# Penning Traps Lecture 3

Richard Thompson Quantum Optics and Laser Science Group Department of Physics Imperial College London

*Richard Thompson Les Houches 2018* 

### **Outline of lecture 3**

**Lecture 1:** Penning Trap Basics

Lecture 2: Review of Experiments

**Lecture 3:** Rotating Frame and Axialisation

- 7. The rotating frame
- 8. Cooling in the rotating frame
- 9. Axialisation
- 10. Conclusion

## 7. The Rotating Frame

- It turns out that much of the physics of the Penning trap is simplified if we move to a frame rotating at half the cyclotron frequency.
  - The centripetal force (-mω<sup>2</sup>r) gives rise to a force that gives a confining potential in this frame
  - This overcomes the negative radial potential in the lab frame leading to a net confining potential
  - The Coriolis force (-2ω Λ ν) gives rise to a force perpendicular to the velocity of a particle that cancels out the force due to the magnetic field
  - Therefore in this frame there is effectively no magnetic field
- As a result, the radial motion in this frame reduces to standard two-dimensional SHM

*Richard Thompson Les Houches 2018* 

## **Equations of motion**

• The original radial equations of motion were

$$\ddot{x} + \omega_c \dot{y} - (\omega_z^2 / 2)x = 0$$
  
$$\ddot{y} - \omega_c \dot{x} - (\omega_z^2 / 2)y = 0$$

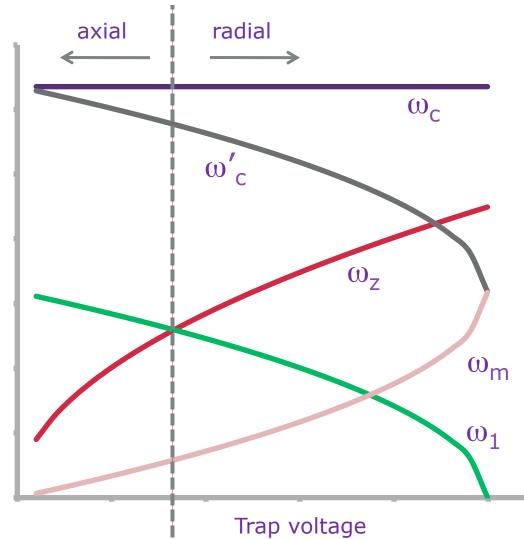
or

$$\ddot{u} - i\omega_c \dot{u} - (\omega_z^2 / 2)u = 0$$
 with  $u = x + iy$ 

- The transformation to a frame rotating at  $\omega_c/2$  is  $u \rightarrow u(1-i\omega_c t/2)$
- This gives us  $\ddot{u} + (\omega_c^2 / 4 - \omega_z^2 / 2)u = 0$

or

$$\ddot{u} + \omega_1^2 u = 0$$

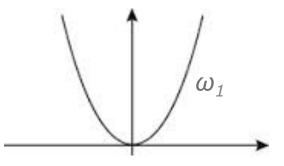

 $\omega_{1}^{2} = \omega_{2}^{2} / 4 - \omega_{2}^{2} / 2$ 

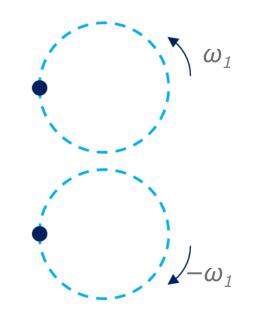
with

- This is just SHM in a 2D potential well at frequency  $\omega_1$ 
  - No magnetic field in this frame

*Richard Thompson Les Houches 2018* 

## **Oscillation frequencies for small crystals**





- ω<sub>1</sub> is the oscillation
  frequency in the rotating
  frame
- It reduces as the trap voltage is increased
- It becomes zero at the point where the trap becomes unstable
- The dotted line indicates where the trapping potential is spherical

*Richard Thompson Les Houches 2018* 

## **Oscillation frequencies in the two frames**

- In the frame rotating at  $\omega_c/2$  the potential is a 2D harmonic potential well of frequency  $\omega_1$ .
- We take the two normal modes to be
  - anti-clockwise rotation (ω<sub>1</sub>)
  - clockwise rotation  $(-\omega_1)$
- When these are transformed back to the lab frame they become
  - Cyclotron motion ( $\omega_c/2+\omega_1$ )
  - Magnetron motion ( $\omega_c/2-\omega_1$ )
  - Now both are anti-clockwise





*Richard Thompson Les Houches 2018* 

### How does the motion transform?

- The motion is much simpler to describe in the rotating frame (RF)
- Why do we usually end up with  $r_m > r_c$ ?
  - A particle at rest in the lab frame will be orbiting at -ω<sub>c</sub>/2 in the rotating frame so it will have a larger magnetron component

Pure cyclotron Pure magnetron

Equal cyclotron and magnetron

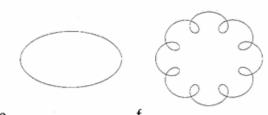
Cyclotron smaller than magnetron

Cyclotron bigger than magnetron

#### *Richard Thompson Les Houches 2018*

## **Can we visualise the motion?**

- Yes we can!
- But in order to do so we need a 2D simple harmonic potential: this represents the potential *in the rotating frame* 
  - A wok makes an excellent model of a 2D potential well
  - A ball bearing is an excellent model of an ion
  - But the motion of a ball bearing in a wok is not very interesting
- We need to simulate the effect of the magnetic field
  - Then we can see what the motion is like *in the laboratory frame*

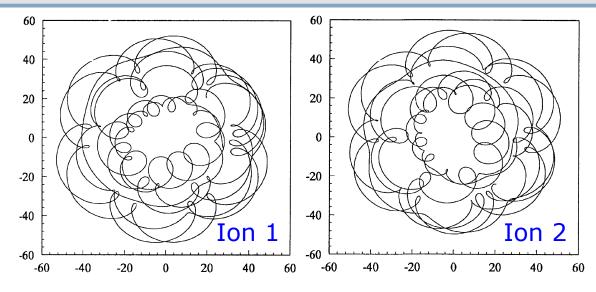



Richard Thompson Les Houches 2018

### **Can we visualise the motion?**

- In order to simulate the effect of the magnetic field we need to view the 2D simple harmonic potential from a rotating frame
  - Solution: use a rotating camera

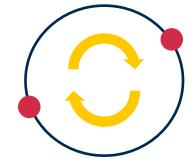







*Richard Thompson Les Houches 2018* 

### **Centre of mass and relative motion of two ions**


- The motion of two ions appears very complicated
- But actually it's very simple if you separate it into centre of mass and relative motions
- In the same way, things simplify when you observe the motion in the rotating frame!



## Two ions in the rotating frame

The rotation frequency depends on ion separation, due to the Coulomb interaction

- Large separation:
  - $\omega'_R \sim \omega_1$  in RF
  - $\omega_{\rm R} \sim \omega_{\rm m}$  in LAB



Quasiindependent particles

Coulomb interaction slows rotation down

 $\begin{array}{l} \mbox{Minimum}\\ \mbox{separation}\\ \mbox{set by } \omega_1 \end{array}$ 

- Medium separation
  - $\omega'_{R} < \omega_{1}$  in RF
  - $\omega_{R} > \omega_{m}$  in LAB
- Small separation:
  - Brillouin flow
  - ω'<sub>R</sub> = 0 in RF
  - $\omega_R = \omega_c/2$  in LAB

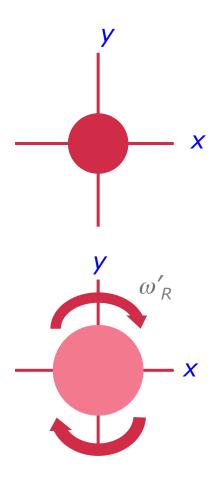
Slide 11

*Richard Thompson Les Houches 2018* 

## Many ions in the rotating frame

- A plasma is easy to picture in a potential well and in the absence of the magnetic field
- If the plasma is not rotating in the rotating frame it is at Brillouin flow
  - Frequency of the radial potential is  $\omega_{1}$  so density is

$$n = m\omega_c^2 \varepsilon_0 / 2e^2$$


because  $\omega_c^2 = 2\omega_1^2 + \omega_z^2$ 

• If it rotates at  $\omega'_R$  in the rotating frame:

$$\omega_1^2 \rightarrow \omega_1^2 - \omega'_R^2$$

because the centrifugal force causes the density to drop

- Rearranging:  $n = 2\varepsilon_0 m\omega_R (\omega_c \omega_R) / e^2$ as we had before
- The aspect ratio of the ellipsoid also changes



Slide 12

## 8. Cooling in the rotating frame

- We will now look again at cooling in general in the Penning trap as viewed from the rotating frame
- We will find this gives us new insights into how cooling works
- Remember the rotating frame is the one rotating at  $\omega_c/2$  relative to the Laboratory frame.
  - There is effectively no magnetic field in this frame and the trap oscillation frequency is  $\omega_{1}$

*Richard Thompson Les Houches 2018* 

## Effect of a buffer gas in the rotating frame

- A buffer gas gives a uniform damping force in the lab frame
- In the rotating frame this damping force is rotating at  $-\omega_c/2$ 
  - This looks like a whirlpool
- It creates a torque that rotates a single ion in the negative sense at −ω<sub>1</sub> and accelerates it outwards
  - This corresponds to increasing magnetron radius
  - This is why buffer gas damping increases the magnetron radius
- A **uniform cooling laser** beam also gives a uniform damping force in the lab frame



## **Equations of motion with damping**

- Remember that the equation of motion for an ion in the rotating frame is  $\ddot{u} + \omega_1^2 u = 0$
- A uniform damping force adds a term  $+\gamma \dot{u}$
- In the presence of a *rotating* damping force (rotating at angular frequency  $\omega_0$ ) the equation becomes

$$\ddot{u} + \gamma(\dot{u} - iu\omega_0) + \omega_1^2 u = 0$$

• And if we put in the trial solution  $u=u_0\exp(i\omega t)$  we find

$$\omega = \pm \omega_1 + i\gamma (1 \pm \omega_0 / \omega_1)$$

- For positive damping the imaginary part must be positive for both solutions
  - If the damping in the Lab frame is *uniform*,  $|\omega_0| = \omega_c/2$  which is greater than  $\omega_1$ , so the damping is negative and the motion is **unstable**
  - If  $\omega_0 < \omega_1$ , the damping is always positive and the motion is **stable** 
    - » We achieve this by offsetting the laser beam from the trap centre

*Richard Thompson Les Houches 2018* 

### Laser cooling with an offset beam

- A laser beam offset from the centre of the trap gives a rotating damping force
  - The laser gives angular momentum to the ion
  - The rotation speed of the damping (say  $\omega_{\text{L}})$  is proportional to the gradient of laser intensity
  - In the rotating frame this damping force is rotating at  $\omega_0 = -\omega_c/2 + \omega_L$
  - This still looks like a whirlpool but if it rotates between  $-\omega_1$  and  $+\omega_1$  it will cool the motion
- This is why an offset laser beam cools the magnetron radius
- In fact the rate of rotation of the damping force in the lab is given by:

 $\omega_{L} = \frac{Rate \ of \ change \ of \ scattering \ rate \ with \ ion \ position}{Rate \ of \ change \ of \ scattering \ rate \ with \ ion \ velocity}$ 



Slide 16

#### *Richard Thompson Les Houches 2018*

## Laser cooling of ion cloud

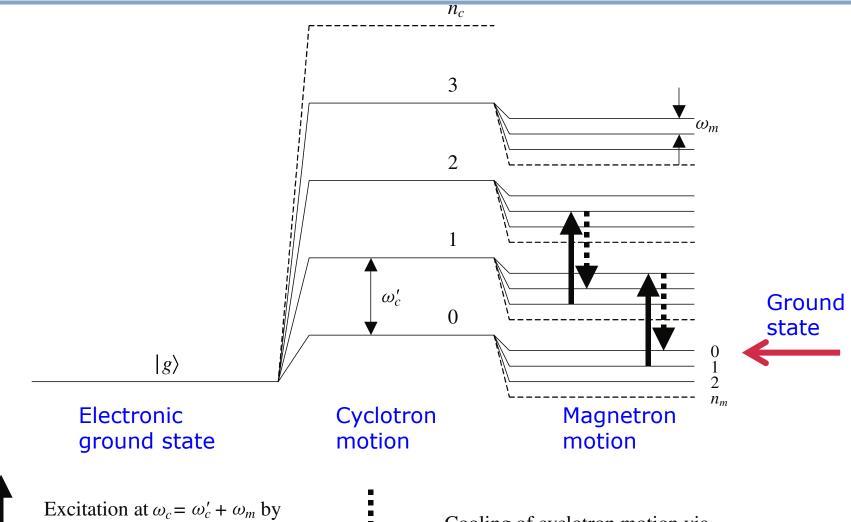
- For a cloud of ions forming a plasma, the rotating damping force will drag the plasma till they both rotate at the same frequency  $\omega_R = \omega_L$
- This rotation frequency is determined by the laser beam parameters as before
- We can therefore control the density and shape of the plasma by changing the laser parameters
- Remember the rotation frequency (in the lab) and the density are related by

$$n = 2\varepsilon_0 m\omega_R (\omega_c - \omega_R) / e^2$$



*Richard Thompson Les Houches 2018* 

## 9. Axialisation


- Axialisation is a technique for cooling the magnetron motion
- It requires two things:
  - Coupling of the magnetron motion to another motion in the trap
  - A damping mechanism for the second motion
- When set up properly, it results in cooling of both motions at the same time
- BEWARE: It also goes by other names:
  - Sideband cooling [not to be confused with optical sideband cooling]
  - Magnetron centering

## **Coupling of motions**

- In general two oscillators are coupled by excitation at their *difference frequency* to exchange energy
  - e.g. a laser driving a transition between two atomic states
- In the Penning trap we can couple the magnetron and cyclotron motions by excitation at their *sum frequency* 
  - This is because of the negative energy of the magnetron motion
  - The sum frequency is just the cyclotron frequency  $\omega_{\rm c}$  =  $\omega'_{\rm c}$  +  $\omega_{\rm m}$
- Classical equations of motion show that a radial quadrupole field is required
- We can also think of it in terms of quantum mechanical levels:
  - Excitation at  $\omega_c$  drives  $n_c$  to  $n_c$ +1 and  $n_m$  to  $n_m$ -1

Richard Thompson Les Houches 2018

### **Quantum mechanical picture**



axialization drive

Cooling of cyclotron motion via laser cooling

Slide 20

## **Damping with the axialisation technique**

Damping can be provided by a number of means:

- Buffer gas
  - Used in mass spectrometry experiments
  - Especially Fourier Transform ICR (ion cyclotron resonance)
  - Gives a well controlled damping force on all particles
- Resistive cooling
  - Used widely in cryogenic environments
- Laser cooling
  - Ions are much better localised when axialisation applied
  - Laser beam can be directed through trap centre as offset is no longer required
  - But the damping force is only applied to ions located in the laser beam and this is not ideal
- Note that the magnetron can also be coupled to the *axial motion* using excitation at  $\omega_z \omega_m$  (needs different field symmetry)

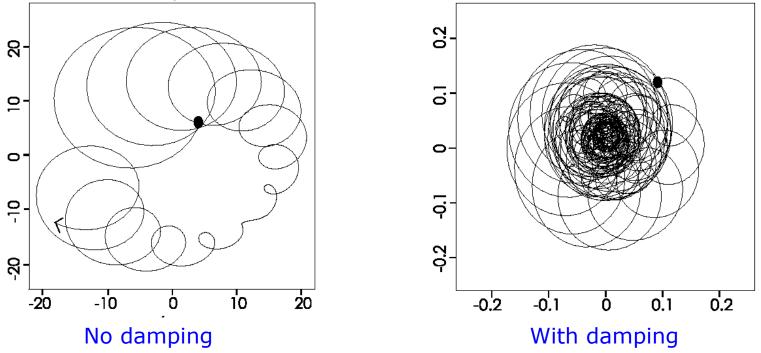
Richard Thompson Les Houches 2018

### **Effect of the coupling**

- The coupling causes energy exchange at a rate  $\delta$  between the two modes of motion
- If the modes are damped at rates  $\gamma_c$  (>0) and  $\gamma_m$  (<0) then

$$\dot{r}_c = \delta r_m - \gamma_c r_c, \qquad \dot{r}_m = -\delta r_c - \gamma_m r_m,$$

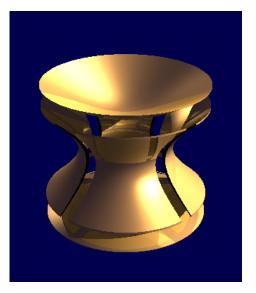
where  $\delta \approx eV_{ax} / mR^2$  with  $V_{ax} <<$  trap voltage

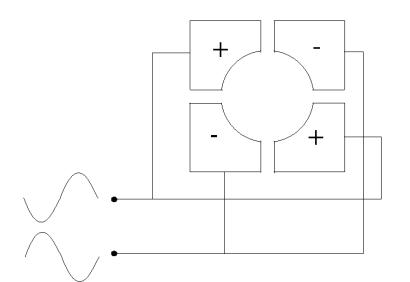

• The condition for axialisation to work is

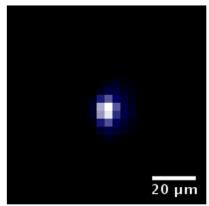
$$\delta^2 > -\gamma_c \gamma_m$$

Richard Thompson Les Houches 2018

## **Simulation of axialisation**


- With coupling alone, the orbital energy exchanges between magnetron and cyclotron motion
- With damping as well, the amplitude of both motions decreases

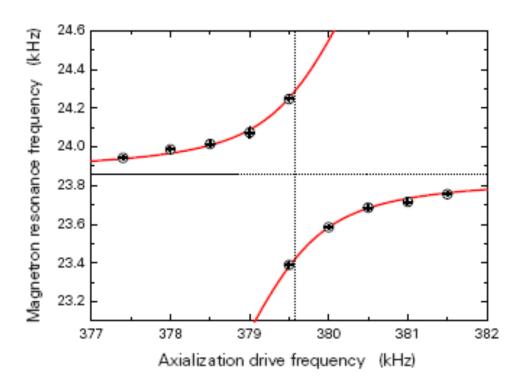


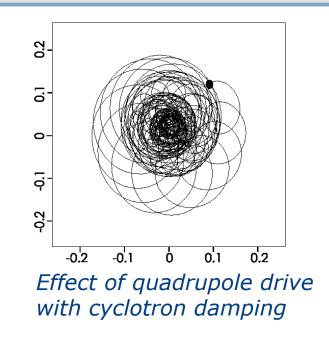


Richard Thompson Les Houches 2018

## How do we apply the field?

- With axialisation we apply a radial quadrupole field at  $\omega_{\rm c}$ 
  - We need four segments (minimum) to apply a radial quadrupole field
  - e.g. by splitting the ring electrode into 4 segments
  - This allowed us to get our first well localised single ion images





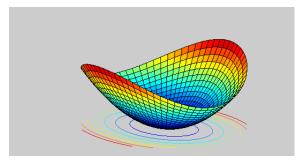




(d) Single ion

*Richard Thompson Les Houches 2018* 

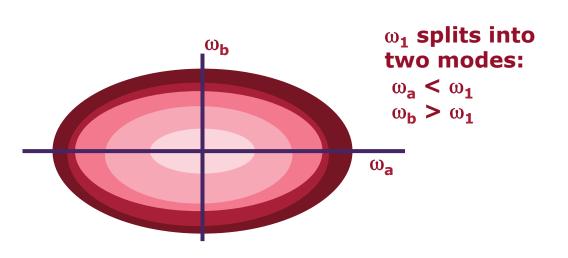
### **Results of axialisation experiments**

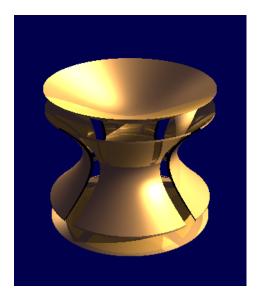




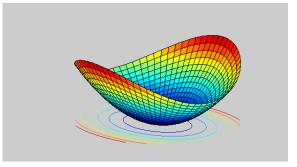

- Equivalent to two coupled and damped simple harmonic oscillators
- There **are** therefore two 'normal modes' when the axialisation drive is close to resonance

• We see an avoided crossing with a gap equal to the coupling strength Slide 25


### **Rotating frame picture**

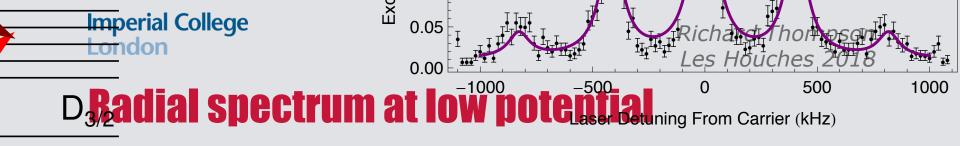

- For axialisation we apply an oscillating quadrupole field at  $\omega_{c}$ .
- This can be decomposed into two counter-rotating quadrupoles at frequency  $\omega_{\rm c}/2$ 
  - One of them is therefore stationary in the rotating frame
  - It "squeezes" the potential
  - The potential in this frame is no longer cylindrically symmetrical
  - The normal modes are now **linear oscillations** parallel and perpendicular to the axis of the "squeeze"
    - » These frequencies are slightly different
  - If the initial condition is circular motion in one direction this sets **both** normal modes in motion and this gives beats between them
  - The particle oscillates between clockwise (cyclotron) and counterclockwise (magnetron) rotation



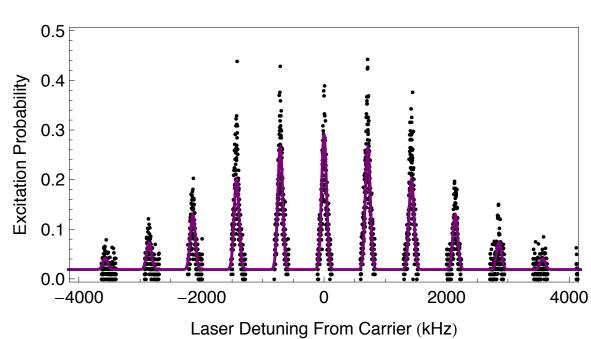

*Richard Thompson Les Houches 2018* 

### Use of oscillating field to force alignment






• With a small number of cold ions this can be used to force the particles to line up along the "soft" axis ( $\omega_a$ )




## **Relation to the Rotating Wall**

- Axialisation is the application of an oscillating quadrupole at  $\omega_{\rm c}$ 
  - It can be decomposed into rotating quadrupoles at  $\omega_c/2$
  - In general axialisation is used as a *resonant* process in a single (or few) particle system to couple the centre of mass frequencies
- The Rotating Wall is the application of a rotating quadrupole at some frequency  $\omega_R$ 
  - It's used to force a plasma of many particles to rotate at  $\omega_{\text{R}}$
  - (it is often also used with a rotating *dipole*)
- If  $\omega_R = \omega_c/2$  then then we have Brillouin flow and the techniques are (nearly) equivalent



- The (fast) cyclotron motion gives rise to sidebands
- The ~4 MHz FWHM corresponds to a cyclotron temperature of ~7 mK
- Each cyclotron sideband has structure due to the magnetron motion
  - but individual sidebands are not resolved here

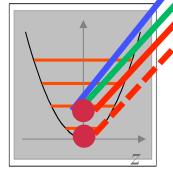


The narrow width of the magnetron structure demonstrates that its "temperature" is very low (~40 μK)

See Mavadia et al Phys. Rev. A **89**, 032502

Richard Thompson

## **Driving Carrier and Sideband Transitions**


A single ion in a trap is an example of a QM simple harmonic oscillator

- Carrier
- Blue Sideband
- Red Sideband

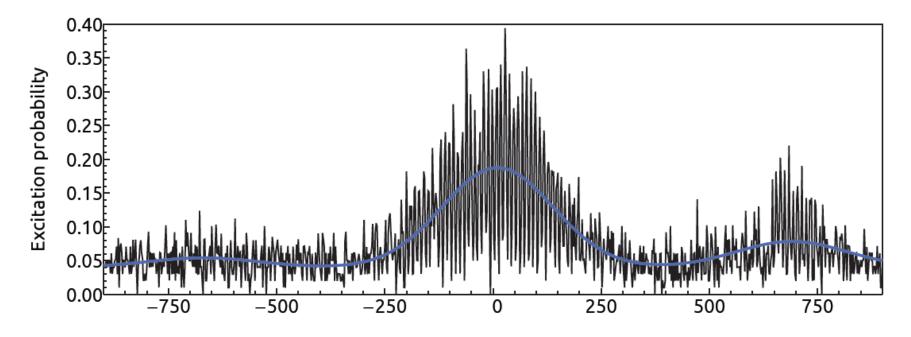
|e>

What if the ion is already in the motional ground state?

|g>



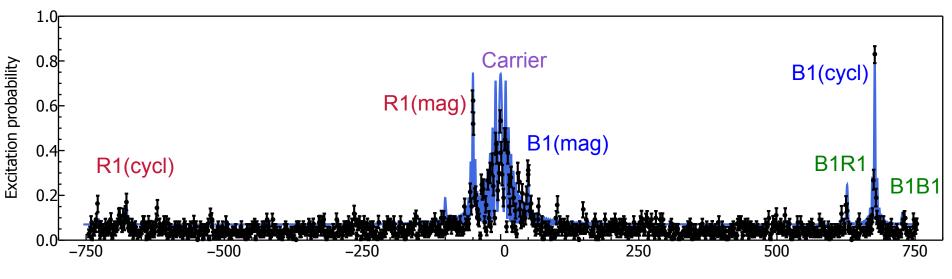
*If ion is in the motional ground state excitation on the red sideband does nothing!* 


*Richard Thompson Les Houches 2018* 

### **Problems for radial sideband cooling**

- Need to cool two modes at the same time
  - We have gained experience of this with ion crystals
- The magnetron sidebands are unresolved
  - Increase trap voltage to raise magnetron frequency
- The magnetron energy is negative
  - Cool on the *blue* sidebands of magnetron motion, not *red*
- The initial quantum number of magnetron motion is very large (*n* up to 1000 in some cases after Doppler cooling)
  - Use the axialisation technique to couple to cyclotron motion

## Radial cooling – first results


- The cyclotron motion can be cooled by driving its first red sideband
  - The spectrum shows that the cyclotron motion is close to the ground state

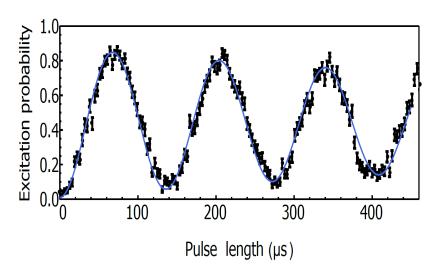


Detuning from transition (kHz)

*Richard Thompson Les Houches 2018* 

## **Sideband cooled radial spectrum**

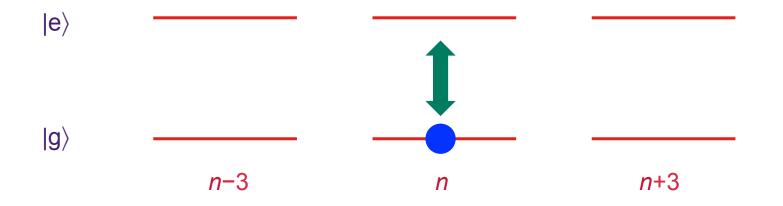



Detuning from transition (kHz)

- This only works with the use of strong axialisation
- The carrier is very strong to bring out the other sidebands
- The asymmetry in cyclotron sidebands indicates  $n_c$ =0.07±0.03
- The (reversed) asymmetry in the magnetron sidebands indicates n<sub>m</sub>=0.40±0.06
- Slide 33 Weak second-order sidebands can also be seen

*Richard Thompson Les Houches 2018* 

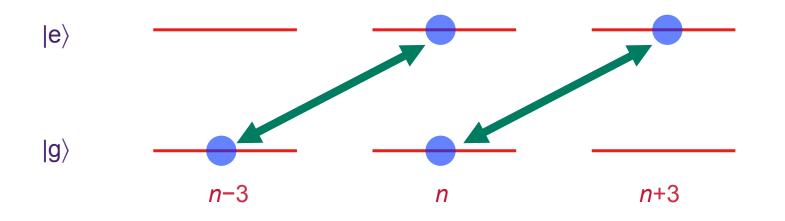
## **Sideband heating**


- Sideband cooling takes us from high *n* towards *n=0*
- By driving on the *blue* sideband instead of the *red* sideband, we get sideband heating
- The result is that we can prepare the system in a narrow range of n (up to n~100 or higher) in a controlled way
- We observe coherent behaviour after this heating



Rabi oscillations on 4<sup>th</sup> red sideband around *n*=280

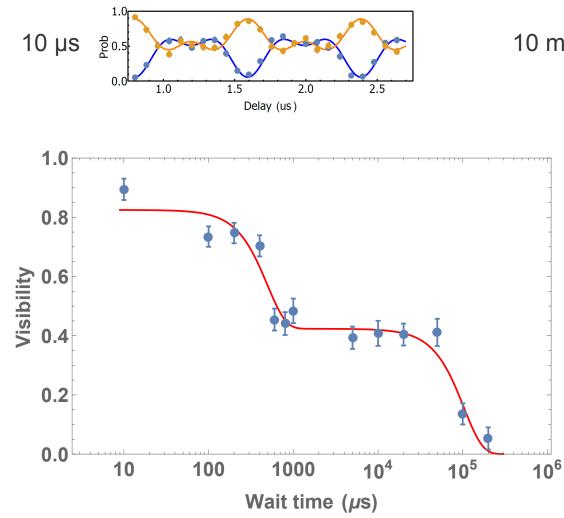
*Richard Thompson Les Houches 2018* 

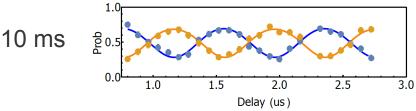

## Preparation of superposition of high-*n* states



• A  $\pi/2$  carrier pulse creates a coherent superposition of  $|g,n\rangle$  and  $|e,n\rangle$ 

*Richard Thompson Les Houches 2018* 


## Preparation of superposition of high-*n* states




- A π/2 carrier pulse creates a coherent superposition of  $|g,n\rangle$  and  $|e,n\rangle$
- A  $\pi/2$  B3 pulse then creates a coherent superposition of  $|g,n\rangle$ ,  $|g,n-3\rangle$ ,  $|e,n\rangle$  and  $|e,n+3\rangle$
- Period of free evolution T
- Probe the coherence with a second pair of pulses on B3 and carrier (with variable phases)

*Richard Thompson Les Houches 2018* 

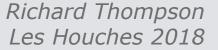
### **Coherence measurements**





- At small *T* we see fringe visibility ~1
- After 1 ms the optical coherence is lost and the visibility drops to ~0.5
- Motional coherence is preserved out to ~100 ms for  $\Delta n=3$
- Again we see that the Penning trap is a wellcontrolled system with unique properties


Slide 38


### Imperial College London

**Conclusion** 

- Penning traps are really good for a wide variety of experiments in different fields of physics
- Thanks for listening!





