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PULSAR GLITCHES

e Angular momentum
loss through emission of
electromagnetic waves

= slowing down of the
pulsar with
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tiny changes in this slowing down = glitches
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PULSAR GLITCH OBSERVATIONS

o glitch amplitude are low:

AQ/Q ~ 1071 —107°

@ rise time is quite short :
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e exponential relaxation
during several days, up to
months.

Wong, Backer & Lyne, ApJ, 2001

= glitches are driven by internal processes )
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DIFFERENT GLITCH TYPES

@ quasi-periodic

@ narrow amplitude
distribution
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GIANT GLITCHES

@ quasi-periodic
@ narrow amplitude
distribution

STANDARD GLITCHES

e randomly spaced in time

e various amplitudes
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3 STANDARD GLITCHES

e randomly spaced in time

@ various amplitudes
Time Since Last Glitch (days) >

DIFFERENT GLITCH MODELS

=moment of inertia reduction, with crustquakes
=-transfer of angular momentum between two components, with
superfluidity




NUMERICAL MODELS

ROTATING NEUTRON STARS IN GR

o General relativity to describe gravity

@ Need to describe rotation = axisymmetry

o Glitch time-scale > hydro time-scale = stationarity

In adapted coordinates, the metric depends only on (r,#) and
can take the form (quasi-isotropic gauge):

ds® = —N2dt? + A? (dr2 4+ r2d92) + B%%sin? 0 (dp — w dt)2 , J

with the requirement of circularity condition for matter:
e no meridional (e.g. convective) currents,
e no mixed poloidal/toroidal magnetic field.

This is quite different from the Schwarzschild gauge used for the
TOV system, in spherical symmetry.



EINSTEIN EQUATIONS
In quasi-isotropic gauge (+maximal slicing), Einstein equations
turn into a system of four coupled non-linear elliptic PDEs:
o AN =01,
o Aw = 09,
A(NB) = o3,
A(NA) =oy.

Each o; contains terms involving matter and non-linear metric
terms of non-compact support (Bonaszol et al. 1993).

=Contrary to spherical symmetry no matching to any known
vacuum solution is possible (no Birkhoff theorem).

=-Only boundary condition at r — oco: flat metric.
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In quasi-isotropic gauge (+maximal slicing), Einstein equations
turn into a system of four coupled non-linear elliptic PDEs:
o AN =01,
o Aw = 09,
A(NB) = o3,
A(NA) =oy.

Each o; contains terms involving matter and non-linear metric
terms of non-compact support (Bonaszol et al. 1993).

=Contrary to spherical symmetry no matching to any known
vacuum solution is possible (no Birkhoff theorem).

=-Only boundary condition at r — oco: flat metric.

Numerical solution obtained using spectral methods (crandciément
& Novak zutm) and the LORENE library (hllp:,’ ,’1n1(\utn«ﬂ)»plu.ll).




Two-fluid rotating models

Sourie et al. 2016



TwWO-FLUID MODEL

o charged particles :

Q, = ) < pulsar

TWO-FLUID APPROACH
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e Superfluid vortices can pin into the crust nuclei
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radial direction
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o charged particles :
Q, = ) < pulsar
o superfluid neutrons :
I 2 Qp

TWO-FLUID APPROACH

angular velocity

ANDERSON & ITOH 1975

Q,
Q, -
~
timg

e Superfluid vortices can pin into the crust nuclei

@ When a critical threshold is reached in terms of
082 = €, — Qp, some vortices unpin and can freely move in

radial direction

= Transfer of angular momentum between both fluids and

glitch



HYPOTHESES

Prix, Novak & COMER 2005

EQUILIBRIUM CONFIGURATIONS:

» uniform composition : n,p, e~

~~ crust is neglected

» rigid rotation :

~+ (), and (2, = const.

> stationary and axisymmetric
spacetime + isolated star.

» T' < Tr, and no magnetic
field.

» dissipation effects are
neglected.
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TWO-FLUID RELATIVISTIC

HYDRODYNAMICS
CARTER 1989; CARTER & LANGLOIS 1998; LANGLOIS, SEDRAKIAN & CARTER 1998
System made of two perfect fluids :
e superfluid neutrons — ng = npu,
o (0%
— TLp = ’I’lp’LLp S |

e protons & electrons

ENERGY-MOMENTUM TENSOR

1 ﬂUZd 3 Taﬁ = (5 + P) UqUg + Pgaﬁ
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HYDRODYNAMICS
CARTER 1989; CARTER & LANGLOIS 1998; LANGLOIS, SEDRAKIAN & CARTER 1998
System made of two perfect fluids :
e superfluid neutrons — ng = npu,
o (0%
— np = ’I’lp’LLp S |

e protons & electrons

ENERGY-MOMENTUM TENSOR

1 flurd : Tap = (€ + P)uqug +Pgap

Napp
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ENERGY-MOMENTUM TENSOR
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TWO-FLUID RELATIVISTIC

HYDRODYNAMICS
CARTER 1989; CARTER & LANGLOIS 1998; LANGLOIS, SEDRAKIAN & CARTER 1998
System made of two perfect fluids :
e superfluid neutrons —ns =npu,
@ protons & electrons — ng = npus.

ENERGY-MOMENTUM TENSOR

2 ﬂUidS 5 Taﬂ = nnong + npapg + \Ilgaﬁ
<~ conjugate momenta,

Entrainment matrix:
Pt = K"™nl 4+ K"Pnl,

1 n
P X Uy,
nP P —
Pa X Uq ph = KP"nl 4+ KPPnk

ithout entrai t .
without entrammen = entrainment effect



NEW, REALISTIC EQUATIONS OF STATE

& (nn,np,AQ) «—— U (,un,,up,AQ) J

Relativistic mean field model :

nucleon - nucleon interactions < effective meson exchange

DDH DDHJ4 exp. constraints [ units ]
Typel & Wolter (1999) Avancini et al. (2009) Oertel et al. (2017)

no 0.153 0.153 0.158 +£0.005 [ fm™?]
Biat 16.3 16.3 15.9+0.3 [ MeV ]
K 240 240 240 + 40 [ MeV ]
J 32.0 25.1 31.7+ 3.2 [ MeV |
L 55 44 58.7 £ 28.1 [ MeV ]
ME>0 2.08 2.16 >2 [ Mg ]




NEW, REALISTIC EQUATIONS OF STATE

E (nn,np, A?) +— U (u», pP, A?)

Relativistic mean field model :

nucleon - nucleon interactions < effective meson exchange

--» taking into account entrainment

AZ
-
X
DT S
A
P X

u

interpolation of 3-parameter EoS tables in LORENE, following
Swesty (1996)



NUMERICAL RESULTS

ENTRAINMENT

Dynamic effective mass:

P = ICXXnXug‘( + ICXYnyu?/

px =mx uk| i€{1,23}

in the fluid-Y rest-frame
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NUMERICAL RESULTS

ENTRAINMENT

Dynamic effective mass:

P = ICXXnXug‘( + ICXYnyu?/

px =mx uk| i€{1,23}

in the fluid-Y rest-frame

0.7
] DDH —
In the uj, = 0 frame: 06] |DDHS ——
relativity 08¢ e
S T
03f S
mx = NX > (1 - B ) 0.2 .
01tf €n

09002 04 o6 08 10 12
. ng (fm9)
entrainment



NUMERICAL RESULTS
ENTRAINMENT VS. LENSE-THIRRING
The (Komar) angular momentum Jx is such that

|dJx = Lxx dQx + Lxy dQy |

Total coupling coefficient ‘éX =Ixy/(Ixx + Ixy) ‘ depends

e due to strong interaction between 05
nucleons 04 i — e
e measured with the global entrainment o3}
coefficient € (integration of ¢ over the 02
\
star) — E—
0.1 ~]
—
0.0 s
o1 || DPH: & —— DDHS: &, | ~~__
[ &
. . o -0.2
e due to GR dragging of inertial frames 1 2 e 18
G W,

by each fluid
e measured with the metric term g,




Glitch models

Rise phase

Sourie et al. 2017



MUTUAL FRICTION

A
o [—
No external torque =exchange g
of angular momentum between 2 6Qy _
neutrons f’in(.fl protons through o Q, ~
mutual friction torque I'y,¢ =X R
< >
time
From tansiois et or (1008), with straight vortices parallel to the

rotation axis: interplay between
o Magnus force due to neutron fluid

o drag force caused by charged particles

R

Fe=— | —2 T
f 1+ R2

W @nX2 dEX (Qy — Qp) = —Bx 21,20 x6Q




RISE TIME

Evolution equations:

jn = + me’ 69 jjn —
: AL L SN T N
{ 5, = T QT T, 15z 2P

=-Analytic approximation:

5QUt) = 50 x exp <_t>

=Numerical modeling:

0, (t) and Q,(t) are determined by
integration from 2, 9 >

PARAMETERS
Mg, Q, AQ/Q, EoS, B




TIME EVOLUTION

AQ/Q =10"% Qf = Qf = 27 x 11.19 Hz,
Mg =14Mg & B=10"4

1.2x10°® > 10
Q D
N S Q, W DDH - numerique +
1x10 ,_---? 107F WY ajust.:1,=4.23s
Oc;Q ,’/ an = Q; e "\ DDH3 - numerique
2 8x107 5 & ‘w 108 N ajust. i, =2.925 ----
by P 3 NN
C‘?’: 6x107 i \; 107 N
= 7 / ¢ 8 \
4x10 7 10° N
= ° NN
23107 M . DDH® --- 107 N
[ o DDH — \
. 10 .
9% 5 d0 15 20 25 30 W g0 20 30 40 50 60
t(s)

t(s)

--+ Rise times can be estimated with high accuracy without time
integration, using only equilibrium models. J




VELA PULSAR
AQ/Q =107, Qf = Of = 27 x 11.19 Hz

5 DDH - & -
107" | DDHS —e— o -oisl )
S ::/ ----- ::/ ----- —— o—1? > B /( o \
10_3 T,=1s B
A----=3 . )
1S T S - Aoyttt te— 1 Constraints on B :
"
0t cws] W< 30s=B>107
S EEEPYSLTEE LELEE: S
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VELA PULSAR
AQ/Q =105, Qf = Qf =27 x 11.19 Hz

2 DDH - -
107" | DDHS —e— o -oisl )
------ ::/-_-_-::/--_-_::/---—_4b/’ ’B/( Tr\
10_3 T,=1s B
A----=3 . )
1S T S - Aoyttt te— 1 Constraints on B :
-
0t cws] W< 30s=B>107
----- PP SPPPETREEEE ELs
10—5 ------ T e G W A —ompmaTos 3 > B<1/2 — Tr>0.6 s
1 1.2 1.4 1.6 1.8 2

— a glitch event is a quasi-stationary process,
from the hydro viewpoint
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o Compactness defined
as

G Mg
Rcircc2

[1]

with Eng ~ 0.2 — 0.3

e depends on {2, too.

=-impact of general relativity on glitch dynamics can be quite J

strong!




CONCLUSIONS — PERSPECTIVES

@ Precise models of rotating neutron stars in GR

o Realistic EoS for 2 fluids, including entrainment

o Quasi-stationary approach, with analytic formula for rise
time

e Additional coupling between fluids due to Lens-Thirring
effect

e Strong overall influence of GR on glitch rise time

For the future:
e Looking for accurate data to constrain rise time
o Local modeling of glitch unpinning and movement

e Taking into account crust in global models?
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