

MICE: Muon-RF Timing

Alex Dick and Kevin Ronald

- Need to be able to select particles for analysis by their RF transit phase
 - Allows the 'bundling' of particles for coherent analysis
 - i.e. As if we are considering the interactions of a real particle 'bunch'
- Cavity transit time inferred by the ToF transit time and the tracker measurement of momentum
 - Combining ToF resolution and Momentum projection resolution ~ +/- 51.5ps
 - Desire to know RF phase to better than 0.3 of this ~ 17ps
- Two Approaches
 - Digitisation (subsampled) of the RF waveform on the pickup probes
 - Direct recording of the wave inside the cavity
 - TDC recording of the RF waveform
 - Records zero crossings of a reference oscillator/Cavity waveform provides RF phase reference for TDC particle events

- Time domain: signal (blue) from FNAL cavity tests - 500µs window sampled at 5G.Sa/sec
- Subsample (red) at 12.5M.Sa/sec, reduce data by x400, and 48x < Nyquist @ 200MHz
- Note time domain signal 'windowed': New data from MTA will remove this process
- Freq. domain: Red fft of entire recorded data,
 Blue enhanced dft of subsampled data

MICE Collaboration Meeting 47, 13th-15th Feb 2017

- Freq. domain reconstructions: high fidelity to raw signal over entire pulse duration (no spark)
- Blue is original data through Butterworth filter, Red is reconstructed subsample data
- Note dft here is effectively a (hard edged) 100kHz filter
- 10ps precision achieved on pulses from MTA tests

- The effects of the filter bandwidths were considered:
 - Both dft used for the FD reconstruction and
 - Butterworth applied to the raw data
- Width of Butterworth filter: Minor impact on noise at 5ps level, significant impact on systematic offets
- Width of dFT- affected resolution of fine scale variation in signal- no significant impact on systematic offsets

- The effects of the filter bandwidths were considered:
 - Both dft used for the FD reconstruction and
 - Butterworth applied to the raw data
- Width of Butterworth filter: Minor impact on noise at 5ps level, significant impact on systematic offets
- Width of dFT- affected resolution of fine scale variation in signal- no significant impact on systematic offsets

- At previous meetings, tests showed good random walks in the reconstructed signals BUT
- Some variation in the systematic offsets
- The majority of the MTA tests did not attempt to hold the cavity on resonance
- Rather the drive amplifier followed the natural tuning of the cavity as the cavity temperature evolved
 - Freq. shifts over 32 valid datasets (i.e. no valve/cavity arcs) of ~4 kHz noted
- MICE will not run like this

New analysis approach, first perform a very precise dFT, then use this to centre all freq

sensitive processing

Significantly reduces the offsets

Butterworth (RAW) Filter 300kHz dFT bandwidth 300kHz Corrected centre frequency

Summary

Subsample method shows good performance

- Further data from MTA tests with long record lengths also showing promising behaviour
- Note offsets in the traces arise where the cavity amplitude is changing rapidly- this will NOT be an interesting condition for MICE

Digitiser Hardware Status

- 4GSa/s 2 Ch VME digitiser in hand- can record entire pulse at > Nyquist at need
- Has 10 bit resolution (instruments used to date are 8 bit)
- Can be programmed to run with 40MHz external clock (shared by the TDC's)
- Work required to capture waveforms at 1Hz at whatever subsample rate we choose
 - 12.5MSa/sec or 25MSa/s seem likely candidates

TDC hardware status

- 300MHz Discriminator available and running tests (others are available)
- Spare MICE TDC is at Strathclyde and installed in VME crate
- VME bus on crate at Strathclyde now communicating with TDC- thanks to Ed

Integration

- Acquisition software routines need to be produced
- Clock required to sync TDC's and digitiser
- Trigger alignment needs to be done between TDC's and Digitiser
- Bench tests using Arbitrary Wave Generators and 50ps transient generators