Realistic compactification models in Einstein-Gauss-Bonnet gravity Sergey A. Pavluchenko Programa de Pós-Graduação em Física, Universidade Federal do Maranhão (UFMA), 65085-580, São Luís, Maranhão, Brazil #### Based on: - S.P., Cosmological dynamics of spatially flat Einstein-Gauss-Bonnet models in various dimensions. Vacuum case, Phys. Rev. D **94**, 024046 (2016) [arXiv:1605.01456] - S.P., Cosmological dynamics of spatially flat Einstein-Gauss-Bonnet models in various dimensions: low-dimensional Λ-term case, Phys. Rev. D **94**, 084019 (2016) [arXiv:1607.07347] - S.P., Cosmological dynamics of spatially flat Einstein-Gauss-Bonnet models in various dimensions: high-dimensional Λ-term case, Eur. Phys. J. C **77**, 503 (2017) [arXiv:1705.02578] - <u>S.P.</u> and A. Toporensky, *Effects of spatial curvature and anisotropy on the asymptotic regimes in Einstein-Gauss-Bonnet gravity* [arXiv:1709.04258] # Plan of talk: - Motivation and historical outline; - General form of EoMs in spatially-flat (Bianchi-I-type) cosmologies; - For [3+D] spatial splitting: - General vacuum case; - General Λ-term case; - Effect of spatial curvature; - Effect of anisotropy; - Two-steps scheme (anisotropy + curvature); - Conclusions #### Historical outline 1914 – Nordström's 5D vector theory which unify Nordström's scalar gravity with electromagnetism Nordström, G., "Über die Möglichkeit, das Elektromagnetische Feld und das Gravitationsfeld zu vereiningen", Physikalische Zeitschrift **15**, 504 (1914) 1915 – General Relativity, Nordström's gravity proven to be wrong (1919, Solar eclipse) 1919—1921 – Kaluza Hypothesis: 5D Einstein equations → 4D Einstein field equations + Maxwell Equations; cylindrical condition Kaluza, T., "Zum Unitätsproblem in der Physik", Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.), 966 (1921) 1926 – Oskar Klein – quantum interpretation: 5^{th} dimension is closed and periodic; elec charge in 5^{th} dim \rightarrow standing waves \rightarrow quantization of elec in Borh's model Klein, O., "Quantentheorie und fünfdimensionale Relativitätstheorie", Zeitschrift für Physik A **37**, 895 (1926) Klein, O., "The Atomicity of Electricity as a Quantum Theory Law", Nature **118**, 516 (1926) ## Higher-curvature corrections to the Lagrangian - J. Scherk and J.H. Schwarz, Nucl. Phys. **B81**, 118 (1974) $R^2 R_{\mu\nu}R^{\mu\nu}$ - P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Nucl. Phys. **B258**, 45 (1985) $R^{\mu\nu\lambda\rho}R_{\mu\nu\lambda\rho}$ - B. Zwiebach, Phys. Lett. **156B**, 315 (1985) - B. Zumino, Phys. Rep. 137, 109 (1986) $$L_{GB} = R^{\mu\nu\lambda\rho}R_{\mu\nu\lambda\rho} - 4R_{\mu\nu}R^{\mu\nu} + R^2$$ Euler's topological invariant in (3+1); in higher dimensions gives nontrivial contribution to the equations of motion Nonlinear! ## Nonstandard singularities The situation with emerges in nonlinear theories: linear, say, GR $$\dot{H} = P_1(H,...)$$ nonlinear theories $$\dot{H}=\frac{P_2(H,\ldots)}{P_3(H,\ldots)}$$ H is regular but P3 = 0, dH diverges = (nonstandard) singularity Spatially-flat (Bianchi-I-type) metric - most generic without imposing any spatial splitting $$ds^2 = diag(-1, a_1^2(t), a_2^2(t), \dots a_D^2(t))$$ n=2 for Gauss-Bonnet $$\mathcal{L} = \sqrt{-g} \sum_{n=0}^{t} \alpha_n \, \mathcal{R}^n, \qquad \mathcal{R}^n = \frac{1}{2^n} \delta_{\alpha_1 \beta_1 \dots \alpha_n \beta_n}^{\mu_1 \nu_1 \dots \mu_n \nu_n} \prod_{r=1}^{n} R^{\alpha_r \beta_r}_{\mu_r \nu_r} \qquad \delta_{\alpha_1 \beta_1 \dots \alpha_n \beta_n}^{\mu_1 \nu_1 \dots \mu_n \nu_n} = \frac{1}{n!} \delta_{[\alpha_1}^{\mu_1} \delta_{\beta_1}^{\nu_1} \dots \delta_{\alpha_n}^{\mu_n} \delta_{\beta_n]}^{\nu_n}.$$ $$\sum_{n=1}^{d} \zeta_n \left\{ \sum_{k \neq m} \left(\ddot{a}_k + \dot{a}_k^2 \right) \sum_{\{j_1 < \dots < j_{2n-2}\} \neq k, m} \prod_{r=1}^{2n-2} \dot{a}_{j_r} + (2n-1) \sum_{\{j_1 < \dots < j_{2n}\} \neq m} \prod_{r=1}^{2n} \dot{a}_{j_r} \right\}$$ $$= \kappa^2 T_m^m$$ $$\sum_{n=1}^{d} (2n-1)\zeta_n \sum_{j_1 < \dots < j_{2n}} \prod_{r=1}^{2n} \dot{a}_{j_r} = \kappa^2 T_0^0$$ ## General vacuum case without any metric ansatz $H_i = \dot{a}_i(t)/a_i(t)$ spatially-flat – Hubble parameters instead of scale factors $$2\left[\sum_{\substack{j\neq i}}(\dot{H}_{j}+H_{j}^{2})+\sum_{\substack{\{k>l\}\\ \neq i}}H_{k}H_{l}\right]+8\alpha\left[\sum_{\substack{j\neq i}}(\dot{H}_{j}+H_{j}^{2})\sum_{\substack{\{k>l\}\\ \neq \{i,j\}}}H_{k}H_{l}+3\sum_{\substack{\{k>l>\\ m>n\}\neq i}}H_{k}H_{l}H_{m}H_{n}\right]=0$$ $$2\sum_{i>j} H_i H_j + 24\alpha \sum_{i>j>k>l} H_i H_j H_k H_l = 0$$ $$H_1 = H_2 = H_3 = H$$ and $H_4 = \dots = H_{D+3} = h$ $$\begin{split} 2\left[2\dot{H}+3H^2+D\dot{h}+\frac{D(D+1)}{2}h^2+2DHh\right]+8\alpha\left[2\dot{H}\left(DHh+\frac{D(D-1)}{2}h^2\right)+\right.\\ +D\dot{h}\left(H^2+2(D-1)Hh+\frac{(D-1)(D-2)}{2}h^2\right)+2DH^3h+\frac{D(5D-3)}{2}H^2h^2+\\ +D^2(D-1)Hh^3+\frac{(D+1)D(D-1)(D-2)}{8}h^4\right]&=0;\\ 2\left[3\dot{H}+6H^2+(D-1)\dot{h}+\frac{D(D-1)}{2}h^2+3(D-1)Hh\right]+8\alpha\left[3\dot{H}\left(H^2+2(D-1)Hh+\frac{(D-1)(D-2)}{2}h^2\right)+(D-1)\dot{h}\left(3H^2+3(D-2)Hh+\frac{(D-2)(D-3)}{2}h^2\right)+3H^4+\\ +9(D-1)H^3h+3(D-1)(2D-3)H^2h^2+\frac{3(D-1)^2(D-2)}{2}Hh^3+\\ +\frac{D(D-1)(D-2)(D-3)}{8}h^4\right]&=0;\\ 2\left[3H^2+3DHh+\frac{D(D-1)}{2}h^2\right]+24\alpha\left[DH^3h+\frac{3D(D-1)}{2}H^2h^2+\frac{D(D-1)(D-2)}{2}Hh^3+\\ +\frac{D(D-1)(D-2)(D-3)}{24}h^4\right]&=0. \end{split}$$ #### D=1 vacuum case $$+8\alpha(2(\dot{H}+H^2)Hh+(\dot{h}+h^2)H^2)=0,$$ $$6\dot{H}+12H^2+24\alpha(\dot{H}+H^2)H^2=0,$$ $$6H^2+6Hh+24\alpha H^3h=0.$$ $4\dot{H} + 6H^2 + 2\dot{h} + 2h^2 + 4Hh$ $$\dot{H} = -\frac{2H^2(1 + 2\alpha H^2)}{1 + 4\alpha H^2} \qquad \dot{h} = -\frac{2H^2(8\alpha^2 H^4 + 2\alpha H^2 - 1)}{(1 + 4\alpha H^2)(16\alpha^2 H^4 + 8\alpha H^2 + 1)}$$ $$p_H = -\dot{H}/H^2 \qquad p_h = -\dot{h}/h^2 \qquad \xi = \alpha H^2$$ ## Summary of vacuum D=1 regimes | α | Additional conditions | Regimes | |--------------|---|-------------------| | $\alpha > 0$ | no | $K_3 \to K_1$ | | | $H^2 < -\frac{1}{4\alpha}$ | $nS \to K_1$ | | $\alpha < 0$ | $-\frac{1}{2\alpha} > H^2 > -\frac{1}{4\alpha}$ | $nS \to E_{iso}$ | | | $H^2 > -\frac{1}{2\alpha}$ | $K_3 \to E_{iso}$ | D=2 – the same procedure, but two branches: $$6H^2 + 12Hh + 2h^2 + 24\alpha(2H^3h + 3H^2h^2) = 0$$ $$h_{\pm} = -\frac{H\left(3 + 12\alpha H^2 \pm \sqrt{6 - 36\alpha H^2 + 144\alpha^2 H^4}\right)}{1 + 36\alpha H^2}$$ # Summary of vacuum D=2 regimes | α | Branch | Additional conditions | Regimes | |--------------|---------|--|-------------------| | $\alpha > 0$ | h_{+} | $H < H_1 = \sqrt{\frac{\xi_1}{\alpha}} \text{ from (23)}$ | $K_1 \to nS$ | | | | $\sqrt{\frac{\xi_2}{\alpha}} = H_2 > H > H_1 = \sqrt{\frac{\xi_1}{\alpha}} \text{ from (23)}$ | $nS \to nS$ | | | | $\sqrt{\frac{\xi_0}{\alpha}} = H_3 > H > H_2 = \sqrt{\frac{\xi_2}{\alpha}} \text{ from (22) and (23)}$ | $nS \to E_{3+2}$ | | | | $H > H_3 = \sqrt{\frac{\xi_0}{\alpha}} \text{ from } (22)$ | $K_3 \to E_{3+2}$ | | | h_{-} | no | $K_3 \to K_1$ | | 0 | | $H < H_1 = \frac{1}{6\sqrt{-\alpha}}$ | $K_1 \to nS$ | | $\alpha < 0$ | h_+ | $\frac{1}{\sqrt{-6\alpha}} = H_2 > H > H_1 = \frac{1}{6\sqrt{-\alpha}}$ | $nS \to E_{iso}$ | | | | $H > H_2 = \frac{1}{\sqrt{-6\alpha}}$ | $K_3 \to E_{iso}$ | # Summary of D=3 regimes | Branch | α | Additional conditions | Regimes | |----------------|--------------|---|-----------------------------------| | l _a | $\alpha > 0$ | n o | $K_3 \to K_3$ | | h_1 | $\alpha < 0$ | no | $K_3 \to E_{iso}$ (both branches) | | | | $H < \sqrt{\frac{\xi_3}{\alpha}} \text{ from (32)}$ | $nS \to K_1$ | | h_2 | $\alpha > 0$ | $\sqrt{\frac{\xi_4}{\alpha}} > H > \sqrt{\frac{\xi_3}{\alpha}} \text{ from (32)}$ | $nS \to E_{3+3}$ | | | | $H > \sqrt{\frac{\xi_4}{\alpha}} \text{ from (32)}$ | $K_3 \to E_{3+3}$ | | | $\alpha < 0$ | no | $K_3 \to K_1$ | | | $\alpha > 0$ | $H < \sqrt{\frac{\xi_1}{\alpha}} \text{ from (32)}$ | $K_1 \to nS$ | | h_3 | | $\sqrt{\frac{\xi_2}{\alpha}} > H > \sqrt{\frac{\xi_1}{\alpha}} \text{ from (32)}$ | $E_{3+3} \to nS$ | | | | $H > \sqrt{\frac{\xi_2}{\alpha}} \text{ from (32)}$ | $E_{3+3} \to K_3$ | | | $\alpha < 0$ | no | $K_1 \to K_3$ | ## Summary of general D≥4 regimes H_1 $\begin{array}{c|c} \alpha > 0 & K_1 \rightarrow K_3 \\ \hline \alpha < 0 & K_3 \rightarrow K_1 \\ \hline & nS \rightarrow K_1 \\ \hline & nS \rightarrow nS \\ \hline & a > 0 \\ \hline & E_{3+D} \rightarrow nS \\ \hline & E_{3+D} \rightarrow K_3 \\ \hline & \alpha < 0 & K_3 \rightarrow E_{iso} \text{ (both regimes)} \\ \hline & H_3 & \begin{array}{c} \alpha > 0 & K_3 \rightarrow E_{3+D} \text{ (both regimes)} \\ \hline & \alpha < 0 & K_1 \rightarrow K_3 \\ \hline & \alpha < 0 & K_1 \rightarrow K_3 \end{array}$ Regimes Branch α GR Kasner: D=1 $$p_H = 0.5$$ D=2 $$p_H = \frac{1}{2\sqrt{6} - 3} \approx 0.5266$$ D=3 $$p_H = \frac{2}{3\sqrt{5} - 3} \approx 0.5294$$ general D≥4 $$p_H = \frac{1}{3} - \frac{D + \sqrt{3D^2 + 6D}}{3(D+3)}$$ with $\lim_{D \to \infty} p_H = \frac{1}{\sqrt{3}} \approx 0.577$. #### Summary of vacuum regimes: - high-energy to low-energy Kasner transitions: at α>0 for D≤2 and α<0 for D≥2 - high-energy Kasner to anisotropic exponential transitions: α>0 and D≥2 - the value for p_H could be too high to fit Friedmann cosmology <u>S.P.</u>, Phys. Rev. D **94**, 024046 (2016) Λ-term cases – the same procedure but results are a bit different: - no low-energy Kasner regime (replaced with nS, ``dual" regimes or high-energy Kasner) - more complicated structure of the regimes ## Summary of D=1 Λ-term regimes | α | Λ | Additional conditions | | Regimes | |--------------|---------------|--------------------------------|---|---| | | $\Lambda > 0$ | $H < H_{-} \text{ from } (14)$ | | $\tilde{K}_1 \rightarrow E_{iso}$ | | $\alpha > 0$ | | H | $H > H_{-}$ from (14) | $K_3 \rightarrow E_{iso}$ | | | $\Lambda < 0$ | no | | $K_3 ightarrow ilde{K}_1^S$ | | | $\Lambda > 0$ | $\alpha\Lambda < -3/2$ | $H < \frac{1}{2\sqrt{-\alpha}}$ | $ ilde{K}_1 ightarrow nS$ | | | | | $H > \frac{1}{2\sqrt{-\alpha}}$ | $K_3 o nS$ | | | | $\alpha\Lambda = -3/2$ | $H < \frac{1}{2\sqrt{-\alpha}}$ | $ ilde{K}_1 ightarrow E_{iso}$ | | | | | $H > \frac{1}{2\sqrt{-\alpha}}$ | $K_3 \rightarrow E_{iso}$ | | | | $\alpha\Lambda > -3/2$ | $H < H_{-}$ from (14) | $\tilde{K}_1 \rightarrow E_{iso}^{(1)}$ | | $\alpha > 0$ | | | $\frac{1}{2\sqrt{-\alpha}} > H > H_{-} \text{ from (14)}$ | $nS \rightarrow E_{iso}^{(1)}$ | | | | | $\frac{1}{2\sqrt{-\alpha}} > H > H_{-} \text{ from (14)}$ $H_{+} > H > \frac{1}{2\sqrt{-\alpha}} \text{ from (14)}$ | $nS \rightarrow E_{iso}^{(2)}$ | | | | | | $K_3 \rightarrow E_{iso}^{(2)}$ | | | $\Lambda < 0$ | | $H < \frac{1}{2\sqrt{-\alpha}}$ | $nS ightarrow ilde{K}_1^S$ | | | | $H_+ >$ | $H > \frac{1}{2\sqrt{-\alpha}}$ from (14) | $nS \to E_{iso}$ | | | | l H | $H > H_+ \text{ from } (14)$ | $K_3 \rightarrow E_{iso}$ | D=2 – even more solutions (3 tables), among them high-energy Kasner to anisotropic exponent for α >0, $\alpha\Lambda$ ≤1/2 (including Λ <0) as well as α <0, Λ >0, $\alpha\Lambda$ ≤-3/2. Additionally for α <0, Λ >0, $\alpha\Lambda$ =-3/2 there exist regime with h \rightarrow 0 – extra dimensions ``stabilize" (their``size" in terms of the scale factor reach constant value). D=3 – similar to D=2, but the regimes are ``doubled". Finally, D≥4, $$\alpha$$ <0, Λ >0, $\alpha\Lambda$ ≤-3/2 and α >0, $\alpha\Lambda$ \leqslant ζ_6 $$\zeta_6 = \frac{1}{4} \frac{3D^2 - 7D + 6}{D(D - 1)}$$ #### To conclude: - the only viable regime is the transition from high-energy Kasner to the exponential regime - D≥2 - just the requirement of the existence of viable cosmologies \rightarrow constraints on (α, Λ) <u>S.P.</u>, Phys. Rev. D **94**, 084019 (2016) <u>S.P.</u>, Eur. Phys. J. C **77**, 503 (2017) Limits on αΛ from AdS/CFT, causality violation, BHs in GB gravity, shear viscosity-to-entropy ratio etc $$-\frac{(D+2)(D+3)(D^2+5D+12)}{8(D^2+3D+6)^2} \equiv \eta_2 \leqslant \alpha \Lambda \leqslant \eta_1 \equiv \frac{(D+2)(D+3)(3D+11)}{8D(D+5)^2}$$ Only in AdS (so that Λ <0)! In dS (Λ >0), the limits are less numerous (BHs, causality etc) $$\alpha \Lambda \geqslant \eta_3 \equiv -\frac{D^2 + 7D + 4}{8(D-1)(D+2)}$$ Our limits: $$\alpha<0, \ \Lambda>0, \ \alpha\Lambda\leq -3/2 \ \text{and} \quad \alpha>0, \ \alpha\Lambda\leqslant\eta_0\equiv\zeta_6 \qquad \qquad \zeta_6=\frac{1}{4}\frac{3D^2-7D+6}{D(D-1)}$$ $$\alpha > 0$$, $D \ge 2$, $\frac{3D^2 - 7D + 6}{4D(D - 1)} \equiv \eta_0 \ge \alpha \Lambda \ge \eta_2 \equiv -\frac{(D + 2)(D + 3)(D^2 + 5D + 12)}{8(D^2 + 3D + 6)^2}$ #### More complex models: - spatial curvature - anisotropy within subspaces #### Influence of curvature $+\frac{12B_{(2)}C}{(D-3)}+\frac{24A_{(2)}C}{(D-1)(D-2)(D-3)}$ $$\begin{split} M_4 \times M_D & ds^2 = -dt^2 + a(t)^2 d\Sigma_{(3)}^2 + b(t)^2 d\Sigma_{(\mathbf{D})}^2 \\ & \varepsilon_i = 0 \\ & \Leftrightarrow 0 = \alpha + \beta \Big(B_{(2)} + \frac{4A_{(1)}}{D(D-1)} + \frac{2B_{(1)}}{D-1} + \frac{2A_{(2)}}{D(D-1)} + \frac{4C}{(D-1)} \Big) + \gamma \Big(B_{(2)}^2 + \frac{16A_{(1)}C}{(D-1)(D-2)(D-3)} + \frac{8B_{(2)}C}{D-3} \\ & + \frac{8A_{(1)}B_{(2)}}{(D-2)(D-3)} + \frac{8A_{(2)}B_{(1)}}{(D-1)(D-2)(D-3)} + \frac{16B_{(1)}C}{(D-2)(D-3)} + \frac{4B_{(1)}B_{(2)}}{(D-3)} + \frac{4A_{(2)}B_{(2)}}{(D-2)(D-3)} + \frac{8C^2}{(D-2)(D-3)} \Big) \\ & \mathcal{E}_a = 0 \Leftrightarrow 0 \\ & = \frac{D}{(D-4)}\alpha + \frac{(D-2)}{(D-4)}\beta \Big(B_{(2)} + \frac{6A_{(1)}}{(D-1)(D-2)} + \frac{2B_{(1)}}{D-2} + \frac{6A_{(2)}}{(D-1)(D-2)} + \frac{6C}{(D-2)} \Big) \\ & + \gamma \Big(B_{(2)}^2 + \frac{48A_{(1)}C}{(D-2)(D-3)(D-4)} + \frac{12B_{(2)}C}{D-4} + \frac{24C^2}{(D-3)(D-4)} + \frac{12A_{(1)}B_{(2)}}{(D-3)(D-4)} + \frac{24A_{(1)}A_{(2)}}{(D-1)(D-2)(D-3)(D-4)} \Big) \\ & \mathcal{E}_0 = 0 \Leftrightarrow 0 \\ & = \alpha + \beta \Big(B_{(2)} + \frac{6}{D-1}C + \frac{6}{D(D-1)}A_{(2)} \Big) \\ & + \frac{24C^2}{(D-2)(D-3)} + \frac{12A_{(2)}B_{(2)}}{(D-2)(D-3)} + \frac{24C^2}{(D-2)(D-3)} \Big) \\ & \frac{24C^2}{(D-2)(D-3)} \Big) \\ & + \frac{12A_{(2)}B_{(2)}}{(D-2)(D-3)} + \frac{24C^2}{(D-2)(D-3)} \Big) \\ & + \frac{12A_{(2)}B_{(2)}}{(D-2)(D-3)} \Big) \\ & + \frac{12A_{(2)}B_{(2)}}{(D-2)(D-3)} + \frac{24C^2}{(D-2)(D-3)} \Big) \\ & + \frac{12A_{(2)}B_{(2)}}{(D-2)(D-3)} \Big) \\ & + \frac{12A_{(2)}B_{(2)}}{(D-2)(D-3)} \Big) \\ & + \frac{12A_{(2)}B_{(2)}}{(D-2)(D-3)} \Big) \\$$ Vacuum $K_3 \to K_1$ Vacuum $K_3 \to E_{3+D}$ Λ -term $K_3 \to E_{3+D}$ | $(\gamma_{(3)},\gamma_{(\mathbf{D})})$ | Regime | |--|---------------| | $\gamma_{(\mathbf{D})} = 0$ | $K_3 \to K_1$ | | $\gamma_{(\mathbf{D})} > 0$ | $K_3 \to nS$ | | $\gamma_{(\mathbf{D})} < 0$ | $K_3 \to K_D$ | | $(\gamma_{(3)}, \gamma_{(\mathbf{D})})$ | Regime | |---|-------------------| | $\gamma_{(\mathbf{D})} = 0$ | $K_3 \to E_{3+D}$ | | $\gamma_{(\mathbf{D})} \neq 0$ | $K_3 \to nS$ | | $(\gamma_{(3)}, \gamma_{(\mathbf{D})})$ | Regime | |---|--| | $\gamma_{(\mathbf{D})} = 0$ | $K_3 \to E_{3+D}$ | | $\gamma_{(\mathbf{D})} > 0$ | $K_3 \to nS$ | | $\gamma_{(\mathbf{D})} < 0, D = 2$ | $K_3 \to nS \text{ or } K_3 \to E_{iso}$ | | $\gamma_{(\mathbf{D})} < 0, D \geqslant 3$ | $K_3 \to nS \text{ or } K_3 \to E_3$ | $K_D: H \to 0 \ (a(t) \to \text{const}), \ b(t) \propto t \ (p_h = 1)$ ``stabilization" of three dimensions, only D≥3 $E_3: H \to \text{const}, b(t) \to \text{const}$ ``stabilization" of extra dimensions, only D≥3 Only negative curvature of extra dimensions brings new realistic regime(s) and only in D≥3 K_D could be viable in D=3, but p_h is too large... ## Influence of anisotropy $$2\left[\sum_{\substack{j\neq i}}(\dot{H}_{j}+H_{j}^{2})+\sum_{\substack{\{k>l\}\\ \neq i}}H_{k}H_{l}\right]+8\alpha\left[\sum_{\substack{j\neq i}}(\dot{H}_{j}+H_{j}^{2})\sum_{\substack{\{k>l\}\\ \neq \{i,j\}}}H_{k}H_{l}+3\sum_{\substack{\{k>l>\\ m>n\}\neq i}}H_{k}H_{l}H_{m}H_{n}\right]=0$$ $$2\sum_{i>j} H_i H_j + 24\alpha \sum_{i>j>k>l} H_i H_j H_k H_l = 0$$ $$H_i = \dot{a}_i(t)/a_i(t)$$ without [3+D] spatial splitting - start in the vicinity of the exact solution; - set and fix all but three initial Hubble parameters; - vary two of the remaining Hubble parameters; - calculate the remaining from the constraint equation. Kasner asymptote – ``metastable" Exponential – stable for a wide range of the initial conditions But in D≥3 there exist more then one stable anisotropic exponential solution ## Two-steps scheme Anisotropy – exponential solution with [3+D] spatial splitting from quite wide initial conditions; Negative cirvature of the extra dimensions – stabilization of the extra dimensions, if started from anisotropic exponential solution. #### Combine them! Start from i.c. with small curvature \rightarrow exponential solution \rightarrow curvature of the extra dimensions begins to play role \rightarrow stabilization of the extra dimensions ... works only in D≥3 (from curvature), where the anisotropy could lead to another (non-viable) exponential solution... #### Results - analytically found power-law and exponential exact solutions are presented in the general scheme without any prior metric ansatz (including constant-volume exponential solutions); - requirement of existence of viable (realistic) regimes (standard cosmological singularity as a past attractor and power-law/exponential expansion of 3D + contraction of extra dimensions as a future attractor) allows us to put constraints on (α, Λ) ; - comparisong of our constraints with those from other considerations allows to put more tighter constraints; in particular, only α>0 is allowed; D≥2 - negative curvature of the extra dimensions brings new potentially viable regimes; - initially anisotropic cosmologies tend to exponential solutions; - demonstrated existence of the transition from the initially anisotropic curved space to the exponential solution with expanding three and constant-sized extra dimensions with no fine-tuning; D≥3