

Emittance Evolution

C. Rogers, ISIS Intense Beams Group Rutherford Appleton Laboratory

4

Data taking in 2016/04

Date	Name	Subject
18 Nov – 23 Nov	2016/04 1.3	Beta ~ 1200 mm; p = 140 MeV/c
28 Nov – 5 Dec	2016/04 1.2	Beta ~ 800 mm; p = 140 MeV/c
5 Dec – 8 Dec	2016/04 1.5	Beta ~ 580 mm; p = 140 MeV/c
8 Dec – 12 Dec	2016/04 2.3	Beta ~ 700 mm; p = 200 MeV/c
12 Dec – 14 Dec	2016/04 2.4	Beta ~ 1200 mm; p = 240 MeV/c

- **2016/04**
 - Beta function scan at 140 MeV/c
 - "Best" available settings at 200 and 240 MeV/c
- Thanks as always to MOMs
 - Ed Overton 9th November 28th November 2016
 - Melissa Uchida 26th November 16th December 2016
- Analysis
 - Rogers 1.2
 - Ao 1.5
 - Francois 1.2

Overview

- 'Focus of this talk will be detector validation
 - How do we know that any of the detectors work?
 - Focus of the validation will be data
- Analysis using MAUS 2.7.0
- Cooling channel tag 2016/04 1.2
 - Run 8681:- beamline tag "3-140+M3-Test2"
 - Run 8699:- beamline tag "6-140+M3-Test2"
 - Run 8685:- beamline tag "10-140+M3-Test3"
- All plots are "MICE Internal"

In this talk

MICE

- Internal Tracker validation
 - Hall probes vs MAUS
 - Kalman P-Value
- Global validation
 - Extrapolated tracks and residuals
 - Misses and downstream efficiency
 - Beam-based alignment
- Cuts
- Amplitude plots ← this is the main result
- Comparison with MC

Biases and Uncertainties

- Seek to measure emittance change across the absorbers
- What are the biases and uncertainties?
- Bias on the measured x/px/y/py phase space and transmission
 - Intrinsic detector resolution (scattering and spatial resolution)
 - Detector efficiency
 - Magnetic field in reconstruction region
- Bias on the model of the channel
 - (Magnet) alignment
 - Absorber material
 - (Other) material budget

"Internal" Tracker Validation

- Validate tracker by checking that the internals are selfconsistent
 - Field measured in hall probes is consistent with reconstruction
 - Fitted tracks are not pulled too much (Kalman P-value)

Hall Probes vs MAUS

- Hall probes are mounted at r ~ 160 mm
- Approx 2 % discrepancy between MAUS and hall probes
- Nb: trajectory in B-field scales with B/p
 - i.e. if we get B-field high by 10 %, it looks exactly like a track with 10 % higher momentum

2016-04 1.2 3-140+M3-Test2

- P-Value reflects the probability that a track is observed
- For an ideal detector, should be uniform between 0 and 1
 - "Ideal" means measurement uncertainty is normally distributed about the true value with a well known RMS

Global Validation

- We can validate measurements by comparing tracks with other detectors
- Take TKU as "reference" position, momentum
- Take TOF1 as "reference" time
- Extrapolate to TOF0, TOF2, TKD
 - Look at the difference between measured and extrapolated track

Track Extrapolation Routines

MICE

- Extrapolation of centroid uses
 - 4th order Runge Kutta to integrate Lorentz force law
 - Bethe-Bloch to estimate dE/dz
- Propagation of errors uses
 - Calculate Jacobian of Lorentz force law for error propagation
 - + Integration using 4th order RK
 - PDG formula for scattering (for error propagation)
 - Derivative of Bethe Bloch + Fano formula for energy straggling
- Two geometry models
 - Either use the on-axis materials and assuming infinite radius cylinders – in this talk
 - Or use full G4 geometry but it is slow
 - Choose step size dynamically to step to geometry boundary

TKU vs TKD

- Extrapolated position
 - Indicative of some misalignment (of magnets presumably)

TKU vs TKD

TKU vs TOF01

TKU vs TOF2

Misses

- We can estimate efficiency by looking for missing tracks
 - i.e. take tracks to TKD; if we don't see them, something happened (inefficiency)
 - Some tracks on the edge may be unluckily scattered off trajectory into an aperture
 - These will be registered as misses
 - Future -> weight/cut events according to how close they go to the edge

TKD Hits Distribution

2016-04 1.2 3-140+M3-Test2

TKD Misses Distribution

Misses - tkd_tp

TOF2 Misses Distribution

Misses - tof2

Beam-Based Alignment

- Seek to build a self-consistent model for the experiment
- Track residuals should have mean 0, RMS 1 sigma
- We can use the tracks themselves to understand alignment of magnets
 - Try to find a set of magnet alignments that yield a mean position of 0
 - "Beam-based" alignment
- Algorithm
 - Extrapolate track from TKU to TOF1
 - Look at residual x, y
 - Try to find a solenoid alignment that yields 0 residual
 - 4 (or more) alignment parameters so need to use several momenta to properly constrain the problem
- Repeat for TKD to TOF2 (SSD)
- Repeat for TKU to TKD (FC)

Beam-Based Alignment

Misalignment calculation for solenoid

Solenoid misalignment: Δx , Δy , ϕ_x , ϕ_y

Center offsets due to misalignment: x_{off} , y_{off} , x'_{off} , y'_{off}

The length of the field map: L

Matrix element: m_{ij}

$$\begin{bmatrix} x_{off} \\ y_{off} \end{bmatrix} = \begin{bmatrix} (1 - m_{11}) \Delta x - m_{13} \Delta y + \left(m_{14} - \frac{m_{13}}{2} L \right) \phi_x + \left(\frac{1 + m_{11}}{2} L - m_{12} \right) \phi_y \\ -m_{31} \Delta x + (1 - m_{33}) \Delta y + \left(m_{34} - \frac{1 + m_{33}}{2} L \right) \phi_x + \left(\frac{m_{31}}{2} L - m_{32} \right) \phi_y \end{bmatrix}$$

$$\begin{bmatrix} x'_{off} \\ y'_{off} \end{bmatrix} = \begin{bmatrix} -m_{21}\Delta x - m_{23}\Delta y + \left(-\frac{m_{23}L}{2} + m_{24}\right)\phi_x + \left(\frac{m_{21}L}{2} - m_{22} + 1\right)\phi_y \\ -m_{41}\Delta x - m_{43}\Delta y + \left(-\frac{m_{43}L}{2} + m_{44} - 1\right)\phi_x + \left(\frac{m_{41}L}{2} - m_{42}\right)\phi_y \end{bmatrix}$$

From Cai Meng, Error analysis and beam loss mechanisms of C-ADS linac, PhD thesis

Beam-Based Alignment (SSU)

SSU p: 165.0 to 175.0 MeV/c

Beam-Based Alignment (SSU)

- Optimisation converges on
 - ~ 4 mm offset in SSU x and y
 - No tilt
- Sensitivity to current?
- Sensitivity to z misalignment?
- Need more statistics in 140 and 200 MeV/c bins

Beam-Based Alignment (SSD)

SSDCoils p: 165.0 to 175.0 MeV/c

Cuts

- Onto the analysis proper...
- Following cuts are enabled:
 - Exactly one track in TKU
 - Exactly one space point in TOF0
 - Exactly one space point in TOF1
 - TKU p-value > 0.02
 - tof01 > 28 ns
 - tof01 < 32 ns for run 8681 and 8699
 - tof01 < 30.5 ns for run 8685
 - Require abs(tof01 (measured) tof01 (extrapolated)) < 5 ns
 - Require 135 < p(tku) < 145 MeV/c

2016-04 1.2 3-140+M3-Test2

2016-04 1.2 10-140+M3-Test3

To Do: Delta TOF01

2016-04 1.2 3-140+M3-Test2 MAUS-v2.7.0

Performance

Histograms of particle amplitude follow

2016-04 1.2 3-140+M3-Test2

2016-04 1.2 6-140+M3-Test2

2016-04 1.2 10-140+M3-Test3

Transverse amplitude change (recon)

- Monte Carlo is useful for understanding errors
- Process
 - Run MC
 - Check that input beam distributions are the same
 - Check that expected performance == measured performance
 - Look at detector resolutions and residuals
- Using MAUS 2.5.0
 - Nb reconstruction uses MAUS 2.7.0
- First attempt to tune momentum scale of beamline

Where are the pions?

2016-04 1.2 D1=0.60 D2=0.30 keep tracks

- Tune dipoles by hand to give a pionic beamline
 - For some reason I see no pions in MC TOF
 - Under investigation...
- For now, resolutions are indicative
 - I have only plotted TKU

Residuals - position

Note the tail

Residuals - position

Residuals - amplitude

Amplitude definition

$$\mathbf{A} = \epsilon_n \vec{U}^T \mathbf{V}^{-1} \vec{U}$$

- Amplitude resolution
 - MC Recon MC Truth

Job List

- Detector inefficiency is still the main issue
 - TKD and possibly TOF2
- Discrepancy between TKD and TOF2 is interesting
 - Could be TKD reconstruction
 - Could be alignment/z-position issues
 - PRY effect has not been accounted
 - Then pursue beam-based alignment
- Implement Holger's field maps
 - PRY effect
- MC momentum scale tuning (and pions)
 - PID purity
 - Statistical and systematic error on amplitude calculation
- . . .

Summary

- We have a great measurement of phase space density increase
- The devil is in understanding, and resolving the details
- Aim to show
 - Self-consistent data
 - Correct estimation of errors

Transverse amplitude (recon)

Transverse amplitude change (recon)

