	the	three	oscillation	frequencies	(ωz,	ω’c	and	ωm)		for	a	singly	charged	
calcium	ion	in	a	magnetic	field	of	1	T	and	with	A=1×105	Vm-2.			
	
Also	find	the	frequencies	for	the	case	of	an	electron	in	the	same	fields.	
	
Solution	in	the	Trapped	Charged	Particles	textbook	
	
	
Question	2	
	
Consider	two	stationary	calcium	ions	located	on	the	z-axis	of	the	trap	in	Question	
1,	at	positions	+z0	and	−z0.		By	equating	the	confining	force	from	the	trap	with	the	
Coulomb	repulsion,	find	the	equilibrium	value	of	z0.	
	
Solution	in	the	Trapped	Charged	Particles	textbook	
	
	
Question	3	
	
Thinking	of	an	ion	in	the	above	trap	as	a	quantum	mechanical	simple	harmonic	
oscillator,	calculate	the	“width”	of	the	ground	state	wave	function.	[If	you	can’t	
remember	the	formula	for	this,	you	can	estimate	it	by	calculating	the	amplitude	of	
the	classical	motion	of	an	ion	having	the	zero-point	energy	ħωz/2.]	
	
Comparing	the	results	of	Questions	2	and	3,	do	you	think	it	is	possible	to	observe	
effects	due	to	the	overlap	of	ion	wavefunctions	in	a	trap?	
	
Solution	in	the	Trapped	Charged	Particles	textbook	
	



	
Question	4	
	
In	Angels	and	Demons,	Dan	Brown	imagines	a	device	that	sounds	similar	to	a	
Penning	trap	but	stores	enough	liquid	antihydrogen	to	destroy	the	Vatican.		
Imagine	instead	a	real	Penning	trap	(with	a	1	T	field)	containing	1cm3	of		
antiprotons	at	the	maximum	possible	density	(i.e.	at	the	Brillouin	limit).		What	is	
the	number	density	of	antiprotons	and	how	much	energy	would	be	released	if	the	
antiprotons	were	allowed	to	annihilate?	
	
Solution	in	the	Trapped	Charged	Particles	textbook	
	
	
Question	5	
	
In	our	trap	at	Imperial	College	we	have	a	modified	cyclotron	frequency	of	650	
kHz,	an	axial	frequency	of	200	kHz	and	a	magnetron	frequency	of	50	kHz	
(approximately).		The	Doppler	cooling	limits	are	1.0	mK,	0.5	mK	and	0.04	mK	
respectively.		What	are	the	corresponding	mean	quantum	numbers	for	the	three	
motions	in	equilibrium?	
	
Solution:	
	
Using	the	equations	from	Lecture	1,	slides	20,	21,	22,	we	find	
	
Axial	energy	=	nzhνz	=	<PE>	+	<KE>	=	kT.			
There	is	½kT	per	degree	of	freedom.	
Hence	nz	=	52	for	the	given	value	of	T.	
(note	that	I	have	left	out	the	½	in	the	QM	expression	for	energy	as	n>>1)	
	
For	cyclotron	you	have	to	use	the	different	expressions	for	the	total	energy.		It	is	
the	kinetic	energy	that’s	equal	to	½kT.		The	potential	energy	has	a	different	value	
(and	is	actually	egative)	so	the	full	expression	for	the	energy	is	
nchνc’	=	½	kT[1	−	½	νz2	/νc’2]	giving	nc	=	½	kT	×	0.95	/	hνc’	=	31	
	
Similarly	for	the	magnetron	motion	we	find	that	(don’t	forget	the	minus	sign)	
−nmhνm	=	½	kT[1−	½	νz2	/νm2]	giving	nc	=	½	kT	×	0.95	/	hνm	=	58	
	
	
	
	
	
	
	



	
	
	
	
Question	6	
	
Consider	a	single	ion	of	hydrogen-like	uranium	(235U91+)	in	a	Penning	trap.			Find	
its	three	oscillation	frequencies	in	a	magnetic	field	of	4	T	and	with	A=1×105	Vm-2	
(see	Question	1).	
	
The	ground	state	Lamb	shift	in	uranium	is	460	eV.		By	what	fraction	does	this	
change	the	rest	mass	of	the	ion?	(You	may	want	to	use	the	fact	that	the	atomic	
unit	of	mass	is	equivalent	to	911	keV.)	
	
If	it	is	desired	to	measure	the	ground	state	Lamb	shift	to	~1%	by	“weighing”	the	
ion,	what	fractional	precision	is	required	for	the	cyclotron	frequency,	and	what	
absolute	frequency	precision	does	this	imply?	
	
	
	
Solution:	
	
Using	the	equations	from	the	solution	to	Q1	we	find	that	the	axial	frequency	is	
610	kHz,	the	modified	cyclotron	frequency	is	24	MHz	and	the	magnetron	
frequency	is	8	kHz.		So	in	this	case	the	modified	cyclotron	frequency	is	only	very	
slightly	different	from	the	true	cyclotron	frequency.	
	
To	measure	the	true	cyclotron	frequency	you	need	to	measure	the	modified	
cyclotron	frequency	with	the	highest	precision	as	this	contributes	most	to	the	
quadrature	sum	of	the	three	frequencies	(remember	the	expression	we	gave	in	
the	lectures	to	calculate	the	cyclotron		frequency	even	in	the	presence	of	
perturbations).	
	
The	uranium	nucleus	has	a	rest	mass	energy	of	235	×	911	MeV.		The	ratio	of	the	
Lamb	shift	(460	eV)	to	this	is	2	×	10-9.	
	
To	measure	the	Lamb	shift	to	1%	you	therefore	need	to	measure	the	modified	
cyclotron	frequency	to	a	relative	precision	of	2	×	10-11.		Since	the	frequency	is	
about	24	MHz,	the	absolute	precision	required	is	about	5	mHz.	
	


