Ultrahigh vacuum is an ion's best friend

Tips and tricks for the experimenter

Jeroen Koelemeij

LaserLaB, Department of Physics & Astronomy, VU University, Amsterdam, the Netherlands j.c.j.koelemeij@vu.nl

Physics with Trapped Charged Particles

Very few and minor modifications by Martina Knoop

Outline

- Ultrahigh vacuum: what and why no cryogenic UHV
- Producing UHV
 - Pumps
 - Outgassing, leaks and backflow
 - Bakeout
- Building UHV apparatus
 - Design rules
 - Leak detection
 - UHV compatible materials
- Keeping UHV
 - Pressure monitoring
 - Venting UHV without spoiling

UHV: What and Why

Vacuum pressure ranges

Commonly used pressure units:

```
SI unit: 1 N/m<sup>2</sup> = 1 Pa (use this for ideal gas law, p = n k_B T)

1 mbar = 100 Pa (1 bar \approx atmospheric pressure at sea level)

1 Torr = 133.3224 Pa (mm<sub>Hg</sub>)
```

Vacuum pressure ranges

Molecular flow regime: mean free path > apparatus dimensions

Collisions: the good, the bad and the ugly

- Collisions: trapped ion + neutral atom/molecule
- Good collisions: when buffer-gas cooling, collisions with cold He (few Kelvin)
- Bad collisions: elastic collisions with room-T gas e.g. Be⁺ ion (1 mK) + H₂ (300 K) \rightarrow Be⁺ (121 K) + H₂ (179 K)
 - Can lead to decoherence (QIP)
 - Can lead to frequency shifts (ion optical clocks)
- Ugly collisions: (unwanted) chemical reactions

Example: Langevin collisions

Long range: $V(r) \sim -1/r^4$

b ⇔ centrifugal barrier

Critical b_c such that:

- $b > b_c$ glancing collision
- b < b_c spiralling of neutral towards ion ("Langevin collision")
- At short range, energy transfer or chemical reaction may occur

Collision rate & outcome

- Elastic collisions: trap heating or cooling
- Inelastic collisions: X⁺ + H₂ → XH⁺ + H
 Requires 4.5 eV to break H₂ bond
 Releases ~2 eV when forming XH⁺
 - ⇒ Reaction endothermic by ~ 2 eV
 - \Rightarrow Ion in excited P state can provide energy to form XH⁺ ...

Laser cooling or clock transition

Quenching collisions

Stern-Vollmer-plot

for Ca+, $3D_{3/2}$

$$\frac{1}{\tau_Q} = \frac{1}{\tau_{nat}} + \sum_i n_B^i \Gamma_Q^i$$

with i: H_2 , He, CH_4 , Ne, N_2 , O_2 , Ar, and CO_2

Quenching collisions

Stern-Vollmer-plot

for Ca+, $3D_{3/2}$

$$\frac{1}{\tau_Q} = \frac{1}{\tau_{nat}} + \sum_i n_B^i \Gamma_Q^i$$

with $i: H_2$, He, CH_4 , Ne, N_2 , O_2 , Ar, and CO_2

TABLE I. Quenching rate constants for the 3D levels of	IADLE I.	or Ca
--	----------	-------

Gas	m (amu)	(10^{-24} cm^3)	$\Gamma_Q \ (10^{-12} \ { m cm}^3 \ { m s}^{-1})$	$(10^{-10} \text{cm}^3 \text{s}^{-1})$	k_L/Γ_Q
H ₂	2	0.804	37 ± 14	15.2	41±15.5
He	4	0.205	1.05 ± 0.40	5.56	529 ± 201
CH_4	16	2.593	54^{+91}_{-17}	11.15	$21^{+35}_{-6.5}$
Ne	20	0.396	0.9 ± 0.7	4.03	448 ± 348
N_2	28	1.74	170 ± 20	7.61	4.5 ± 0.5
Ar	40	1.64	29.5 ± 17.0	6.70	23 ± 13

Producing UHV

Pressure and gas flows

- Vacuum chamber pressure is determined by equilibrium between:
 - Pump speed/throughput
 - Backflow (through pump and leaks)
 - Outgassing from walls and in vacuo parts
 Note that outgassing can occur from inside the walls (the 'bulk')

UHV pump types

- Turbomolecular pump
 - Fast-spinning blades 'knock' incoming molecules out of main chamber
- Important features/characteristics
 - Requires roughing pump (1 mbar)
 - Pumping speed
 - Mesh to protect blades?
 - Compression ratio
 - Use turbo with Holweck ('drag') section!

Example: TMP UHV chamber

Gas species	η	Partial p_{UHV} ($p_{FV} = 1$ mbar, atmospheric composition)				
N ₂	> 10 ¹¹	< 8×10 ⁻¹² mbar	78 %			
Ar	> 10 ¹¹	< 10 ⁻¹³ mbar	0.93 %			
Не	3×10 ⁷	2×10 ⁻¹³ mbar	0.00052 %			
H ₂	4×10 ⁵	1.4×10 ⁻¹² mbar	0.000055%			

Example: TMP UHV chamber

- If outgassing negligible. $p_{UHV} = p_{FV}/\eta$
 - Typically, H₂ outgassing dominates UHV
 - H₂ accumulates in 1 mbar forevacuum, backflow to UHV at sub-10⁻¹⁰ mbar level

Solution: use better roughing pump: e.g. scroll pump, or small intermediate TMP $(p_{FV} < 10^{-2} \text{ mbar} \text{ should do})$

Gas species	η	Partial p_{UHV} ($p_{FV} = 1$ mbar, atmospheric composition)				
N ₂	> 10 ¹¹	< 8×10 ⁻¹² mbar	78 %			
Ar	> 10 ¹¹	< 10 ⁻¹³ mbar	0.93 %			
Не	3×10 ⁷	2×10 ⁻¹³ mbar	0.00052 %			
H ₂	4×10 ⁵	1.4×10 ⁻¹² mbar	0.000055%			

When to use a TMP?

- High gas loads (e.g. He buffer gas cooling)
- High noble gas loads

When not to use a TMP?

- If vibrations cannot be tolerated
- If setup needs be transportable under UHV without current supply

Titanium sublimation pump (TSP)

- Filaments plated with titanium
- In vacuum, fire filaments (ohmic heating)
- Ti sublimates and covers walls
- Ti layer acts as getter material
- Improve pump speed by cooling (use cryoshield)

		Pum	ping	Spee	d in Is	-1cm-2	
Gas Species	H ₂	N ₂	O ₂	CO	CO ₂	H ₂ 0	CH ₂
+20°C	3	4	9	9	8	3	0
-196°C	10	10	11	11	9	14	0

Ion getter pump

Use multiple 'cells' to increase area

- Pumps with different getter material (Ti, Ta) exist,
 Choice depends on background gas composition
 - 'All-round' pump: triode (StarCell) pump

http://www4.nau.edu/microanalysis/Microprobe-SEM/Instrumentation.html

- Electrons in a Penning trap, fed by HV discharge
- Electrons ionize background gas; fragments are attracted to and strike cathode to:
 - Get stuck forever
 - Sputter cathode 'getter' material (often Ti) on walls of pump, which adsorbs neutral gas constituents

Typical pump arrangement (2nd Alt trap NIST 2005)

Outgassing and bakeout

 You close and evacuate the vacuum chamber for the first time, and the pressure doesn't drop below ...

... 10⁻⁵ mbar (did you clean any of those parts at all??)

Outgassing and bakeout

 You close and evacuate the vacuum chamber for the first time, and the pressure doesn't drop below ...

... 10⁻⁵ mbar (did you clean any of those parts at all??)

... 10⁻⁷ mbar (don't worry, this is normal – it's just water, it sticks to the walls because it is polar)

Desorption rate of water adsorbed to the walls*:

$$\Gamma \propto A \nu \exp(-E_a/k_B T)$$

where A = wall surface area

v = vibrational frequency of 'bound' H₂O molecule

 E_a = activation energy needed for desorption

At 300 K/10⁻⁷ mbar, virtually no change in abundance of H₂O

 \Rightarrow no change in pressure...

Introduction to Surface Chemistry and Catalysis. John Wiley and Sons.

^{*}Somorjai, Gabor A.; Li, Yimin (2010).

Bakeout

... but at elevated temperatures, desorption rate increase exponentially!

Bakeout: increase T to 200 – 400 °C, remove H_2O

After cooling down: H_2 , CO, ... remain (larger E_a)

Note: above $400 \,^{\circ}\text{C}$, H_2 diffuses from atmosphere through steel walls faster than you can desorb

Additional strategies

- Air bake chamber at T = $200 400^{\circ}$ C (steel will oxidize, forming an additional barrier for H₂ in bulk), followed by vacuum bakeout \Rightarrow Reduce p from 10⁻¹¹ to <10⁻¹² mbar
- Use in-vacuum IR heaters, or UV lamps (photodesorption)

Table I. N₂-equivalent outgassing rates of stainless steel and aluminium obtained after a vacuum bakeout at 100 and 400 °C, and after a 2 h bakeout in air at atmospheric pressure followed by a 18 h vacuum bakeout at the same temperature (bakeout time= 20 h).

	Outgassing rates in units of 10 ⁻¹³ Torr liters/sec cm ² (N ₂ -equiv.)				
		bakeout 400°C			
Stainless steel Aluminium	10 0.4	6	1 0.28	0.4	

G. Moraw & R. Dobrozemsky, Proc. 6th Intl Vac. Congr. (1974)

Allegedly the following should work as well (no experience myself): With chamber at T \approx 100°C, fill with oxygen

⇒
$$O_2 + H_2$$
 (bulk) → H_2O
(switch off pressure gauges!!)

Remove O_2 , increase T >200°C, remove H_2O

Building UHV apparatus

Sealing

 Connecting nipples, chambers etc. without leaks requires sealing, for example:

- KF (quick flange): rubber/Viton O rings;
 use only for medium and high vacuum
 (e.g. forevacuum)
- Viton: bakeable to 140°C, rubber not...

UHV sealing

 CF (ConFlat): copper gasket clamped between knive edges, UHV seal

- 1. Flange bolt
- 2. CF flange
- 3. Copper gasket

Tighten screws in a zig-zag star pattern:

Use of vacuum grease

- very low vapour pressure (a few 10⁻¹² mbar @ 25°C)
- use for lubrication (vacuum seals)
- do not bake-out
- do not use in uhv (except cryogenic)
- creep?
- high positron annihilation cross section

UHV chamber design

Pump speed should not be reduced by flow resistance

 Molecular flow regime: gas flow (throughput) and pressure are essentially governed by Kirchhoff's laws for electrical circuits:

$$(V_i - V_f) = I R$$

$$(p_i - p_f) = q W = q \times (1/L)$$
[mbar I/s] [I/s]

 Conductivity L scales intuitively, and standard expressions readily available

UHV chamber design

Pump speed should not be reduced by flow resistance

 Conductivity L scales intuitively, and standard expressions readily available

Differential pumping

- Some vacuum setups necessarily deal with large pressure differences
 - E.g. ion production in atomic/molecular beam, transfer to UHV
- Use differentially pumped vacuum stages

Leak detection

- Occur most often at seals and glass-metal transitions
- Acetone test: spray aceteone and look for pressure changes in either direction
 - Local thermal shock (due to evaporating acetone);
 leak can either get better or worse (lower or higher p)
 - Acetone can 'seal' the leak, or creep through it (lower or higher p)
 - leak detection with soap water --> look for bubbles in a pressurized vessel

Leak detection (2)

Helium leak detection: high sensitivity, down to 10⁻¹¹ mbar l/s

Example: 5×10^{-11} mbar l/s leak combined with 100 l/s pump

$$\Rightarrow p = 5 \times 10^{-13} \text{ mbar}$$

- Start at the top of your setup (He floats upward!)
- Locally spray small amounts of He for best spatial resolution
- Cover with plastic bag and fill with He to

Oh yeah, about connecting CF flanges...

 It seems correct to mount CF flanges with the slots on the side facing each other

... but it is not

Vacuum parts

- Avoid virtual leaks due to trapped air
 (e.g. in blind tapped holes); use vented screws
 or through holes
- Same applies for welding
- Clean parts thoroughly! For example:
 - Ultrasonic bath in water and dish-washing detergent or Alconox
 - Rinse with demi water and ultrasonic bath
 - Rinse with ethanol and ultrasonic bath (ethanol dissolves water)
 - Rinse with pure (HPLC-grade) acetone and ultrasonic bath
 - Rinse with pure (HPLC-grade) isopropanol and ultrasonic bath
 - Use cleanroom grade tin/alu foil, NOT the supermarket stuff (contaminated with organic grease)
 - Use cleanroom lint-free paper or towels
 - Use clean, powder-free gloves throughout
 - Use clean tools, and wrap hand grips in clean alu foil
 - Keep dust away, don't breathe/cough/spit on your parts

UHV feedthroughs

- Mechanical (motional) feedthroughs exist
- Fiber-optic feedthroughs exist
- Electrical feedthroughs: pay attention to
 - Electrode material: max. current rating (steel vs. copper),
 max. voltage rating, magnetic properties (nickel)
 - Trap RF feedthrough: max. voltage rating is specified for DC, this can differ greatly from performance at RF

Figure A1(b). Vapor pressure curves for the more common elements (cont.). After Honig (Ref. 5:14). (Courtesy RCA Laboratories.)

Preparing for bakeout:

- Use multiple temperature sensors to monitor T gradients
- Use several independent heaters to minimize T gradients
- Avoid cold spots: desorbed gas will condense back onto them and slow down/stall gas removal
- Avoid hot spots near glass-to-metal transitions and CF flanges (leaks may appear & bolts may loosen up - spontaneously!)
- Tip: build an 'oven' with reflective walls (multiple layers of tin/alu foil), use radiative heaters and oven fan to circulate air
- Keep pressure gauge/ion pump/TSP cables out of hot zone
- Oven, e-gun feeds: use Kapton wire or bare copper wire insulated by ceramic beads
- Connect TSP & ion pump controller cables, keep access to allmetal valve to TMP inlet

During bakeout

- Avoid gradients at glass-metal, ceramic-metal transitions! (rule of thumb: $\Delta T < 15$ K)
- Better be patient when increasing T (< 15 K/hr)
- Keep record of bakeout stats
- Once pressure < 10⁻⁶ mbar: close inlet TMP, and switch on ion pump (if applicable)
- After pressure leveled off ($\sim 10^{-9}$ mbar), decrease T somewhat (<150°C) and degas e-guns, ovens:
 - Run overnight at ~75% of nominal operating current
- At same T: fire TSP filaments to degas filaments, and to deposit Ti sticky layer

UHV pressure monitoring

- UHV Bayard-Alpert gauge (10⁻⁴ – 10⁻¹² mbar range)
- Ionization of background gas constituents & current measurement
- Note: different calibrations for different gas species
- Observe vacuum conductance towards gauge
- After exposure to high pressure: degas filaments
- Electric charging by nearby gauge has been observed – better to keep distance/use shielding between gauge and ion trap, EM detectors, ...

Pressure > 10⁻⁴ mbar: use Pirani-type gauge

Venting your UHV apparatus

- Oh noes something broke down and can't be fixed without opening the UHV chamber... now what?
- Do NOT vent with air use dry nitrogen or pure argon or helium instead
 - Pores/holes in metal walls will be filled with the first atoms/molecules that get there – and N₂ is way easier to remove afterwards than H₂O!
 - Purge chamber with dry N₂ while it is open
 - UHV may be restored after pumping down and/or after a mild (70 - 90°C) bakeout

Some good venting advice...

- Use a pressure indicator to avoid overpressure
 (>1 atmosphere) glass and ceramics are often constructed to
 withstand overpressure from outside, NOT from inside
- A manometer or even a simple rubber balloon may do the trick...

Credits

Thanks to all vacuum experts we have known at:

VU University Amsterdam (Netherlands)

ENS Paris, CNRS, Aix-Marseille University (France)

NIST Boulder (USA)

H.-H. University Düsseldorf (Germany)

Agilent website (former Varian Inc.)
Pfeiffer Vacuum website