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Core-Collapse Supernovae

Supernova 1987A 18MSUN star

• Stellar explosion that outshines 
entire galaxy 

• Lasts for weeks-months 

• Emits as much energy as Sun 
emits over its entire life
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11.0: Sukhbold et al. (2016)
10.0: Sukhbold et al. (2016)
9.0: Sukhbold et al. (2016)
z9.6: Müller et al. (2013); Z = 0
u8.1: Müller et al. (2012); Z = 10�4

n8.8: Nomoto (1984, 1987)

Figure 1. Progenitor models: density profiles in g cm�3 (left panel) and binding energies in Bethes (1 B = 1051 erg; right panel). The
envelope binding energy is computed as the total energy exterior to a given radius. Note that, for numerical reasons, we modified the n8.8
progenitor with the addition of a thicker envelope (see the main text for details). Progenitors that successfully explode in 1D (n8.8, u8.1,
and z9.6) have steeper density profiles and smaller binding energies than low-mass progenitors that do not explode in 1D.

Table 1
Details of the setup for the perturbed models.
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11.0 450 520 11 1 0.5 1,100 1,400 7 1 1.2 1,550 11,000 1 1 0.5

scheme with the HLLE approximate Riemann solver
(Einfeldt 1988), modified as in Audit et al. (2002) and
O’Connor (2015) to reduce the numerical dissipation in
the di↵usive limit. Fornax separately evolves electron
neutrinos ⌫e and anti-electron neutrinos ⌫̄e, while heavy-
lepton neutrinos ⌫µ, ⌫⌧ , and the respective anti-particles
are lumped together as a single species, which we denote
as “⌫µ.” The energy spectra of neutrinos are resolved us-
ing 20 logarithmically-spaced energy groups extending to
300 MeV for electron neutrinos and to 100 MeV for anti-
electron and heavy-lepton neutrinos. Neutrino-matter
interactions are treated as discussed in Burrows et al.
(2016). We perform three variants of each simulation.
“Baseline” includes all the neutrino-matter interaction
discussed in Burrows et al. (2016), with the exception of
the many-body corrections to the neutrino-nucleon scat-
tering cross-sections of Horowitz et al. (2016). “NoINS”
includes the same reactions as Baseline with the excep-
tion of inelastic scattering on nucleons. “Horowitz” in-
cludes all of the Baseline reactions as well as the many-
body corrections of Horowitz et al. (2016). For the runs
with perturbations, we use the Baseline physics setup.
The hydrodynamic equations are solved using a high-

resolution shock-capturing scheme with 3rd-order recon-
struction and the HLLC approximate Riemann solver
(Toro et al. 1994). The details of the numerical schemes
are discussed in (Skinner et al. 2015; Burrows et al. 2016;
Dolence et al. 2017 in prep). For the simulations pre-
sented here, we use a spherical grid with 678 points ex-
tending up to 20,000 km. The grid has a constant spacing
�r of 0.5 km for r . 10 km and then smoothly transi-
tions to a logarithmically spaced grid with �r/r ' 0.01
for r & 100 km. For the 2D simulations, we use 256

angular zones with angular resolution smoothly varying
between ' 0.95� at the poles and ' 0.64� at the equator.
The angular grid is also progressively derefined towards
the center to avoid an excessively restrictive CFL condi-
tion in the angular direction.
We adopt the Lattimer-Swesty equation of state with

nuclear compressibility parameter 220 MeV (Lattimer &
Swesty 1991) and treat gravity in the monopole approx-
imation using a general-relativistic potential, following
Marek et al. (2006).
Finally, we carry out all 2D simulations until the maxi-

mum shock radius exceeds 19,000 km, or until the explo-
sion is deemed unsuccessful. We continue 1D simulations
until the time when the minimum electron fraction in the
PNS becomes equal to the minimum value of the equa-
tion of state table (0.035).

3. OVERALL DYNAMICS

A first glance of our results can be gained from Fig. 2,
which shows the average shock radii for all progenitors
in 1D and 2D with both the Baseline and Horowitz se-
tups. As in previous works by others (Kitaura et al.
2006; Janka et al. 2008; Burrows et al. 2007; Fischer et al.
2010; Müller et al. 2012a; Janka et al. 2012; Müller et al.
2013; Melson et al. 2015b), we find early explosions for
the n8.8, z9.6, and u8.1 progenitors. The same progeni-
tors also explode in 1D spherical symmetry, although the
u8.1 fails to explode in 1D if inelastic neutrino-nucleon
scatterings are neglected, suggesting that its explosion is
only marginal.
None of the progenitors from Sukhbold et al. (2016)

explode in self-consistent 1D simulations. Somewhat sur-
prisingly, the 10.0-M� progenitor fails to explode also in
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Figure 7. Evolution of the z9.6 progenitor in 1D (left panel) and 2D (right panel) with the Baseline setup. The green line denotes the
average shock radius. The black lines are curves of constant enclosed baryonic mass (Lagrangian fluid elements in 1D). The yellow thick
line denotes the final PNS mass cut. The curves are smoothed using a running average with a 5-ms window. The background color is the
density-averaged entropy per baryon in kB . 1D explosions generically result in the creation of low-density, high-entropy bubbles, which are
smeared out by convection in 2D.
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Figure 8. Density-averaged radial velocity in units of 109 cm s�1 for the z9.6 progenitor evolved with Baseline physics in 1D (left panel)
and 2D (right panel). Multi-dimensional explosions result in larger velocities (and kinetic energies) behind the shock.

Figure 9. Evolution summary (left panel) and density-averaged velocity (right panel) for the 9.0 progenitor with the Baseline setup in
2D. The green shaded region in the left panel denotes the minimum and maximum shock radius. Curves in the left panel are smoothed
using a running average with a 5-ms window. This model shows a marginal and asymmetric explosion. The velocities are positive behind
the shock, signaling an overall expanding flow, but the expansion rate is much smaller than for the z9.6 progenitors (Fig. 8). Even when
the shock reaches the outer boundary of our grid at 20,000 km, the velocity is still negative in regions behind the shock as a consequence
of the partial fallback of the expanding plumes behind the shock.
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See also: Liebendorfer+01, Kitaura+’06, Burrows+’07, Sumiyoshi+’05



No explosion in higher mass models 
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Figure 2. Average shock radius (km) tracks for all progenitors in 1D and 2D with our Baseline setup (left panel) and with the inclusion of
many-body corrections (right panel). The curves are smoothed using a running average with a 5-ms window. With many-body corrections,
the 10.0-M� progenitor also explodes in 2D and the 9.0- and 11.0-M� 2D explosions become more robust. None of the progenitors from
Sukhbold et al. (2016) explode in 1D, even with many-body corrections.

Figure 3. Impact of perturbations and changes to the micro-
physics on the average shock radius (km) of the 9.0-, 10.0-, and
11.0-M� progenitors. The curves are smoothed using a running
average with a 5-ms window. Both the inclusion of perturbations
and changes to the microphysics (NoINS, Baseline, and Horowitz
setups) can trigger explosions in models that otherwise fail.

2D with the Baseline setup within the simulation time
(' 1.3 s after bounce). We remark that in Burrows
et al. (2016) we found successful explosions for the 20-
and 25-M� progenitors from Woosley & Heger (2007) us-
ing the same microphysical treatment. However, we did
not find explosions for the 12- and 15-M� progenitors
without the inclusion of many-body corrections to the
neutrino-nucleon scattering cross-sections. All progeni-
tors explode successfully in 2D with the Horowitz setup.
To visualize the di↵erent outcomes of the progenitors

from Sukhbold et al. (2016) in 2D, we highlight their
early post-bounce average shock radii in Fig. 3. The
9.0-M� and 11.0-M� models have delayed explosions
at ⇠0.3 s after bounce (Baseline setup) or ⇠0.2 s af-
ter bounce (Horowitz). The 10.0-NoINS model also fails
to explode. This is not surprising, given that the 10.0-
Baseline also fails, and in the light of the discussions in
Müller et al. (2012b) and Burrows et al. (2016). These
authors showed that the inclusion of inelastic scattering
of heavy-lepton neutrinos near the ⌫e and ⌫̄e neutrino-
spheres boosts the average energy of the former and re-

sults in an improved energy deposition rate. This e↵ect
makes the NoINS setup less explosive. The 11.0-NoINS
also fails to explode. The 9.0-NoINS explodes much later
than either the 9.0-Horowitz or the 9.0-Baseline, when
the Si/O-O interface is accreted. The inclusion of per-
turbations does not a↵ect the outcome of the 9.0- and
11.0-M� progenitors, but is su�cient to trigger the ex-
plosion of the 10.0.
The inclusion of perturbations results only in modest

changes for the 9.0- and 11.0-M� progenitors, which al-
ready explode at early times with the Baseline setup.
Note that the amplitude of the initial perturbations are
on the upper end of what could be considered as real-
istic, with turbulent velocities reaching ⇠1000 km s�1

(Table 1). Despite the large perturbation amplitudes,
the shock expansion is triggered only slightly earlier for
the 9.0- and 11.0-M� models. Then, starting from ⇠0.3 s
after bounce, the shock trajectories for the 9.0- and
11.0-Baseline and 9.0- and 11.0-Perturb are very similar
(Fig. 3). The 10.0-Perturb is the only model for which
we find perturbations to yield a qualitative change to
the evolution and trigger a weak explosion ⇠0.4 s after
bounce.
Some insight into the reason for the di↵erent evolutions

can be gained from the analysis of the accretion rate his-
tory of the progenitors, as recently suggested by Suwa
et al. (2016) and Müller (2016). Fig. 4 shows the accre-
tion rate at 500 km for all progenitors in 1D, with the
Baseline setup. Since the 1D progenitors from Sukhbold
et al. (2016) fail to explode, these are “intrinsic” accre-
tion rates, not a↵ected by the explosion. The accretion
rates for the n8.8, z9.6, and u8.1 are una↵ected by the
explosion up to the point where they are shown (after-
wards, they become negative as the inflow turns into an
outflow). It is easily seen that progenitors exploding in
1D have a steep decline of the accretion rate at very
early times, which sets them apart from “normal” mas-
sive stars, as also pointed out by Müller (2016). We
find that the 10.0-M� progenitor accretion rate is signif-
icantly higher than the 9.0- and 11.0-M� models during
the critical phase when the other two start exploding.
The sudden growth of the accretion rate of the 10.0-M�
progenitor around ⇠ 0.2 s after bounce is due to a den-
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2D vs. 3D simulations

3D2D

Couch (2013)

See also: Nordhaus’+12, Hanke+’12, Dolence+’13, Muller+’15 



See also: Hanke+’13, Abdikamalov+’15, Fernandez ’15, Lentz+’15, Melson+’15, Roberts+’16 

3D simulations  
[Ott, Abdikamalov+’13]
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What is missing?

But no reliable explosion 
in 3D.
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Couch+’15

See also: Arnett & Meakin ‘16, Chatzapoulos+’16, Collins+’17

Progenitor aspherisities
Couch & Ott 2013, 2015, Couch et al 2015, 

Müller & Janka 2015, B. Müller et al 2016, 2017
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Our work: 
 simple/linear physics of

• Accretion 

• Shock crossing 

• Post-shock

Si/O shell
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Figure 2 Square root of the magnitude of the vorticity,
p

|r⇥ v|, for four of the simulations with 5123 resolution in a slice through the
middle of the x–z plane at the final time of the simulations (t = 100). The panels show simulations using PPM HLLE N512,
PPM HLLC N512, WENOZ HLLC N512, and TVD HLLC N512 clockwise from the top left. The direction of the anisotropic driving is up in
these figures. The colorcode goes linearly from 0 (no vorticity; dark colors) to 15 (light colors) and it is the same for all panels.

cations. To analyze this aspect we consider in Figure 5 the
energy spectrum of the velocity defined by equation (10).
The spectra are compensated by k

5/3 to highlight regions
with Kolmogorov scaling, which might be expected in the
inertial range. Since we want to focus on quantities that
do not depend (or depend weakly) on the nature of the en-
ergy injection at large scale, we show all of the spectra as
a function of a dimensionless wave number, 512 k�x. The
rationale behind this normalization is that, first of all, we
assume the Kolmogorov scale ⌘ to be proportional to the
grid spacing. Secondly, the 512 factor is introduced to have
the dimensionless k, 512 k�x coincide with the dimen-
sional one for the highest resolution runs. With this choice,
512 k�x = 512 corresponds to a wavelength of a single

grid point, 512 k�x = 256 corresponds to a wavelength
of two grid points and so on.

Looking at any of the groups of runs in Figure 5, one
can immediately notice that the spectra obtained at differ-
ent resolutions do not collapse into a single curve in the
dissipation region, as would be required by Kolmogorov’s
first similarity hypothesis [50] (cf., [60]). This lack of con-
vergence in the dissipation region could be due to the non-
linear viscosity of HRSC schemes. This, in turn, could re-
sult in an anomalous scaling of ⌘ with the grid spacing.
Such scaling has been reported in the past for ILES, but it
is not very well understood [52]. The good agreement be-
tween the three different groups of simulations employing
the HLLC Riemann solver seems to support this hypothesis
and suggests that the nonlinear viscosity introduced by the

?
Radice+16



Linear Interaction Analysis 
Ribner (1953), Moore (1954), Chang (1957), …
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Linear approximation: 
validity region

h�Ma2i . 0.1(Ma2 � 1)
Lee et al (1993), Ryu & Livescu (2014)

In CCSN progenitors:

e.g., Müller et al (2016)

�Ma ⇠ 0.1, Ma & 5



Turbulent Fluctuations: 
decomposition 

Kovasznay (1953)
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cations. To analyze this aspect we consider in Figure 5 the
energy spectrum of the velocity defined by equation (10).
The spectra are compensated by k

5/3 to highlight regions
with Kolmogorov scaling, which might be expected in the
inertial range. Since we want to focus on quantities that
do not depend (or depend weakly) on the nature of the en-
ergy injection at large scale, we show all of the spectra as
a function of a dimensionless wave number, 512 k�x. The
rationale behind this normalization is that, first of all, we
assume the Kolmogorov scale ⌘ to be proportional to the
grid spacing. Secondly, the 512 factor is introduced to have
the dimensionless k, 512 k�x coincide with the dimen-
sional one for the highest resolution runs. With this choice,
512 k�x = 512 corresponds to a wavelength of a single

grid point, 512 k�x = 256 corresponds to a wavelength
of two grid points and so on.

Looking at any of the groups of runs in Figure 5, one
can immediately notice that the spectra obtained at differ-
ent resolutions do not collapse into a single curve in the
dissipation region, as would be required by Kolmogorov’s
first similarity hypothesis [50] (cf., [60]). This lack of con-
vergence in the dissipation region could be due to the non-
linear viscosity of HRSC schemes. This, in turn, could re-
sult in an anomalous scaling of ⌘ with the grid spacing.
Such scaling has been reported in the past for ILES, but it
is not very well understood [52]. The good agreement be-
tween the three different groups of simulations employing
the HLLC Riemann solver seems to support this hypothesis
and suggests that the nonlinear viscosity introduced by the

Radice+16

Modes evolve independently in the linear limit for 
uniform mean flow.



Turbulence 
decomposition 

Kovasznay (1953)
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cations. To analyze this aspect we consider in Figure 5 the
energy spectrum of the velocity defined by equation (10).
The spectra are compensated by k

5/3 to highlight regions
with Kolmogorov scaling, which might be expected in the
inertial range. Since we want to focus on quantities that
do not depend (or depend weakly) on the nature of the en-
ergy injection at large scale, we show all of the spectra as
a function of a dimensionless wave number, 512 k�x. The
rationale behind this normalization is that, first of all, we
assume the Kolmogorov scale ⌘ to be proportional to the
grid spacing. Secondly, the 512 factor is introduced to have
the dimensionless k, 512 k�x coincide with the dimen-
sional one for the highest resolution runs. With this choice,
512 k�x = 512 corresponds to a wavelength of a single

grid point, 512 k�x = 256 corresponds to a wavelength
of two grid points and so on.

Looking at any of the groups of runs in Figure 5, one
can immediately notice that the spectra obtained at differ-
ent resolutions do not collapse into a single curve in the
dissipation region, as would be required by Kolmogorov’s
first similarity hypothesis [50] (cf., [60]). This lack of con-
vergence in the dissipation region could be due to the non-
linear viscosity of HRSC schemes. This, in turn, could re-
sult in an anomalous scaling of ⌘ with the grid spacing.
Such scaling has been reported in the past for ILES, but it
is not very well understood [52]. The good agreement be-
tween the three different groups of simulations employing
the HLLC Riemann solver seems to support this hypothesis
and suggests that the nonlinear viscosity introduced by the
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Method: decompose turbulence into waves, calculate 
interaction for each wave, and integrate the result over all 

waves
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[Lighthill 1952, Landau & Lifshitz 1959]

Emission of  Sound by 
Turbulent Motion

For subsonic turbulence, 
sound emission is negligible!
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Acoustic waves: ~2%

Vorticity waves: ~98%

Abdikamalov et al (2016)
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Sound waves
e.g., Kovalenko & Eremin 1998, Foglizzo 2001, … 

�E ⇠ (h2 � h1)�m
Foglizzo & Tagger 2000

1. Entropy perturbations:

2. Vorticity perturbations:

Müller et al (2016, 2017)
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Turbulence driven by buoyancy
Müller et al (2016 2017)
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Entropy perturbations 
Huete, Abdikamalov, Radice (2017), in prep
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What’s next?

• Improved infall evolution 

• Acoustic waves 

• Post-shock evolution


