Turbulence in Core-Collapse Supernovae

Ernazar Abdikamalov Nazarbayev University, Kazakhstan

Collaborators:

T. Foglizzo, D. Radice, C. Huete A. Zhaksylykov, D. Issa

MPCS 2017, Yerevan

Core-Collapse Supernovae

- Stellar explosion that outshines entire galaxy
- Lasts for weeks-months
- Emits as much energy as Sun emits over its entire life

Supernova 1987A

 $18M_{\rm SUN}$ star

$E_{\rm exp} \sim 10^{51} {\rm ergs}$

Explosion mechanisms

Slow rotation

Rapid rotation

Explosion mechanisms

Slow rotation

Rapid rotation

Neutrino mechanism

Explosion mechanisms

Slow rotation

Neutrino mechanism

Rapid rotation

Magnetorotational mechanism

Neutrino Mechanism

Recent reviews: Janka+"16, Müller+'17, Burrows '13, Foglizzo+'15

See also: Liebendorfer+01, Kitaura+'06, Burrows+'07, Sumiyoshi+'05

No explosion in higher mass models in 1D

2D simulations

2D vs. 3D simulations

Couch (2013)

2D 3D

See also: Nordhaus'+12, Hanke+'12, Dolence+'13, Muller+'15

3D simulations

[Ott, Abdikamalov+'13]

$$P_{\rm turb} \sim \langle \delta v^2 \rangle \rho$$

$$P_{\rm turb} \sim \langle \delta v^2 \rangle \rho$$

$$L_{
m crit} \propto \left(1+rac{4}{3}\langle{
m Ma}_2^2
angle
ight)^{-3/5}$$
Müller & Janka (2015)

Turbulence spectrum

Radice+'16

But no reliable explosion in 3D.

What is missing?

Progenitor aspherisities

Couch & Ott 2013, 2015, Couch et al 2015, Müller & Janka 2015, B. Müller et al 2016, 2017

Couch+'15

Large progenitor aspherisities are common

Müller et al 2017

Our work: simple/linear physics of

- Accretion
- Shock crossing
- Post-shock

Shock crossing

Turbulent flow

Radice+16

shock wave

Linear Interaction Analysis

Ribner (1953), Moore (1954), Chang (1957), ...

Linear approximation: validity region

$$\langle \delta \mathrm{Ma}^2 \rangle \lesssim 0.1 (\mathrm{Ma}^2 - 1)$$

Lee et al (1993), Ryu & Livescu (2014)

In CCSN progenitors: $\delta Ma \sim 0.1$, $Ma \gtrsim 5$

e.g., Müller et al (2016)

Turbulent Fluctuations: decomposition

Kovasznay (1953)

Radice+16

Entropy $(\delta \rho, \delta T)$

Vorticity $(\nabla \cdot \delta v = 0)$

Acoustic $(\delta \rho, \ \delta p, \ \nabla \times \delta v = 0)$

Modes evolve independently in the linear limit for uniform mean flow.

Turbulence decomposition

Kovasznay (1953)

Method: decompose turbulence into waves, calculate interaction for each wave, and integrate the result over all waves

Emission of Sound by Turbulent Motion

 $\varepsilon \propto \delta Ma^8$

[Lighthill 1952, Landau & Lifshitz 1959]

For subsonic turbulence, sound emission is negligible!

 $P_{\mathrm{turb}} \sim \langle \delta v^2 \rangle \rho$

$$L_{
m crit} \propto \left(1 + rac{4}{3} \langle {
m Ma}_2^2
angle
ight)^{-3/5}$$

Müller & Janka (2015)

$$L_{
m crit} \propto \left(1 + rac{4}{3} \langle {
m Ma}_2^2
angle
ight)^{-3/5}$$

Müller & Janka (2015)

 $\delta L_{
m crit} \sim -12\%$

Abdikamalov et al (2016)

Sound waves

e.g., Kovalenko & Eremin 1998, Foglizzo 2001, ...

1. Entropy perturbations:

$$\delta E \sim (h_2 - h_1) \delta m$$

Foglizzo & Tagger 2000

2. Vorticity perturbations:

$$\frac{\delta\rho}{\rho}\sim \mathrm{Ma}$$

Müller et al (2016, 2017)

Turbulence driven by buoyancy

Müller et al (2016 2017)

$$\frac{\delta\rho}{\rho}\sim \mathrm{Ma}$$

$$\frac{\Delta L_{\rm crib}}{L_{\rm crib}} \sim -2.34 \frac{\rm Ma}{\ell}$$

Entropy perturbations

Huete, Abdikamalov, Radice (2017), in prep

$$\frac{\Delta L_{\rm crib}}{L_{\rm crib}} \sim -(1.5 - 2) \times 2.34 \frac{\rm Ma}{\ell}$$

What's next?

- Improved infall evolution
- Acoustic waves
- Post-shock evolution