Cooling of massive neutron stars

Hovik Grigorian

JINR – Dubna Yerevan State University

MPCS&RG - 2017 Yerevan - 21 September

my co-authors: D.Blaschke, D.Voskresensky, N-U. Bastian, S. Typel, E. Kolomeitsev, K. Maslov

The research was carried out under financial support of the Russian Science Foundation (project #17-12-01427)

Cooling Of Neutron Stars

- Introduction to Cooling Simulation
- Cooling regulators
- Time Evolution of Temperature
- Super conductivity & in-medium effects
- Results for NS cooling

H. Grigorian, D. N. Voskresensky and D. Blaschke Eur. Phys. J. A 52: 67 (2016).

Phase Diagramm & Cooling Simulation

Phase Diagramm & Cooling Simulation

- Description of the stellar matter local properties (EoS of super-dense matter)
- Modeling of the gravitationally self bound compact star including the density profiles
- Extrapolations of the energy loss mechanisms to higher densities and temperatures
- Consistency of the approaches
- Comparison with observational data

Structure Of Hybrid Star

Static neutron star mass and radius

The structure and global properties of compact stars are obtained by solving the Tolman-Oppenheimer-Volkoff (TOV) equations^{1,2}:

$$\begin{cases} \frac{dP(r)}{dr} = -\frac{GM(r)\varepsilon(r)}{r^2} \frac{\left(1 + \frac{P(r)}{\varepsilon(r)}\right)\left(1 + \frac{4\pi r^3 P(r)}{M(r)}\right)}{\left(1 - \frac{2GM(r)}{r}\right)};\\ \frac{dM(r)}{dr} = 4\pi r^2 \varepsilon(r);\\ \frac{dN_B(r)}{dr} = 4\pi r^2 \left(1 - \frac{2GM(r)}{r}\right)^{-1/2} n(r). \end{cases}$$

¹R. C. Tolman, Phys. Rev. 55, 364 (1939).
 ²J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).

Modification of HHJ (HDD) parameterization of EoS

As mentioned, we adopted the HHJ ($\delta = 0.2$) EoS for the description of the nucleon contribution. The energy density of nucleons is parameterized as follows:

$$E_N = u n_0 \bigg[m_N + e_{\rm B} u \frac{2 + \delta - u}{1 + \delta u} + a_{\rm sym} u^{0.6} (1 - 2x_p)^2 \bigg],$$
(5)

where $u = n/n_0$, $e_B \simeq -15.8$ MeV is the nuclear binding energy per nucleon, $a_{sym} \simeq 32$ MeV is the symmetry energy coefficient and we chose $\delta = 0.2$. With these values of parameters one gets the best fit of APR (A18 + δv + UIX^{*})

Introduction of the excluded volume

$$u \to \frac{u}{1 - \alpha u e^{-(\beta/u)^{\sigma}}}$$

H. Heiselberg and M. Hjorth-Jensen, Astrophys. J. 525, L45 (1999).

Stability of stars HDD, DD2 & DDvex-NJL EoS model

High Mass Twin CS

Different Configurations with the same NS mass

Surface Temperature & Age Data

Cooling Mechanism

$$\frac{dU}{dt} = \sum_{i} C_{i} \frac{dT}{dt} = -\varepsilon_{\gamma} - \sum_{j} \varepsilon_{\nu}^{j}$$

Cooling Processes

Direct Urca:

 $n \rightarrow p + e + \bar{\nu}_e$

Modified Urca:

 $n + n \rightarrow n + p + e + \bar{\nu}_e$

►→ Photons: $\rightarrow \gamma$

►→ Bremsstrahlung: $n + n \rightarrow n + n + \nu + \overline{\nu}$

Cooling Evolution

The energy flux per unit time I(r) through a spherical slice at distance r from the center is:

$$\boldsymbol{l}(\boldsymbol{r}) = -4\pi r^2 \boldsymbol{k}(\boldsymbol{r}) \frac{\partial (Te^{\Phi})}{\partial r} e^{-\Phi} \sqrt{1 - \frac{2M}{r}}.$$

The equations for energy balance and thermal energy transport are:

$$\frac{\partial}{\partial N_B} (le^{2\Phi}) = -\frac{1}{n} (\epsilon_{\nu} e^{2\Phi} + c_V \frac{\partial}{\partial t} (Te^{\Phi}))$$
$$\frac{\partial}{\partial N_B} (Te^{\Phi}) = -\frac{1}{k} \frac{le^{\Phi}}{16\pi^2 r^4 n}$$

where n = n(r) is the baryon number density, NB = NB(r) is the total baryon number in the sphere with radius r ∂N_B ∂N_B ∂N_B

$$\frac{\partial N_B}{\partial r} = 4\pi r^2 n (1 - \frac{2M}{r})^{-1/2}$$

F.Weber: Pulsars as Astro. Labs ... (1999);

D. Blaschke Grigorian, Voskresensky, A& A 368 (2001)561.

Neutrino emissivities in hadronic matter:

•Direct Urca (DU) the most efficient processes

$$\epsilon_{DU} = M_{DU} * (m_p^*)(m_n^*) * \Gamma_{wN}^2 * (n_e)^{1/3} (T_9)^6 * R_D;$$

$$M_{DU} = 4 \times 10^{27} \ erg/s/cm^3$$

Modified Urca (MU) and Bremsstrahlung

$$\epsilon_{MUp} = F_M * M_p * (m_p)^3 (m_n^*) (T_9)^8 (n_e)^{1/3} * R_{MUp} (v_n, v_p);$$

 $\epsilon_{nnBS} = P_{nnBS} * R_{BS}^{nn}(v_n) * \Gamma_w^2 \Gamma_s^4(n_b)^{4/3} (T_9)^8 (m_n^*)^4 / (\omega)^3;$ • Suppression due to the pairing

$$v_N = \Delta_N(T)/T = \sqrt{1 - \tau_N} \left(1.456 - \frac{0.157}{\sqrt{\tau_N}} + \frac{1.766}{\tau_N} \right)$$

•Enhanced cooling due to the pairing

$$\epsilon_{\nu}^{\text{NPBF}} = 6.6 \times 10^{28} (m_n^*/m_n) (\Delta_n(T)/\text{MeV})^7 \ u^{1/3} \\ \times \xi \ I(\Delta_n(T)/T) \text{ erg cm}^{-3}\text{s}^{-1}, \\ \epsilon_{\nu}^{\text{PPBF}} = 0.8 \times 10^{28} (m_p^*/m_p) (\Delta_p(T)/\text{MeV})^7 \ u^{2/3} \\ \times \ I(\Delta_p(T)/T) \text{ erg cm}^{-3}\text{s}^{-1}, \end{cases}$$

DU constraint

 $n \rightarrow p + e + \bar{\nu}_e$ implies $p_n \leq p_p + p_e$, charge neutrality results in

$$x_{DU}(x_e) \ge \frac{1}{1 + (1 + x_e^{1/3})^3}$$

$$x_e = n_e / (n_e + n_\mu)$$

no muons:

 $x_{DU} = 11.1\%$

▶ relativistic limit ($n_e = n_\mu$): $x_{DU} = 14.8\%$

NL ρ , NL $\rho\delta$, DBHF : DU occurs below $2.5n_0$

The Mass constraint and DU - onsets

Medium Effects In Cooling Of Neutron Stars

- Based on Fermi liquid
 theory (Landau (1956),
 Migdal (1967), Migdal
 et al. (1990))
- MMU-insted of MU

 $\frac{\varepsilon_{\nu}[\text{MMU}]}{\varepsilon_{\nu}[\text{MU}]}$ $\sim 10^3 \ (n/n_0)^{10/3} \overline{L}$

Main regulator in Minimal Cooling

$$\varepsilon_{\nu} [\text{MpPBF}] \sim 10^{29} \frac{m_N^*}{m_N} \left[\frac{p_{Fp}}{p_{Fn}(n_0)} \right] \left[\frac{\Delta_{pp}}{\text{MeV}} \right]^7 \\ \times \left[\frac{T}{\Delta_{pp}} \right]^{1/2} \xi_{pp}^2 \frac{\text{erg}}{\text{cm}^3 \text{ sec}} , \quad T < T_{cp}.$$

Medium Effects In Cooling Of Neutron Stars

SC Pairing Gaps

2SC phase: 1 color (blue) is unpaired (mixed superconductivity) Ansatz 2SC + X phase:

$$\Delta_0^{\rm X} = \Delta_0 \, \exp -\alpha \, \left(\frac{\mu - \mu_c}{\mu_c}\right)$$

Pairing gaps for hadronic phase (AV18 - Takatsuka et al. (2004))

\mathbf{Model}	$\Delta_0 [\text{MeV}]$	α
Ι	1	10
II	0.1	0
III	0.1	2
IV	5	25

SC Pairing Gaps

Anomalies Because Of PBF Proccess

AV18 gaps, pi-condensate, without suppression of 3P2 neutron pairing -Enhanced PBF process

The gaps from Yakovlev at al. (2003)

Grigorian, Voskresensky Astron. Astrophys. 444 (2005)

Contributions To Luminosities

The Influence Of A Change Of The Heat Conductivity On The Scenario

Blaschke, Grigorian, Voskresensky, A& A 424, 979 (2004)

Neutrino emissivities in quark matter:

•Quark direct Urca (QDU) the most efficient processes

$$\begin{split} & d \to u + e + \bar{\nu} \text{ and } u + e \to d + \nu \\ & \epsilon_{\nu}^{\text{QDU}} \simeq 9.4 \times 10^{26} \alpha_s u Y_e^{1/3} \zeta_{\text{QDU}} T_9^6 \text{ erg cm}^{-3} \text{ s}^{-1}, \end{split}$$

Compression n/no \simeq 2 , strong coupling α s \approx 1

Quark Modified Urca (QMU) and Quark Bremsstrahlung

$$\begin{array}{l} d+q \to u+q+e+\bar{\nu} \text{ and } q_1+q_2 \to q_1+q_2+\nu+\bar{\nu} \\ \epsilon_{\nu}^{\rm QMU} \sim \epsilon_{\nu}^{\rm QB} \simeq 9.0 \times 10^{19} \zeta_{\rm QMU} \ T_9^8 \ {\rm erg \ cm^{-3} \ s^{-1}}. \end{array}$$

Suppression due to the pairing

 $\begin{array}{l} \mathbf{QDU} : \zeta_{\mathrm{QDU}} \sim \exp(-\Delta_q/T) \\ \mathbf{QMU} \text{ and } \mathbf{QB} : \zeta_{\mathrm{QMU}} \sim \exp(-2\Delta_q/T) \text{ for } T < T_{\mathrm{crit},q} \simeq 0.57 \ \Delta_q \end{array}$

• Enhanced cooling due to the pairing • $e+e \rightarrow e+e+\nu + \bar{\nu}$ (becomes important for $\Delta_q/T >> 1$) $\epsilon_{\nu}^{ee} = 2.8 \times 10^{12} Y_e^{1/3} u^{1/3} T_9^8 \text{ erg cm}^{-3} \text{ s}^{-1}$,

Quark PBF

Crust Model

Time dependence of the light element contents in the crust

 $\Delta M_{\rm L}(t) = e^{-t/\tau} \Delta M_{\rm L}(0)$

Blaschke, Grigorian, Voskresensky, A& A 368 (2001)561.

Page,Lattimer,Prakash & Steiner, Astrophys.J. 155,623 (2004)

Yakovlev, Levenfish, Potekhin, Gnedin & Chabrier , Astron. Astrophys , 417, 169 (2004)

Temperature In The Hybrid Star Interior

Temperature In The Hybrid Star Interior

Blaschke, Grigorian, Voskresensky, A& A 368 (2001) 561

HDD - AV18 , Yak. ME nc = 3 n0

DD2 - EEHOr ME-nc=1.5,2.0,2.5n0

Cas A as an Hadronic Star

Cas A As An Hybrid Star

Possible internal structure of CasA

MKVOR - EoS model

Fig. 8. Temperature(T) dependence of Λ energy gap (Δ_{Λ}) for the case of TNI6u EOS and ND-Soft potential, as an example.

MKVOR - EEHOr ME-nc=3.0n0

MKVOR Hyp - EEHOr ME-nc=3.0n0

Cooling of Twin CS

Conclusions

- All known cooling data including the Cas A rapid cooling consistently described by the ``nuclear medium cooling" scenario
- Influence of stiffness on EoS and cooling can be balanced by the choice of corresponding gap model.
- In case of existence of III CSF highmass twin stars could show different cooling behavior depending on core superconductivity

Thank YOU!!!!!

Cooling of Twin CS

DD2- ME-nc = 3 n0 BCLL, EEHOr

DD2 vex-p40, A0 ME-nc = 2.0,2.5 n0

DD2 vex p40, BCLL ME-nc = 1.5,2.0 n0

DD2 – BCLL ME-nc =1.5,2.0,2.5n0

A Crab B 3C 58

C Vela D CTA 1

5

6

E Geminga

Data of NS on Magnetic Field

Neutron Star in Cassiopeia A

• 16.08.1680 John Flamsteed, 6m star 3 Cas

- 1947 re-discovery in radio
 - 1950 optical counterpart

• T ~ 30 MK

- V exp ~ 4000 6000 km/s
- distance 11.000 ly = 3.4 kpc

picture: spitzer space telescope

D.Blaschke, H. Grigorian, D. Voskresensky, F. Weber, Phys. Rev. C 85 (2012) 022802 e-Print: arXiv:1108.4125 [nucl-th]

DU Problem & Constraint

Influence Of SC On Luminosity

 Critical temperature,
 Tc, for the proton 1So and neutron 3P2 gaps,
 used in PAGE, LATTIMER,
 PRAKASH, & STEINER Astrophys.J.707:1131 (2009)

Tc 'Measurement' From Cas A

- Assumed to be a star with mass = 1.4 M^O
- from the APR EoS
- Rapidly cools at ages
- ~ 30-100 yrs due to the thermal relaxation of the crust
- Mass dependence

Page, Lattimer, Prakash, & Steiner
Phys.Rev.Lett.106:081101,2011

Equations for Cooling Evolution

$$L_{i\pm 1/2} = \pm \frac{C_i + C_{i\pm 1}}{2} \frac{z_{i\pm 1} - z_i}{\Delta a_{i-1/2(1\mp 1)}}$$

$$\frac{\partial \boldsymbol{L}_{i}}{\partial a} = 2 \frac{\boldsymbol{L}_{i+1/2} - \boldsymbol{L}_{i-1/2}}{\Delta a_{i} + \Delta a_{i-1}}$$

Finite difference scheme

 $\alpha_{i,j-1} z_{i+1,j} + \beta_{i,j-1} z_{i,j} + \gamma_{i,j-1} z_{i-1,i} = \delta_{i,j-1}$

Boundary conditions

