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Data taking in 2016/04

Date Name Subject
18 Nov – 23 Nov 2016/04 1.3 Beta ~ 1200 mm; p = 140 MeV/c
28 Nov – 5 Dec 2016/04 1.2 Beta ~ 800 mm; p = 140 MeV/c
5 Dec – 8 Dec 2016/04 1.5 Beta ~ 580 mm; p = 140 MeV/c
8 Dec – 12 Dec 2016/04 2.3 Beta ~ 700 mm; p = 200 MeV/c
12 Dec – 14 Dec 2016/04 2.4 Beta ~ 1200 mm; p = 240 MeV/c

 2016/04
 Beta function scan at 140 MeV/c
 “Best” available settings at 200 and 240 MeV/c

 Thanks as always to MOMs
 Ed Overton 9th November - 28th November 2016
 Melissa Uchida 26th November - 16th December 2016

 Analysis
 Rogers – 1.2
 Ao – 1.5
 Francois – 1.2
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Overview
 Focus of this talk will be detector validation

 How do we know that any of the detectors work?
 Focus of the validation will be data

 Analysis using MAUS 2.7.0
 Cooling channel tag 2016/04 1.2

 Run 8681:- beamline tag “3-140+M3-Test2”
 Run 8699:- beamline tag “6-140+M3-Test2”
 Run 8685:- beamline tag “10-140+M3-Test3”

 All plots are “MICE Internal”
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In this talk

 Internal Tracker validation
 Hall probes vs MAUS
 Kalman P-Value

 Global validation
 Extrapolated tracks and residuals
 Misses and downstream efficiency
 Beam-based alignment

 Cuts
 Amplitude plots ← this is the main result
 Comparison with MC
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Biases and Uncertainties

 Seek to measure emittance change across the absorbers
 What are the biases and uncertainties?
 Bias on the measured x/px/y/py phase space and 

transmission
 Intrinsic detector resolution (scattering and spatial resolution)
 Detector efficiency
 Magnetic field in reconstruction region

 Bias on the model of the channel
 (Magnet) alignment
 Absorber material
 (Other) material budget
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“Internal” Tracker Validation

 Validate tracker by checking that the internals are self-
consistent

 Field measured in hall probes is consistent with 
reconstruction

 Fitted tracks are not pulled too much (Kalman P-value)
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Hall Probes vs MAUS

 Hall probes are mounted at r ~ 160 mm
 Approx 2 % discrepancy between MAUS and hall probes
 Nb: trajectory in B-field scales with B/p

 i.e. if we get B-field high by 10 %, it looks exactly like a track 
with 10 % higher momentum
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P-Values

 P-Value reflects the probability that a track is observed
 For an ideal detector, should be uniform between 0 and 1

 “Ideal” means measurement uncertainty is normally 
distributed about the true value with a well known RMS
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Global Validation

 We can validate measurements by comparing tracks with 
other detectors

 Take TKU as “reference” position, momentum
 Take TOF1 as “reference” time
 Extrapolate to TOF0, TOF2, TKD

 Look at the difference between measured and extrapolated 
track
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Track Extrapolation Routines
 Extrapolation of centroid uses

 4th order Runge Kutta to integrate Lorentz force law
 Bethe-Bloch to estimate dE/dz

 Propagation of errors uses
 Calculate Jacobian of Lorentz force law for error propagation

 + Integration using 4th order RK
 PDG formula for scattering (for error propagation)
 Derivative of Bethe Bloch + Fano formula for energy 

straggling
 Two geometry models

 Either use the on-axis materials and assuming infinite radius 
cylinders – in this talk

 Or use full G4 geometry – but it is slow
 Choose step size dynamically to step to geometry boundary
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TKU vs TKD

 Extrapolated position
 Indicative of some misalignment (of magnets presumably)
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TKU vs TKD
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TKU vs TOF01
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TKU vs TOF2
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Misses

 We can estimate efficiency by looking for missing tracks
 i.e. take tracks to TKD; if we don't see them, something 

happened (inefficiency)
 Some tracks on the edge may be unluckily scattered off 

trajectory into an aperture
 These will be registered as misses
 Future -> weight/cut events according to how close they go to 

the edge
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TKD Hits Distribution
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TKD Misses Distribution
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TOF2 Misses Distribution
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Beam-Based Alignment

 Seek to build a self-consistent model for the experiment
 Track residuals should have mean 0, RMS 1 sigma
 We can use the tracks themselves to understand 

alignment of magnets
 Try to find a set of magnet alignments that yield a mean 

position of 0
 “Beam-based” alignment

 Algorithm
 Extrapolate track from TKU to TOF1
 Look at residual x, y
 Try to find a solenoid alignment that yields 0 residual
 4 (or more) alignment parameters – so need to use several 

momenta to properly constrain the problem
 Repeat for TKD to TOF2 (SSD)
 Repeat for TKU to TKD (FC)
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Beam-Based Alignment
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Beam-Based Alignment (SSU)

 We need to demonstrate a self-consistent configuration
Blue x
Green y

Blue x
Green y

Blue x
Green y

Blue x
Green y



 22

Beam-Based Alignment (SSU)

 Optimisation converges on
 ~ 4 mm offset in SSU x and y
 No tilt

 Sensitivity to current?
 Sensitivity to z misalignment?
 Need more statistics in 140 and 200 MeV/c bins

Blue x
Green y

Blue x'
Green y'
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Beam-Based Alignment (SSD)

 We need to demonstrate a self-consistent configurationBlue x
Green y
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Cuts

 Onto the analysis proper...
 Following cuts are enabled:

 Exactly one track in TKU
 Exactly one space point in TOF0
 Exactly one space point in TOF1
 TKU p-value > 0.02
 tof01 > 28 ns
 tof01 < 32 ns for run 8681 and 8699 
 tof01 < 30.5 ns for run 8685
 Require abs(tof01 (measured) – tof01 (extrapolated)) < 5 ns
 Require 135 < p(tku) < 145 MeV/c 
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TOF01
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To Do: Delta TOF01
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Upstream p
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Performance

 Histograms of particle amplitude follow



  29

Measured Amplitude Change

Black > Blue so
Phase space density decreases
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Measured Amplitude Change

Black ~= Blue so neither growth 
nor reduction in core
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Measured Amplitude Change

Blue > Black so emittance
reduction (but lots of loss)
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Measured Amplitude Change

F. Drielsma

F. Drielsma
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MC

 Monte Carlo is useful for understanding errors
 Process

 Run MC 
 Check that input beam distributions are the same
 Check that expected performance == measured performance
 Look at detector resolutions and residuals

 Using MAUS 2.5.0
 Nb reconstruction uses MAUS 2.7.0

 First – attempt to tune momentum scale of beamline
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Where are the pions?

Black – all
Red – pi+
Blue – mu+
Green – e-

 Tune dipoles by hand to give a pionic beamline
 For some reason I see no pions in MC TOF
 Under investigation…

 For now, resolutions are indicative
 I have only plotted TKU
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Residuals - position

 Note the tail
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Residuals - position
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Residuals - amplitude

 Amplitude definition

 Amplitude resolution
 MC Recon – MC Truth

A
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Job List

 Detector inefficiency is still the main issue
 TKD and possibly TOF2

 Discrepancy between TKD and TOF2 is interesting
 Could be TKD reconstruction
 Could be alignment/z-position issues
 PRY effect has not been accounted
 Then pursue beam-based alignment

 Implement Holger's field maps
 PRY effect

 MC momentum scale tuning (and pions)
 PID purity
 Statistical and systematic error on amplitude calculation

 ...
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Summary

F. Drielsma

F. Drielsma

 We have a great measurement 
of phase space density increase

 The devil is in understanding, 
and resolving the details

 Aim to show
 Self-consistent data
 Correct estimation of errors
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