Tuning the MICE muon beam

CM47

P. Franchini

2nd February 2017

Beamline definition

- MC (G4BL) is not sufficient to model the beamline in order to define the magnets currents for a matched beam
- E.g. usually the momentum delivered in the beamline is lower than the simulated one
- Moreover the Twiss parameters delivered upstream of the cooling channel do not correspond to a matched beam (as expected from the MC)

Optimization procedure

- Taking advantage of the beam time available, the optimization has been done directly using the data in the Control Room:
 - Use of different diffusers combinations to match the beta function and the emittance
 - Tune of the momentum using dipole D1
 - Scan of the last 3 quadrupoles: Q7/Q8/Q9
 - Transverse position of the beam using dipole D2

MICE

Optimization

- Attempts to match the beam ad-hoc for several cooling channel settings
 - 3, 6 and 10 mm emittance
 - 140, 200 and 240 MeV/c
- We were not able to get a matched beam without the diffuser
- Example: 6-140

Dipole field measurement

- D2 is a Nimrod 6" Type 1 dipole (pole ~15 cm)
- Frame bolted on D2 in the DSA
- Calibrated HIRST GM08 gaussmeter
- Sensitivity ± 1 mT
- Transverse 1-axis probe, 3 m lead
- Probe inside the pole on a rail
- Maximum current in D2: 200 A

Survey of the frame position wrt the MICE beamline

Measurements and Formulae

Field-Current Relationship for Nimrod Type 1 Dipole (6" Tapered)

Saturation curve

• Function used in the Magic Spreadsheet:

$$I = + 253.91*B - 55.998*B^2 + 39.59*B^3$$

Fit for D2:

Carrent [A] 350 300 250 5.7% 150 100

- Lower field than expected
- Max equivalent discrepancy ~15 A

0.9%

2.7%

MC

- Using the fitted saturation curve both for D1 and D2
- Momentum selection done by D1

- Example:
 - run 8681, 3mm-140 MeV/c, muon peak at 133 MeV/c
 - difference in D1 current: 4.2%
 - Peak in MC at 132 MeV/c (before was 138 MeV/c)

Hysteresis

• Ramp up: B(0 A → 200 A)

Ramp down: B(200 A → 0 A)

No residual magnetization: B(0 A)=0 T

- Equivalent current discrepancy < 1 A
- PSU is precise at 0.1% level

Stability

 Magnet reaches a stable field value as soon as the current is stable

Magnet sitting at 100 A for 75 minutes

$$B = 0.419 \pm 0.001 T$$

MICE

Field on axis

- MC: G4BL uses a field map
- Data: probe moved on axis for 80 cm from the "center" outwards
- Rescaled the position according to the survey
- Enge function $\frac{B_0}{1 + e^{P_5(z)}}$

MICE

Conclusions

- Attempt to match the beam on live data
- Dipole stable during the operations and no huge evidence of magnetic memory
- MC can be improved assuming that D1 has the same behavior as D2

- Next shutdown:
 - Measurement on D1 with currents up to 400 A
 - The frame should fit with some restrictions
 - Repeat the measurement in D2 after one user cycle