
MICE RF Drive and Diagnostics

The MICE RF team

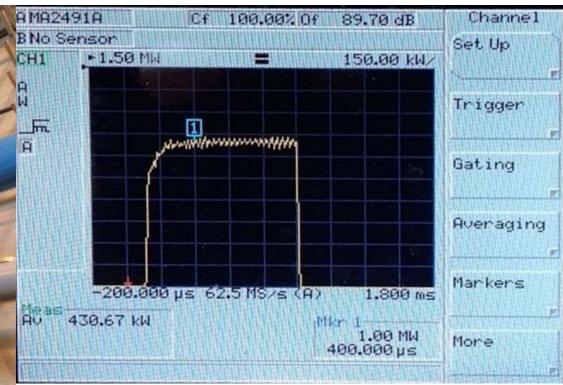
MICE High Power RF system: Requirements

- MICE High Power RF system
 - Two cavities, driven by ONE RF power amplifier- 2MW output
 - Estimated gradient 7.2 MV/m
 - Allowing for realistic LLRF overhead and losses
 - 1st Amplifier proven and installed @ RAL(triode stage remains installed)
 - Cavity proving complete @ MTA
 - At much higher gradients (up to 14.3MV/m)
 - Cavity performance risk enormously mitigated
 - Cavity construction in hand @ LBNL

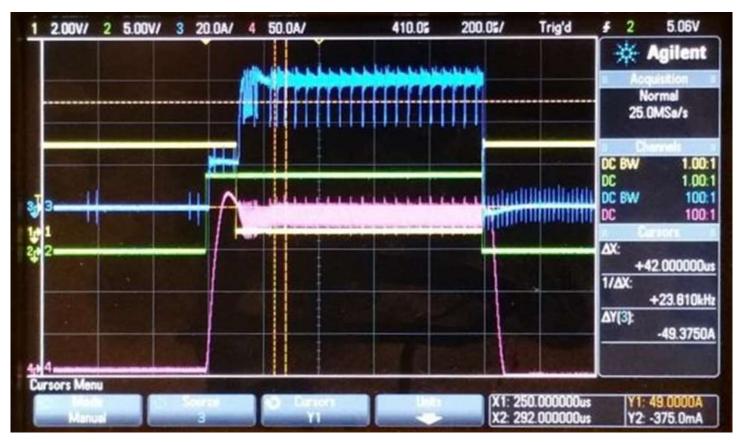
Status Summary

- RF Funding halted summer '16
 - Limited opportunities to advance this year
 - Some work completed before 'halt' order, others work as risk mitigation
- Distribution network
 - Components assembled into distribution network at DL
 - Components delivered to RAL from DL for installation
 - Adapted from components procured under NSF-MRI for earlier configuration
- Status of RF drive system
 - Triode No. 2 under test, started mid March
 - Exploiting 1st tetrode, and upgraded No. 1 modulator racks
 - Triode achieved 1MW using ex-ISIS valve (close to limit of valve)
 - Modulator/RF glitches noted when tetrode > 50kW into triode
 - These are now understood
 - Interface channels for RF controls defined
 - Work underway to complete control crates (DL subcontracted work)
 - LLRF system demonstrated on ISIS debuncher (at low power)

RF Distribution Network

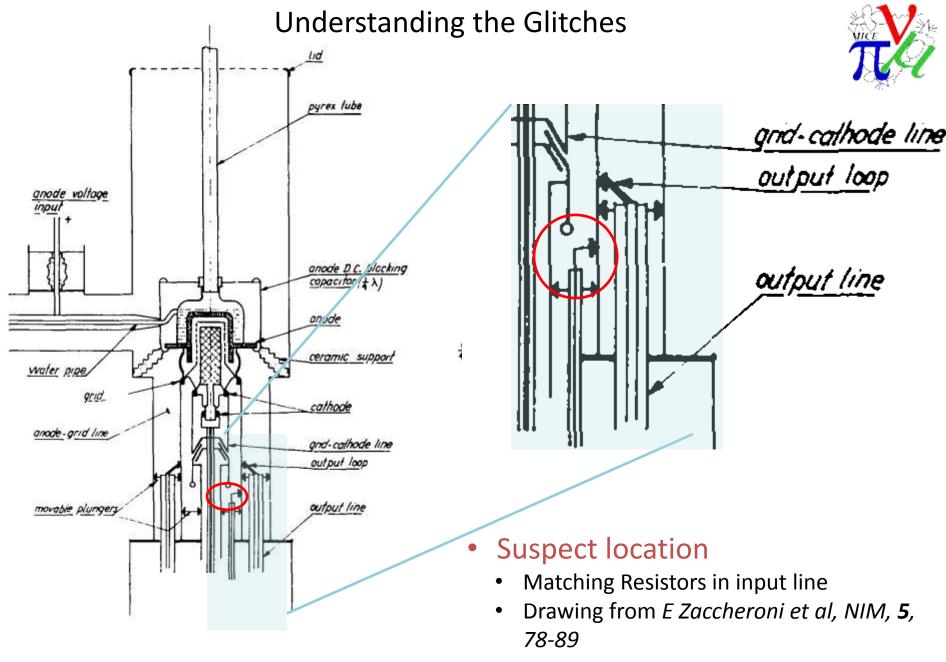

- Must Support 2MW in 6" line and 500 kW in 4" line with full reflect
 - 4" lines rated to 1.12MW at 1 atmosphere in dry air
 - Therefore will be pressurised by N₂ (with slow ramp) or SF₆ or gas
 - Will be treated as pressure vessels
 - Some of the 6" and 4" line from the NSF MRI procurement modified
 - All components/devices will be drawn from the NSF procured stock
 - Calibration components procured
 - Distribution network components now at RAL

RF Drive Systems



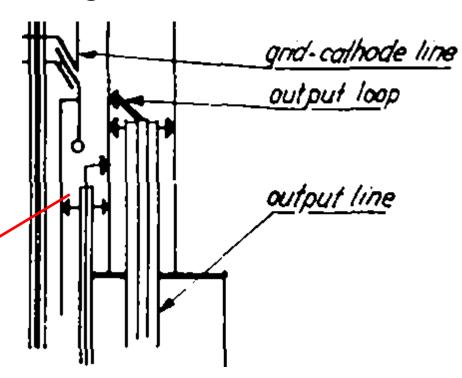
- 1st Modulator set and Tetrode recommissioned at Daresbury
- 2nd Triode is under test
 - 1MW achieved using ex ISIS triode valve at 25kV
 - η: 57%, Gain: 8.6 dB, Tetrode: 136kW, η: 52%, Gain: 19 dB
 - Triode input return loss 11.5 dB
 - At MICE duty and pulse duration

RF Drive System



- Glitches observed in modulator current traces when Tetrode operated above 50 kW output
- Completely independent of RF output tuning of tetrode, triode, bias voltages on triode
- Maps to modulation of output signal of both triode and tetrode
- Does not happen when tetrode drives resistive load at MUCH higher power

Understanding the Glitches


- Possible causes of the glitches considered
 - Capacitor charger 'noise' annoying the HT electronics
 - Problem got worse if charger switched off and system run in capacitor rundown mode- so not that
 - Unlucky line resonance stored energy in tetrode output line modulating the tetrode anode swing-
 - Looked like the tetrode output spiked up then dipped at a glitch
 - But should improve with increased tetrode anode bias and eliminated with output coupler tuning- but no effect seen
 - New solid state crowbar 'twitching' triode HT circuit
 - Hard to see how this would not result in a full crowbar event
 - Sparking in the triode input
 - Surprisingly regular process for sparking
- Further tests
 - Eventually the glitches stopped, but the input match to the triode became very poor at all power levels
 - This implies a spark was the cause. Prize to Andy Moss for suspecting this.

Understanding the Glitches

- Suspect location
 - Only accessible by fully stripping the amplifier
 - This triode is only needed to shake down controls,
 - Scheduling considerations suggest we NOT do this
 - Drawing from E Zaccheroni et al, NIM, 5, 78-89

RF Controls and Monitoring Systems

- Channel list and State Machine Defined for RF amplifier controls
 - Enable the build of the controls hardware at Daresbury- Underway by Daresbury Electrical Engineering
 - Also defines the logical interaction with the system states
 - Software development commenced: associating channels with variables for EPICS control

- Daresbury TD have made major progress in building controls rack
 - In present FY funds available to complete Controls Rack
 - Commitments at DL mean that this is being undertaken by subcontractors
 - Programming of the software will remain to be done

LLRF

- LLRF development has continued due to ISIS interest
 - Has been controlling tuners on ISIS debuncher cavity based on feedback signals
 - Low power tests only so far: Bob Anderson @ ISIS Injector RF Group

RF Team and Equipment Status

- RF development continued only as risk mitigation
 - Has had very limited amount of effort available on MICE RF
 - Tim Stanley (formerly MICE RF Engineer) now with ISIS RF
 - Limited effort available at Daresbury
 - Slowed progress where the project plan would have liked to increase effort
- Looking forward: if Cooling Demo Approved
 - Daresbury RF and TD groups heavily committed to CLARA
 - Dissipation in skill base- In addition to redeployment, there are possible retirements to consider
 - We will need to make sure we can secure adequate RF resources
 - There may be a steep learning curve
 - We have a lot of (valuable) spare parts
 - We have most major capital equipment required
 - Limited procurement, clock and LLRF reference source hardware
 - Also cavity support infrastructure

Work Needed for Cooling Demo

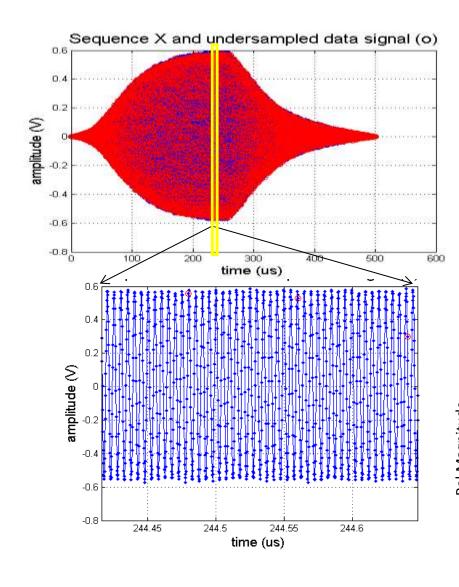
Distribution network

- Installation, calibration
- Gas insulation scheme needs to be built
- Adjustment of relative phase

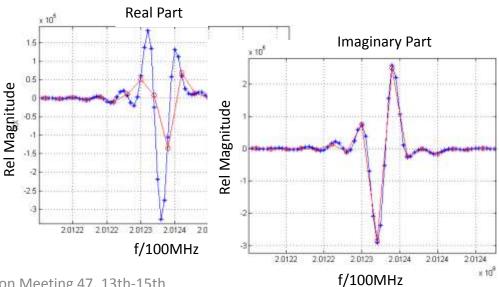
RF drive system

- Resolution of the glitches issue on the test stand at Daresbury on Triode No 2
- Completion of controls system- do we need such a 'hands off' system?
 - Tests of controls system
- Installation in Hall and commissioning- provision of cooling water and controls cabling
- LLRF system modified for MICE

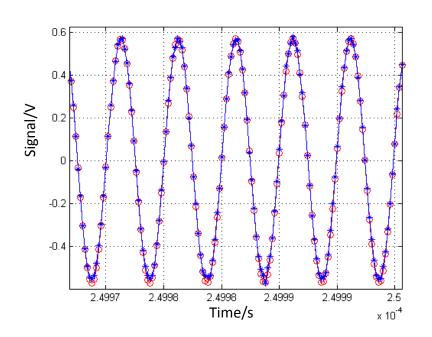
Cavities

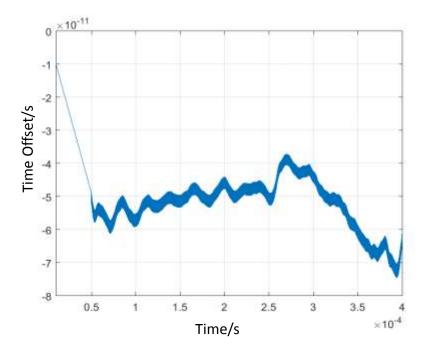

- Provision of auxiliary systems for cavities (cooling/air/vacuum)
- Installation, integration with controls/monitoring/LLRF
- Online commissioning

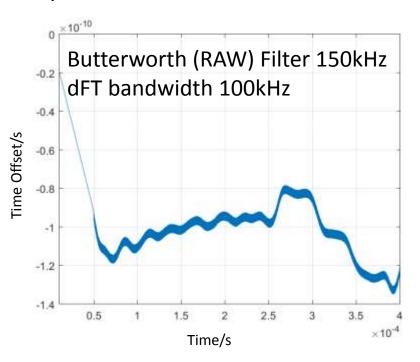
Funding bid to access STFC underspend in FY 17-18

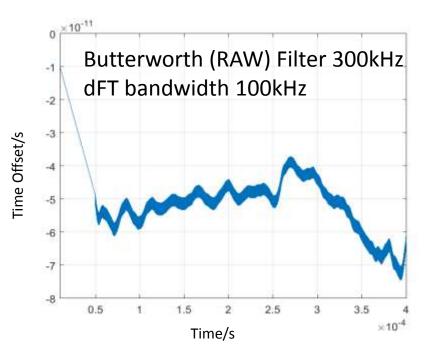

- News due soon: Could fund completion of RF drive system
- Would need prompt action to resource if successful

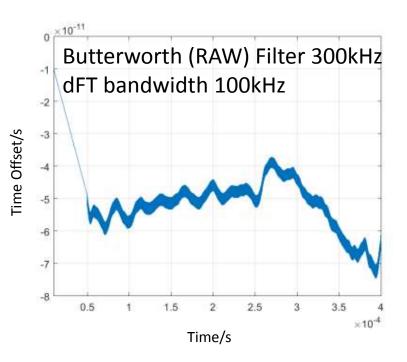
- Need to be able to select particles for analysis by their RF transit phase
 - Allows the 'bundling' of particles for coherent analysis
 - i.e. As if we are considering the interactions of a real particle 'bunch'
- Cavity transit time inferred by the ToF transit time and the tracker measurement of momentum
 - Combining ToF resolution and Momentum projection resolution ~ +/- 51.5ps
 - Desire to know RF phase to better than 0.3 of this ~ 17ps
- Two Approaches
 - Digitisation (subsampled) of the RF waveform on the pickup probes
 - Direct recording of the wave inside the cavity
 - TDC recording of the RF waveform
 - Records zero crossings of a reference oscillator/Cavity waveform provides RF phase reference for TDC particle events

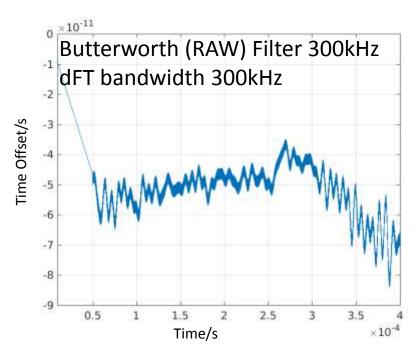



- Time domain: signal (blue) from FNAL cavity tests - 500µs window sampled at 5G.Sa/sec
- Subsample (red) at 12.5M.Sa/sec, reduce data by x400, and 48x < Nyquist @ 200MHz
- Note time domain signal 'windowed': New data from MTA will remove this process
- Freq. domain: Red fft of entire recorded data,
 Blue enhanced dft of subsampled data

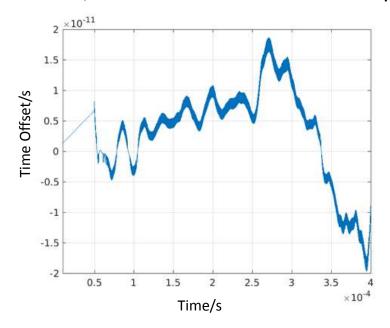

- Freq. domain reconstructions: high fidelity to raw signal over entire pulse duration (no spark)
- Blue is original data through Butterworth filter, Red is reconstructed subsample data
- Note dft here is effectively a (hard edged) 100kHz filter
- 10ps precision achieved on pulses from MTA tests




- The effects of the filter bandwidths were considered:
 - Both dft used for the FD reconstruction and
 - Butterworth applied to the raw data
- Width of Butterworth filter: Minor impact on noise at 5ps level, significant impact on systematic offets
- Width of dFT- affected resolution of fine scale variation in signal- no significant impact on systematic offsets

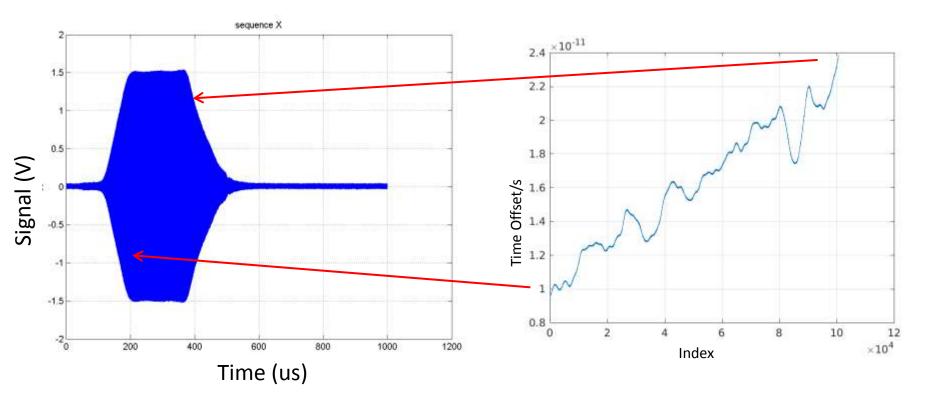


- The effects of the filter bandwidths were considered:
 - Both dft used for the FD reconstruction and
 - Butterworth applied to the raw data
- Width of Butterworth filter: Minor impact on noise at 5ps level, significant impact on systematic offets
- Width of dFT- affected resolution of fine scale variation in signal- no significant impact on systematic offsets


- At previous meetings, tests showed good random walks in the reconstructed signals BUT
- Some variation in the systematic offsets
- The majority of the MTA tests did not attempt to hold the cavity on resonance
- Rather the drive amplifier followed the natural tuning of the cavity as the cavity temperature evolved
 - Freq. shifts over 32 valid datasets (i.e. no valve/cavity arcs) of ~4 kHz noted
- MICE will not run like this

New analysis approach, first perform a very precise dFT, then use this to centre all freq

sensitive processing


Significantly reduces the offsets

Butterworth (RAW) Filter 300kHz dFT bandwidth 300kHz Corrected centre frequency

- Same analysis approach being applied to new data received last year from MTA
- Much longer record lengths- very large data sets
- No longer need to 'window' the data save to suppress noise at the acquisition edges
- Similar performances being observed over all 3 datasets

Summary

Subsample method shows good performance

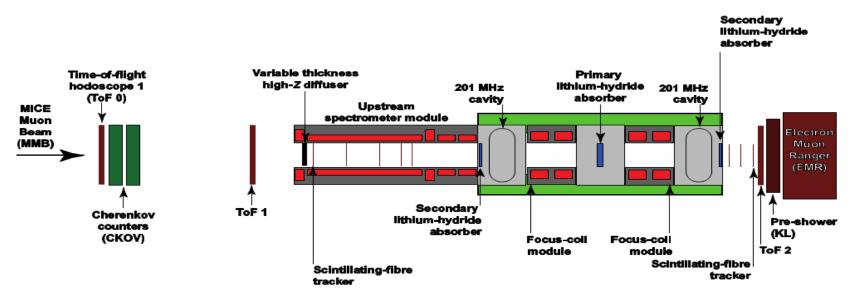
- Note variation in the traces from the initial dataset arise where the cavity amplitude is changing rapidly- this will NOT be an interesting condition for MICE
- Slew in the long, high resolution datasets probably a result of insufficient 'enhancement' of the Fourier resolutions

Digitiser Hardware Status

- 4GSa/s 2 Ch VME digitiser in hand- can record entire pulse at > Nyquist at need
- Has 10 bit resolution (instruments used to date are 8 bit)
- Can be programmed to run with 40MHz external clock (shared by the TDC's)
- Work required to capture waveforms at 1Hz at whatever subsample rate we choose
 - 12.5MSa/sec or 25MSa/s seem likely candidates

TDC hardware status

- 300MHz Discriminator available and running tests (others are available)
- Spare MICE TDC is at Strathclyde and installed in VME crate
- VME bus on crate at Strathclyde now communicating with TDC- thanks to Ed


Integration

- Acquisition software routines need to be produced
- Clock required to sync TDC's and digitiser
- Trigger alignment needs to be done between TDC's and Digitiser
- Bench tests using Arbitrary Wave Generators and 50ps transient generators

MICE High Power RF system: Requirements

- MICE High Power RF system
 - Two cavities, driven by ONE RF power amplifier- 2MW output
 - Lower gradient means less risk/lower cost at cost of reduced p_τ uplift
 - Not without its own issues
 - No longer have electronic control of relative phase
 - Either predefined fixed phase setting or increments by mechanical adjustment of the transmission lines
 - Alternative: Quote received \$25k US for 1.5m trombone phase shifter
 - Note: Means we lose control of the impedance presented at the amplifier

