

Status of the MICE RF System

The MICE RF team

MICE High Power RF system: Requirements

- MICE High Power RF system
 - Two cavities, driven by ONE RF power amplifier- 2MW output
 - Estimated gradient 7.2 MV/m
 - Allowing for realistic LLRF overhead and losses
 - 1st Amplifier proven and installed @ RAL(triode stage remains installed)
 - Cavity proving complete @ MTA
 - At much higher gradients (up to 14.3MV/m)
 - Cavity performance risk enormously mitigated
 - Cavity construction in hand @ LBNL

MICE High Power RF system: Requirements

- MICE High Power RF system
 - Two cavities, driven by ONE RF power amplifier- 2MW output
 - Lower gradient means less risk/lower cost at cost of reduced p_τ uplift
 - Not without its own issues
 - No longer have electronic control of relative phase
 - Either predefined fixed phase setting or increments by mechanical adjustment of the transmission lines
 - Alternative: Quote received \$25k US for 1.5m trombone phase shifter
 - Note: Means we lose control of the impedance presented at the amplifier

Status Summary

- RF Funding halted summer '16
 - Limited opportunities to advance this year
 - Some work completed before 'halt' order, others work as risk mitigation
- Distribution network
 - Components assembled into distribution network at DL
 - Components delivered to RAL from DL for installation
 - Adapted from components procured under NSF-MRI for earlier configuration
- Status of RF drive system
 - Triode No. 2 under test, started mid March
 - Exploiting 1st tetrode, and upgraded No. 1 modulator racks
 - Triode achieved 1MW using ex-ISIS valve (close to limit of valve)
 - Modulator/RF glitches noted when tetrode > 50kW into triode
 - These are now understood
 - Interface channels for RF controls defined
 - Work underway to complete control crates (DL subcontracted work)
 - LLRF system demonstrated on ISIS debuncher (at low power)

RF Distribution Network

- 4" lines rated to 1.12MW at 1 atmosphere in dry air
- Therefore will be pressurised by N₂ (with slow ramp) or SF₆ or gas
 - Will be treated as pressure vessels
- Some of the 6" and 4" line from the NSF MRI procurement modified
- All components/devices will be drawn from the NSF procured stock
- Calibration components procured
- Distribution network components now at RAL

RF Drive Systems

- 1st Modulator set and Tetrode recommissioned at Daresbury
- 2nd Triode is under test
 - 1MW achieved using ex ISIS triode valve at 25kV
 - η: 57%, Gain: 8.6 dB, Tetrode: 136kW, η: 52%, Gain: 19 dB
 - Triode input return loss 11.5 dB
 - At MICE duty and pulse duration

RF Drive System

- Glitches observed in modulator current traces when Tetrode operated above 50 kW output
- Completely independent of RF output tuning of tetrode, triode, bias voltages on triode
- Maps to modulation of output signal of both triode and tetrode
- Does not happen when tetrode drives resistive load at MUCH higher power

Understanding the Glitches

- Possible causes of the glitches considered
 - Capacitor charger 'noise' annoying the HT electronics
 - Problem got worse if charger switched off and system run in capacitor rundown mode- so not that
 - Unlucky line resonance stored energy in tetrode output line modulating the tetrode anode swing-
 - Looked like the tetrode output spiked up then dipped at a glitch
 - But should improve with increased tetrode anode bias and eliminated with output coupler tuning- but no effect seen
 - New solid state crowbar 'twitching' triode HT circuit
 - Hard to see how this would not result in a full crowbar event
 - Sparking in the triode input
 - Surprisingly regular process for sparking
- Further tests
 - Eventually the glitches stopped, but the input match to the triode became very poor at all power levels
 - This implies a spark was the cause. Prize to Andy Moss for suspecting this.

Understanding the Glitches

- Suspect location
 - Only accessible by fully stripping the amplifier
 - This triode is only needed to shake down controls,
 - Scheduling considerations suggest we NOT do this
 - Drawing from E Zaccheroni et al, NIM, 5, 78-89

RF Controls and Monitoring Systems

- Channel list and State Machine Defined for RF amplifier controls
 - Enable the build of the controls hardware at Daresbury- Underway by Daresbury Electrical Engineering
 - Also defines the logical interaction with the system states
 - Software development commenced: associating channels with variables for EPICS control

- Daresbury TD have made major progress in building controls rack
 - In present FY funds available to complete Controls Rack
 - Commitments at DL mean that this is being undertaken by subcontractors
 - Programming of the software will remain to be done

LLRF

- LLRF development has continued due to ISIS interest
 - Has been controlling tuners on ISIS debuncher cavity based on feedback signals
 - Low power tests only so far: Bob Anderson @ ISIS Injector RF Group

RF Team and Equipment Status

- RF development continued only as risk mitigation
 - Has had very limited amount of effort available on MICE RF
 - Tim Stanley (formerly MICE RF Engineer) now with ISIS RF
 - Limited effort available at Daresbury
 - Slowed progress where the project plan would have liked to increase effort
- Looking forward: if Cooling Demo Approved
 - Daresbury RF and TD groups heavily committed to CLARA
 - One key contributor may retire soon
 - We will need to make sure we can secure adequate RF resources
 - There may be a steep learning curve
 - We have a lot of (valuable) spare parts
 - We have most major capital equipment required
 - Limited procurement, clock and LLRF reference source hardware
 - Also cavity support infrastructure

Work Needed for Cooling Demo

Distribution network

- Installation, calibration
- Gas insulation scheme needs to be built
- Adjustment of relative phase

RF drive system

- Resolution of the glitches issue on the test stand at Daresbury on Triode No 2
- Completion of controls system- do we need such a 'hands off' system?
 - Tests of controls system
- Installation in Hall and commissioning- provision of cooling water and controls cabling
- LLRF system modified for MICE

Cavities

- Provision of auxiliary systems for cavities (cooling/air/vacuum)
- Installation, integration with controls/monitoring/LLRF
- Online commissioning

Funding bid to access STFC underspend in FY 17-18

- News due soon: Could fund completion of RF drive system
- Would need prompt action to resource if successful